

Empowering Resource-Constraint IoT Gateways with Port Knocking

Security

Yuta Inoue1,* Seiya Kato1 Aamir H. Bokhari1 Katsunari Yoshioka1†

Tsutomu Matsumoto1†

Abstract: Digital boom brought empowerment to seamless connectivity by enabling manufacturers to harness the power of the

Internet into their products, opening up the world of the Internet of Things (IoT). However, such connectivity has also brought the

side effect of such power being abused by the bad actors, who scan open ports for services and then make their way in by exploiting

vulnerabilities in the system. There is an increasing need to enable IoT devices to be fully patched and secured. This paper studies

a unique but practical method of security called “Port Knocking.” Our experimental results on a resource-constraint IoT gateway

show that port knocking not only secures the device and provides a secure remote management option, but also makes power

consumption lower. The results obtained make it an effective security layer for securing IoT devices.

Keywords: Authentication, IoT Gateway, Port Knocking, Remote Management, System Security

1. Introduction

 In the 21st century, the Internet of Things (IoT) has opened up

a new horizon for entrepreneurs and hackers. By 2020, Gartner

expects 20 billion IoT devices connected to the Internet and

estimates over 25% of known attacks will involve IoT, whereas

the IT security budgets for IoT would be less than 10% [1].

Consumer’s dependency on technology and plug-n-play concept

makes it easy to compromise the IoT devices due to the absence

of human roles as users usually do not engage in the management

of their devices. The IoT device resources are also getting scarce

due to small sizes designed for portable use. These will increase

the opportunities for hacking [2]. Furthermore, botnets are using

self-propagating malware, such as “Mirai” for attack purposes [3].

Thus, cyber-attacks exploiting IoT vulnerabilities in-network

services and poor security are increasing.

 Due to more focus on security-by-design, various security

ideas are coming up mainly for the next-generation IoT devices.

The existing IoT devices already in the market are being left

unsecured. End users do not have adequate technical knowledge

to fix security issues by themselves. The lack of security

management and limited resources on such IoT devices is a big

challenge. A possible approach is to update the security via

remote patching, but that is also subject to common attacks on the

well-known services, such as Telnet, FTP, SSH, and Web.

Therefore, in this study, we focused on the challenge of securing

remote management for resource-constraint IoT gateway devices

already available in the market and power consumption by the

suggested method to ensure available resources are not stressed

out by the security.

 1 Graduate School of Environment and Information Sciences,

 Yokohama National University.

 † Institute of Advanced Sciences, Yokohama National University.

 * inoue-yuuta-zr@ynu.jp

Due to resource constraints and lack of user management, we

cannot secure them with conventional security methods, such as

firewalls. Thus, we examined port knocking, which is commonly

used by system administrators of large systems for remote

management. We tested the IoT gateway with two types of port

knocking methods. One was based on python script utilizing

pseudorandom number generator (PRNG) and chaotic random

number generator (CRNG) algorithms. Whereas, the other was

based on stream cipher utilizing authenticated encryption with

associated data (AEAD) algorithm. In our lab test, we found the

first method consuming almost 50% of CPU resources compare

to 9-15% of CPU usage when updating the knocking sequence

and generating key. Therefore, further testing was done based on

the second method to measure the effectiveness of hiding port

22/TCP (SSH) when not in use, and device power consumption.

The results showed that the device with port knocking enabled

had zero SSH login attempt versus 1039. This shows that stream

cipher based port knocking was able to reduce the attack surface

significantly, adding to the security of the IoT device. The power

consumption also was less than the one with no port knocking

because of less number of packets received.

Based on the results of the experiments conducted to measure the

effect of using port knocking security feature on resource-

constraint IoT gateway, we can conclude that the experimental

results imply the power consumption overhead by receiving

incoming session requests (from scanners/malware on the

Internet) would easily exceed the power consumption for running

port knocking service. Thus, running port knocking service

would be beneficial in terms of not only security enhancement

but also power consumption.

Computer Security Symposium 2020
26 - 29 October 2020

© 2020 Information Processing Society of Japan －362－

2. Related Work

Due to the popularity of IoT, a lot of research has been focused

mainly on the IoT threats, vulnerabilities, attacks, limitations, and

challenges. Many researchers have also examined the security of

IoT and possible countermeasures. For example, Paper [2]

highlights the issues with IoT devices and various types of IoT

attacks along with possible countermeasures. It rules out the use

of conventional cryptography in small IoT devices or limits it due

to resource constraints. The focus then turned towards finding the

kind of algorithms that can be used in the Internet of Things

environment. Paper [4] proposed storing of data in the cloud

directly from a smart device or via a gateway using lightweight

encryption algorithms on IoT devices to address the issues of

privacy and security. However, its focus was more on the privacy

and security of the data than the IoT device itself.

 The authors in paper [5] provided a port knocking approach

utilizing symmetric key encryption, Message Authentication

Code (MAC), and an encrypted keep-alive system to secure

service port. However, it is limited to TCP ports with static IP

configuration only and was tested using a hardware (CPU = Intel

Core i7 3770 @ 3.40 GHz; RAM = 8GB DDR3) with plenty of

resources. With respect to resources, only physical memory usage

and network bandwidth was examined. This paper did not look at

the device power consumption, which is more critical in today’s

resource-constraint IoT gateways. In paper [6] the author

introduced an advanced method of port knocking that can reduce

attacks by producing difficult to guess port knocking sequences

based on PRNG and CRNG algorithms. As this solution utilizes

both TCP and UDP ports, therefore, it can be a candidate for our

purposes. Similarly, another paper [7] suggests a different

algorithm based on RFC7539 [8] that pairs ChaCha20 stream

cipher with Poly1305 authenticator to create an AEAD scheme

for IoT applications to run on ARM Cortex-M4 processors. A

security analysis report by KDDI Research Inc. concludes that

they could not find the weakness in the AEAD algorithm [9].

Therefore, this method can also be a candidate for our purpose as

it can be used for random port knocking sequences and key

generation.

2.1 Port Knocking

Port knocking is not a new concept as it has been used by

system administrators to manage the servers remotely.

However, its application on IoT devices is relatively new. A

common method of attack is to first look for open service ports

using a port scanner. In the case of port knocking, the service

port is closed by default and opens for service only for the

requester that sends the right sequence of packets to the

firewall for authentication, as shown in Fig.1. This figure was

created by referring to [10].

Fig. 1 Port knocking

In case of Linux based devices, a “knockd” daemon process

(server) monitors the knock sequence and open/close ports via

the “iptables”. This knock sequence must be randomly

generated and synchronized between the client and server in

order to avoid replay attacks or man-in-the-middle (MITM)

attacks. With the service port closed, the target port cannot be

confirmed during scanning, and therefore, an attacker cannot

target it [10].

Based on the research work in paper [6] and [7], we selected

two approaches for our port knocking testing on IoT gateway

device because they can be used in IoT environment and can

generate completely random numbers using two sets of

completely different algorithms as follows:

2.1.1 Python Script based Port Knocking Daemon

In this approach, the port knocking mechanism (python

script based “knockd” server) is setup by a Python script that

produces pseudo-random port numbers using system time as

a seed with a PRNG algorithm, and then again combining the

result with the CRNG algorithm for protocols (TCP/UDP), as

shown in Fig.2. This figure was created by referring to [6].

Fig. 2 Python-based PRNG-CRNG “knockd” server

This creates a system that always generates the same knock

sequence based on the same algorithms running on the server

Firewall

Authorized

Client
(Knocker)

Un-

authorized

Client

Server
(Knockd)

Knock-1

Correct Sequence

Knock-3

Knock-2

Python

Script

7519

33869

8930

12707
5051

4915

…

0

1

0

1

1
0

…

Python

PRNG

System

Time
Henons

CRNG

7519:TCP, 33869:UDP, 8930:TCP,

12707:UDP, 5051:UDP, 49150:TCP

Series of Random Port Knocking Sequences

Pseudo-

Random

Numbers

Seed
Chaotic-

Random

Numbers

－363－

and the client side [6]. Due to the pseudo-random nature of

the algorithm, it mitigates playback and MITM attacks.

2.1.2 Stream Cipher based Port Knocking Daemon

The second method based on stream cipher knockd server

[8] was tested with a 256-bit secret key shared between server

and client, generating a 512-bit key stream from the secret key

and time using Authenticated Encryption with Associated

Data algorithm, as defined in IETF’s RFC 8439 [11]. Key-

stream was split in 10 knock sequences (1 sequence = 3 ports

= 48bits). Frequency for updating knock sequence was set at

every 60-sec intervals. The key-stream was regenerated every

10 min interval [12].

3. Proposed Method

For testing our proposed solution, we selected commonly

available off-the-shelf IoT gateway devices [13], [14] having a

raspberry-pi hardware configuration, as shown in Table 1.

Raspberry-pi is one of the popular off-the-shelf hardware being

used commonly as an IoT gateway for connecting various kinds

of sensors with applications.

3.1 Test Setup

3.1.1 Test-1: Port knocking effectiveness in terms of CPU

usage

First, we need to select a port knocking method approach that

does not put too much stress on the CPU of the IoT device. We

will install and test both approaches (Python script based port

knocking and stream cipher based port knocking) on the same IoT

test device one-by-one, targeting port 22/TCP for SSH service

with port knocking and measure the CPU usage via log analyzer,

as shown in Fig.3.

3.1.2 Test-2: Port knocking effectiveness in terms of security

Once we have identified an efficient port knocking method,

then we will examine how effectively it can reduce the

unauthorized SSH login attempts on a default port 22/TCP, as

shown in Fig.4.

Table 1 IoT test devices

Fig. 3 Test-1 setup

Fig. 4 Test-2 setup

3.1.3 Test-3: Port knocking effectiveness in terms of power

consumption

In order to examine the power consumed with and without the

port knocking feature, we used two identical IoTBX1 gateway

devices that were running on the same software and hardware.

USB testers were connected to each IoT device, and these testers

were then connected to a self-powered USB hub. A note PC was

also connected with the USB hub for observational purposes, as

shown in Fig.5.

Fig. 5 Test-3 setup

Internet

Testing Port
Knocking
Methods

3G (NTT
DoCoMo)

Log Analyzer

OpenBlocks
(IoTVX2)

Authorized
Knocker

Client PC

Internet

With Port Knocking
(Port 22 hidden)

Without Port Knocking
(Port 22 open)

3G (NTT
DoCoMo)

3G (NTT
DoCoMo)

Honeypot
(PCAP)

OpenBlocks
(IoTBX1)

OpenBlocks
(IoTBX1)

Authorized
Knocker

Client PC

Power Consumption

Internet

With Port Knocking
(Port 22 hidden)

Without Port Knocking
(Port 22 open)

3G (NTT
DoCoMo)

3G (NTT
DoCoMo)

USB

Tester-A

USB

Tester-B

Self-Powered

USB Hub

Note PC

OpenBlocks
(IoTBX1)

OpenBlocks
(IoTBX1)

Power Consumption

Authorized
Knocker

Client PC

 VX2 BX1

CPU

Model

Speed

Cache

Intel Atom E3805

1.33 GHz

1024 KB

Intel Atom ®︎ Processor

500 MHz

1024 KB

Memory 2 GB 1 GB

Storage 32 GB 4 GB

－364－

3.2 Experiment Results

 In the case of test-1 for finding out the effectiveness of port

knocking in terms of CPU usage, the Python-script-based

approach of port knocking method consumed more CPU

resources than the Stream Cipher based port knocking method, as

shown in Fig.6.

Fig. 6 Port knocking algorithm’s CPU usage comparison

As the Python-script-based approach consumed almost 50%

more CPU resources than the Stream Cipher based approach,

therefore, further testing was focused on utilizing stream cipher

for checking its effectiveness against detection of SSH port by

putting it in the honeypot, next to another device without port

knocking. For further testing, we used the IoTBX1 model as it is

more resource constraint than IoTVX2. The test-2 results are

summarized in Table 2.

Table 2 Port knocking security effectiveness.

 With

Port knocking

Without

Port knocking

SSH Login

Attempts
0 Times 1,039 Times

Total Number of

Packets Received
232 43,739

Source IP Addresses 133 202

The stream cipher based port knocking method proved to be

quite effective in hiding port 22tcp as we detected only 232

packets coming from 133 different source IP addresses and

observed not a single SSH login attempt (0 times) on the IoT test

device with port knocking. This is due to the fact that port 22/TCP

was hidden and did not respond to any SYN packets it received.

Therefore, not many packets were observed on port 22/TCP with

port knocking.

In comparison, the device with no port knocking had 1,039

SSH login attempts from 202 different IP sources due to

detectable SSH port. As port 22/TCP was open and responded to

SYN packets, therefore, the scanning host follows up with other

packets to complete the TCP handshake, attempting to establish

or exploit the SSH service. Hence, we see a large number of

packets (43,739) in case of the device with no port knocking

compare to a small number of packets (232) on the device with

port knocking enabled. This shows that stream cipher based port

knocking was able to reduce the attack surface significantly,

adding to the security of the IoT device.

Next, we look at the test-3 results for assessing power

consumption with and without the port knocking feature.

(a) Voltage Stability: In order to make sure we do not observe

any other influence, we first connected both USB testers only to

the USB hub and measured voltage for 24 hours. Both came out

to be stable around 5.14 volts, as shown in Fig. 7.

(b) Confirming power consumption without port knocking:

Next, we measured the power consumption of both IoT devices

without port knocking. We observed almost similar readings on

both IoT devices, as shown in Figures 8 and 9.

Fig. 8 IoTBX1 – tester-A

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91

C
P

U
 U

s
a
g

e
(%

)

経過時間(sec)

CPU usage with Stream Cypher knockd server

Elapsed time (sec)

C
P

U
 U

s
a
g

e
(%

)

CPU usage with Python knockd server

Elapsed time (sec)

Knock Sequence update～9% Key Stream generation～15%

Fig. 7 Voltage stability.

－365－

Fig. 9 IoTBX1 – tester-B

(c) Confirming power consumption with port knocking:

After ensuring we have stable readings without port knocking, we

then enabled stream cipher based port knocking on the IoTBX1

device connected to the USB Tester-A. We measured the power

consumption of both IoT devices for one week. We also observed

the number of packets received by running “netstat–statistics”

command every hour. The results showed that the current slowly

increases with the number of packets received. Since the IoTBX1

device connected to USB Tester-A was running the port knocking

feature, therefore, the number of packets received on its port

22/TCP was quite less compared to the device without the port

knocking feature, as shown by the graph in Fig.10.

Fig. 10 Port knocking vs. without port knocking

4. Conclusion

In the case of port knocking, the stream cipher based algorithm

is much practical to use on resource-constrained IoT gateway

devices. It not only kept the CPU usage to a very reasonable level

and hid the default service port effectively, but also helped in

greatly reducing the unauthorized traffic coming to that service

port. This could provide a secure remote management option for

authorized users without causing much overhead on existing

resources of the IoT device.

Hence, we can conclude that the experimental results imply the

power consumption overhead by receiving incoming session

requests (from scanners/malware on the Internet) would easily

exceed the power consumption for running port knocking service.

Thus, running port knocking service would be beneficial in terms

of not only security enhancement but also power consumption.

5. Considerations

 The current study was carried out by testing the port knocking

feature only for the SSH service using key-authentication on the

default port 22/TCP. We have tested it on the raspberry-pi

hardware platform for determining the effectiveness of hiding

port from unauthorized traffic (from scanners/malware on the

Internet) and its effect on the IoT device’s power consumption,

with and without port knocking security feature. Though this

proposed solution has shown encouraging results, however, we

have not tested it for the other services and non-default ports.

Also, what other security methods can be applied and the choice

of security layers must take into account the available resources

as we saw around 50% CPU utilization in the case of Python

script based port knocking solution.

6. Summary and Future Work

This study has provided us some promising results for using

the port knocking security concept with which we can provide a

secured channel to remotely manage IoT devices via SSH service

without exposing it to unwanted traffic. This method also helps

in lowering the total number of packets received by the IoT

device on the hidden ports that helps with power consumption.

For future work, the port knocking security feature can be

coupled with other lightweight security options to provide a

layered defense (defense-in-depth) approach for the resource-

constraint IoT gateway devices. A longer time period testing is

recommended to explore its effectiveness with services running

on the non-default TCP /UDP ports as well as with multiple

services at the same time, using both default and non-default ports.

－366－

Acknowledgement A part of this work was obtained from an

EU-Japan collaboration project “Multi layered Security

technologies to ensure hyper-connected smart cities with

Blockchain, Big Data, Cloud and IoT (MSEC)”, jointly funded

by the European Union’s Horizon 2020 research and innovation

program (contract No 814917) and by the Commissioned

Research of National Institute of Information and

Communications Technology (NICT), JAPAN (contract No.

19501).

References

[1] Hung, M.: Leading the IoT, Gartner Inc. (2017), available from

<https://www.gartner.com/imagesrv/books/iot/iotEbook_digital.pdf

> (accessed 2020-07-14).

[2] Ramakrishna, C., Kumar, G.K., Reddy, A.M. and Ravi, P.: Survey

on various IoT attacks and its countermeasures, International

Journal of Engineering Research in Computer Science and

Engineering (IJERCSE), Vol.5, No.4, pp.143-150 (2018).

[3] Jaramillo, L.E.S.: Malware detection and mitigation techniques:

Lessons learned from Mirai DDOS attack. Journal of Information

Systems Engineering & Management, Vol.3, Issue 3, No.19 (2018),

available from <https://doi.org/10.20897/jisem/2655> (accessed

2020-07-14).

[4] Shafagh, H., Hithnawi, A., Droescher, A., Duquennoy, S. and Hu,

W.: Poster: Towards encrypted query processing for the Internet of

Things, Proc. 21st Annual International Conference on Mobile

Computing and Networking (MobiCom‘15), pp. 251–253 (2015).

[5] Sathyadevan, S. ., Vejesh V., Doss, R. and Pan, L.: Portguard - an

authentication tool for securing ports in an IoT gateway. IEEE

International Conference on Pervasive Computing and

Communications Workshops (PerCom Workshops), pp. 624-629

(2017).

[6] Andreatos, A.S.: Hiding the SSH port via smart Port Knocking,

International Journal of Computers, Vol. 11, pp. 28-31 (2017).

[7] Santis, F.D., Schauer, A. and Sigl, G.: ChaCha20-Poly1305

authenticated encryption for high-speed embedded IoT

applications. Design, Automation & Test in Europe Conference &

Exhibition (DATE’17), pp. 692-697, (2017).

[8] ChaCha20 and Poly1305 for IETF Protocols (RFC 7539),

available from <https://tools.ietf.org/html/rfc7539> (accessed

2020-06-15).

[9] KDDI Research Inc.: Security analysis of ChaCha20-Poly1305

AEAD. Cryptography Research and Evaluation Committees,

Japan, pp.32-33 (2016), available from <https://www.cryptrec.go.

jp/exreport/cryptrec-ex-2601-2016.pdf> (accessed 2020-07-14).

[10] Kereki, F.: Implement port-knocking security with Knockd, Linux

Journal (2010), available from <https://www.linuxjournal.com/

magazine/implement-port-knocking-security-knockd> (accessed

2020-06-24).

[11] ChaCha20 and Poly1305 for IETF Protocols (RFC 8439),

available from <https://tools.ietf.org/html/rfc8439> (accessed

2020-06-22).

[12] Tex2e/ChaCha20-Poly1305 – GitHub, available from <https://

github.com/tex2e/chacha20-poly1305> (accessed 2020-06-25).

[13] OpenBlocks IoT VX2. Plat’Home, (2019), available from

<https://www.plathome.co.jp/product/openblocks-iot/vx2/>

(accessed 2020-06-30).

[14] OpenBlocks IoT BX1. Plat’Home, (2019), available from

<https://www.plathome.co.jp/product/openblocks-iot/bx1/>

(accessed 2020-06-30).

－367－

