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Abstract: Missing values are prominent in many realistic datasets. In particular, this is a serious issue in a
dataset that collects sensitive information on users, since the unwillingness of a user to answer a sensitive ques-
tion often leads to missing piece of information in the dataset. In this paper, we study a privacy-preserving
method based on local differential privacy (LDP) for performing logistic regression analysis on a dataset
with some missing values. Since most previous research on LDP-based data analysis assumes that missing
data does not exist in data, we consider two LDP logistic regression methods that are capable of handling
missing values. We start with a naive approach of deleting records with missing values before conducting
regression analysis, and then develop a two-phase method for obtaining unbiased estimates of regression
coefficients. Our preliminary experiments with simulated data show that the latter method outperforms the
naive approach when the missing rate of data and the privacy budget for LDP are relatively large.
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1. Introduction

Logistic regression is one of the most popular methods for

data analysis and is usually a starting point of any economet-

ric analysis. In regression analysis, we study the relationship

between explanatory variableX ∈ R and dependent variable

Y ∈ {0, 1}. The target is to find parameters β∗
0 and β∗

1 such

that

Pr(Y = 1|X = x) =
1

− exp(β0 + β1x) + 1
.

Since β1 explains how Y depends on X, learning the regres-

sors β0 and β1 is equivalent to understand the relationship

between X and Y . To find regressors for a given dataset

D = {xi, yi}ni=1, we choose β̂ that minimizes cross entropy

loss below:

1

n

n
∑

i=1

−
(

yi log(σ(
〈

β, x′
i

〉

)) + (1− yi) log(1− σ(
〈

β, x′
i

〉

)
)

,

where x′
i = (1, xi) for i = 1, . . . , n. The minimizer of the

cross entropy asymptotically approaches to the true regres-

sor β∗. In this paper, we thus consider to perform the min-

imization of the cross entropy loss.

In this paper, we assume that an aggregator collects

records from users (i.e., respondents) and performs regres-

sion analysis on them and that the users do not trust the

aggregator not to disclose their sensitive attributes in their

records. Thus, we employ local differential privacy(LDP) [1],
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which is a local version of differential privacy, to protect

each user’s sensitive information from an untrusted aggre-

gator. There are several previous research on LDP-based

regression [1], [2], [10] studying the lower bound of minimax

errors of estimated regressors.

However, when a dataset contains missing values due to

various reason, such as physical error and answer rejec-

tion [5], to perform regression analysis on such an incom-

plete dataset under LDP constraints raises a new technical

challenge. Just not sending records with missing values to

an aggregator is not an acceptable solution since missingness

in a record implies the unwillingness of the user to provide

sensitive information; that is, the denial of a query allows

the aggregator to infer the user’s sensitive information in

the record.

To ensure LDP, each user needs to perturb his record val-

ues by adding a random noise to the original values before

sending it to the aggregator. Therefore, if a user’s record

contains a missing variable, that user who wants to pretend

to have the complete record, needs to pick some default value

to be randomized. However, this approach has a risk of ob-

taining a poor biased estimator of the regressor, which does

not converges to a true regressor β∗. The bias tends to be

introduced when the probability of missingness in explana-

tory variable X depends on a value in dependent variable

Y .

For example, suppose that Y is a categorical variable

about the marital status of a person (i.e., a single or not)

and that X is the amount of expenditures of that person.

If singles are more likely be absent from home than non-

singles [7], the singles are more likely to fail to participate
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in a public survey conducted by investigators visiting each

household. If each user sets 0 for missing X and Y by de-

fault, which corresponds to a skewed sampling of weighing

non-singles with relatively high expenditures, leads to a bi-

ased regressor.

Our goal, therefore, is to perform linear regression of in-

complete data with local differential privacy by consider-

ing missingness in X’s depending on Y to avoid obtain-

ing biased estimators. We modify the stochastic gradient

descent (SGD) algorithm [1] to support logistic regression

while guaranteeing local differential privacy. In this scheme,

each user iteratively provides an aggregator with the stocas-

tic gradient of the logictic loss function in empirical cross

entropy. Therefore, it is suitable to hide the fact that a

user’s record has missing values from the aggregator.

We first develop a simple dummy submission algorithm,

in which a user sets a dummy value of 0 to the stocastic

gradient when the data is missing. Although this scheme

protects the privacy of users including those with missing

values with LDP, the aggregator obtains an unbiased re-

gressor with the dataset where records with missign values

are removed. Therfore, we develop the two-phase regression

algorithm, which models the mechanism for missingness ex-

plicitly. This algorithm consists of the preparation phase

and main phase. We estimate parameters for the mechanism

of missingness in the preparation phase, and then estimate

unbiased regressors using the technique of inverse probabil-

ity weighting (IPW) [6] in the main phase.

We compare the two algorithms theoretically and experi-

mentally. We analyze utility without assuming any concrete

algorithm. In the analysis, we derive an upper bound of ex-

cess risk, E [LCE (β)]−LCE (β∗), where the β is an output

of an algorithm. Our theorem shows that the upper bound

consist of the two terms which correspond to the variation

and the bias of perturbed stochastic gradients, respectively

and that the performance of the two algorithms varies de-

pending on the parameter space in privacy budget for LDP

and the size of a dataset. Our preliminary experiments with

simulated data show that the two-phase regression method

outperforms the approach of dummy submission when the

missing rate of data and the privacy budget for LDP are

relatively large.

2. Local Differential Privacy

Local differential privacy (LDP) [1], [3], [4] is a rigor-

ous privacy definition for safe data collection. We suppose

there are n users, each with private datum (i.e., record)

Ri, i = 1, . . . , n, and each user i communicates perturbed

view Zi ∈ Z of Xi. Communication between users and an

aggregator is performed in T rounds. In the t-th round,

user i communicates Z
(t)
i , which may depend on all previ-

ous communications. Let Z≤n = (Z1, . . . , Zn). The local

differential privacy is defined as a property of the perturbed

views.

Definition 1 (ǫ-LDP [3]). The output Z ∈ ZnT is ǫ-LDP:

for each S ⊂ ZnT and pair of samples r≤n, r
′
≤n ∈ Xn

Algorithm 1: Private Sampling [1] Qps(v;G, ǫ)

Input: vector v ∈ R
d, radius G > 0 and privacy parameter

ǫ

1 B := r eǫ+1
eǫ−1

√
π

2

dΓ( d−1

2
+1)

Γ( d

2
+1)

2 v̄ :=

{

+r v

‖v‖2
with probability 1

2
+ ‖v‖2

2r

−r v

‖v‖2
with probability 1

2
− ‖v‖2

2r

3 Sample T ∼ Bernoulli
(

eǫ

eǫ+1

)

4 if T = 1 then

5 Sample Z ∼ Unif({z ∈ R
d : ‖z‖2 = B, 〈v̄, z〉 > 0})

6 else

7 Sample Z ∼ Unif({z ∈ R
d : ‖z‖2 = B, 〈v̄, z〉 ≤ 0})

8 end

Output: Z

differing in at most a single element,

Pr(Z ∈ S|R≤n = r≤n)

Pr(Z ∈ S|R≤n = r′≤n)
≤ eǫ. (1)

The definition says that any datum tied with one user is

indistinguishable from the other candidate datum with any

other users’ data.

We remark that there are some variations of local differen-

tial privacy definition. Definition 1 is called fully interactive

local differential privacy. In this paper, we just call it local

differential privacy.

To satisfy LDP constraints, we choose private sam-

pling [1] for vector submissions. Algorithm 1 is its pseudo-

code. The algorithm takes d-dimensional vector v and pri-

vacy parameter ǫ and assumes that ‖v‖ ≤ G for some con-

stant G > 0. The outputs are sampled from the hyper

sphere whose radius is B. such that the inner product of

the input and the output is positive in high probability. The

inner product is negative with low probability,

We use the private sampling because of privacy and util-

ity reasons. As for privacy, the private sampling satisfies the

following inequality: for any subset S of the output domain

and v, v′ such that ‖v‖ ≤ G and ‖v′‖ ≤ G,

Pr(Qps(v;G, ǫ) ∈ S)

Pr(Qps(v′;G, ǫ) ∈ S)
≤ eǫ.

This inequality ensures that the private sampling outputs

similar value for any input. This property helps us to con-

struct an LDP algorithm.

In terms of utility, private sampling ensures unbiased out-

puts and affinity with convex optimization. The output

Qps(v;G, ǫ) satisfies E [Qps(v;G, ǫ)] = v. That is, if we

take expectation of the output over the randomness for pri-

vacy, we obtain the input. Thanks to this property, some

terms become 0. Thus, the unbiassed property makes utility

analyses simpler. The affinity with convex optimization is

that an optimizer using the private sampling achieves mini-

max optimality with ǫ ↓ 0 in convex optimizations [1]. Since

logistic regression is a convex optimization problem, we ex-

pects that private sampling achieves better utility than the

other randomizing mechanisms.
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3. Problem Formulation

We formulate our problem of logistic regression with in-

complete data under the LDP constraints.

We suppose there are n users and one aggregator. Each

user i possesses datum (xi, yi) ∈ [−1,+1]×{0, 1} and wants

to contribute to the data analysis but to hide the datum from

the other parties. We assume that {xi}ni=1 are sampled

i.i.d., and each yi is randomly generated with probability

function

p(yi|xi) =

{

σ(
〈

β∗, x′
i

〉

) if yi = 1,

1− σ(
〈

β∗, x′
i

〉

) if yi = 0,
(2)

where x′
i = (1 xi)

⊤, σ : R → (0, 1); z 7→ 1/(exp(−z) + 1)

and β∗ ∈ B√
2 = {b ∈ R

2 : ‖b‖2 ≤
√
2} is an unknown

parameter. For simplicity, we denote D = {(xi, yi)}ni=1.

(xi, yi) and D correspond to ri and R≤n in Definition 1.

The aggregator aims to find the true regressor β∗. We uti-

lize the property that β∗ minimizes the cross entropy error

LCE (β) defined as

LCE (β) =EX,Y [ℓCE (β;X,Y )] (3)

where ℓCE (β;x, y) =−
(

y log(σ(
〈

β, x′〉))

+ (1− y) log(1− σ(
〈

β, x′〉)
)

, (4)

Since the true distributions of X and Y are unknown, we

cannot evalute the cross entropy error. One of approaches

to find β∗ is to minimize the empirical cross entropy defined

as follows:

L̂CE (β;D) =
1

n

n
∑

i=1

ℓCE (β;xi, yi) . (5)

We also suppose that some of {xi}ni=1 are missing. We

use a variable mi to indicate whether xi for i = 1, . . . , n is

missing such that:

mi =

{

0 if xi is observed,

1 if xi is missing.
(6)

We focus on the case that mi depends on yi. Concretely,

we assume that mi follows the probability function p(mi|yi)
below.

Pr(mi = 1|yi) = σ(
〈

α∗, y′i
〉

). (7)

where α∗ ∈ B√
2 is an unknown parameter. The major

difference between our problem and the standard logistic

regression is that no one is able to evaluate the empirical

cross entropy. The difference comes from the following two

reasons. (i) some of {xi}ni=1 are missing and (ii) the data

are perturbed to satisfy the LDP constraint. We address

the above two issues in this paper.

4. LDP-based Logistic Regression

We propose two algorithms for generating estimators β∗

with incomplete data under the LDP constraints. In this

section, we describe two algorithms and evaluate the biases

of the estimators produced by the algorithms. We cover the

utility analyses of the algorithms in Section 5.

4.1 Dummy Submission

A naive way to handle incomplete data is to ignore the

data datum missing. Such a strategy is called complete-case

analysis and is sometimes used for incomplete-data analy-

ses. Here, we implement the complete-case analysis while

satisfying the LDP constraints.

Since the LDP constraints require that a user’s datum is

indistinguishable from any possible candidate datum, the

missingness in the datum also should be protected. To sat-

isfy the LDP constraints, we consider the dummy submis-

sion strategy that a user submits dummy information if that

user’s datum contains missingness. Based on this idea, we

consider a modified stochastic gradient descent (SGD) for

incomplete data under the LDP constraints. Algorithm 2

is the pseudo-code. In the protocol, each user i computes

stochastic gradient gi if her datum is complete: otherwise

she prepares the zero vector as a dummy. In the protocol,

we denote the prepared vector as ĝi. Then, the user makes

g̃i by perturbing ĝi via a randomizing mechanism of privacy

sampling Q. The aggregator updates the estimation using

submitted g̃i as follows:

β(i) := arg min
β∈B√

2

{

ηi 〈g̃i, β〉+ ‖β − β(i−1)‖22/2
}

. (8)

This update rule realizes the projected stochastic gradi-

ent descent (SGD), which is one of the standard convex-

optimization algorithms. At the end of the algorithm, the

aggregator obtains β(n), an estimator of β∗. This optimiza-

tion scheme is extension of the LDP convex optimizer pro-

posed in [1] for our setting.

We confirm that Algorithm 2 ensures privacy for every

user. To see that the privacy requirements of LDP are sat-

isfied, it is sufficient to show, for any perturbed stochastic

gradient g̃ and any pair of stochastic gradients g,g′,

p(g̃i = g̃|gi = g)

p(g̃i = g̃|gi = g′)
≤ eǫ

holds. This inequality is derived directory from the property

of private sampling.

We now analyze the property of the output of Algorithm 2.

First, we show that β(n) is a biased estimator of β∗. That is,

in Algorithm 2, β(n) does not converge to β∗ with n → +∞.

β(n) converge to the global minimum of LDS (β) defined as

follows:

LDS (β) ≡
∫

(1−m)ℓCE (β;x, y) p(x, y)dxdy

=LCE (β)−
∫

mℓCE (β;x, y) p(x, y)dxdy

=LCE (β)−
∫

Pr(m = 1|y)ℓCE (β;x, y) p(x, y)dxdy.

To see that the above function has the different global

minimum from that in Eq. (5), it is sufficient to show
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Algorithm 2: Dummy Submission

Input: privacy parameter ǫ, learning rate η

1 Initialize β(0)

2 for i = 1 to n do

3 // begin user local process

4 if mi == 0 then

5 Compute ℓCE

(

β(i−1);xi, yi
)

6 ĝi := ∇βℓCE

(

β(i−1);xi, yi
)

7 else

8 Set zero vector to ĝi

9 end

10 g̃i := Q(ĝi;
√
2, ǫ)

11 Submit g̃i to aggregator

12 // end local process

13 β(i) := arg min
β∈B√

2

{

η 〈g̃i, β〉+ ‖β − β(i−1)‖22/2
}

14 end

Output: β(n)

∇βLDS (β
∗) 6= 0.

∇βLDS

(

β∗)

=∇βLCE

(

β∗)−
∫

Pr(m = 1|y)∇βℓCE (β;x, y) dxdy

=−
∫

Pr(m = 1|y)∇βℓCE (β;x, y) dxdy.

It also holds that

∇βLDS

(

β∗) =

∫

(1−m)∇βℓCE

(

β∗;x, y
)

p(x, y)dxdy

=

∫

Pr(m = 0|y)∇βℓCE

(

β∗;x, y
)

p(x, y)dxdy.

In order for ∇βLDS (β
∗) = 0 to be true for any distri-

bution of X, Pr(m = 1|y) = Pr(m = 0|y) must hold.

Thus, if α∗
1 6= 0, there is a distribution of X such that

∇βLDS (β
∗) 6= 0. We note that this property holds inde-

pendently of any randomizing mechanism; Even if we use

an alternative mechanism instead of private sampling, the

estimator is still biased.

4.2 Two-phase Regression

To reduce a bias in estimator β∗, we consider an alter-

native algorithm. The reason that the dummy submission

algorithm makes the estimator biased is ignoring the miss-

ingness mechanism that describes the probabilistic depen-

dence of missingness in explanatory variable X on depen-

dent variable Y . Thus, we propose the method of explicitly

modeling the missingness mechanism before estimating β∗.

In this approach, the algorithm estimate α∗, which decides

the missing probability, before β∗. we can reduce bias in

estimator β∗ by utilizing the estimated missingness mecha-

nism α∗.

We develop two-phase regression algorithm, which con-

sists of preparation phase and main phase. In the prepa-

ration phase, the algorithm estimates α∗. The algorithm

estimates α∗ by logistic regression with the objective func-

tion

L̂CE (α; {yi}ni=1, {mi}ni=1)

=

n
∑

i=1

mi log(σ(
〈

α, y′i
〉

))

+ (1−mi) log(1− σ(
〈

α, y′i
〉

)).

In the main phase, the algorithm constructs estimator

β∗ utilizing the estimated α∗. As an implementation of

the main phase, we employ inverse probability weight-

ing(IPW) [6], which is one of the standard methods used

for incomplete data analyses [5].

The IPW method solves the weighted empirical loss min-

imization whose objective function is

n
∑

i=1

1−mi

p(mi = 0|yi, α̂)
ℓCE (β;xi, yi) (9)

where p(mi = 0|yi, α̂) is the estimated probability estimated

in the preparation phase. In this objective function, for each

i ∈ [n], datum (xi, yi) is weighted by the inverse of estimated

observed probability p(mi = 0|yi) if mi = 0. Otherwise, da-

tum (xi, yi) is ignored. We assume 0 < p(mi = 0|yi, α̂) < 1

for all i = 1, . . . , n.

We implement the two-phase-regression algorithm with lo-

cal differential privacy. Algorithm 3 is the pseudo-code. To

guarantee ǫ-LDP, in each phase, each user consumes only

ǫ/2 of the privacy budget, respectively. In the preparation

phase, the algorithm performs logistic regression to estimate

α∗ by SGD with randomizing mechanism Q consuming pri-

vacy parameter ǫ/2. After the preparation phase, estimation

α(n) of α∗ is obtained. Using α(n), each user estimate miss-

ing probability Pr(mi|yi, α∗) as p(mi|yi, α(n)). Then, the

algorithm solves the minimization of the weighted empiri-

cal loss function defined in Eq. (9) to estimate β∗ by SGD.

To perform this minimization problem, each user i weights

her stochastic gradient by inverse of estimated missingness

probability 1/p(mi = 0|yi, α(n)), if mi = 0. Otherwise, she

prepares the zero vector. The weighted stochastic gradient

is perturbed by Q consuming privacy parameter ǫ/2 and

is submitted to the aggregator. Using the submitted noisy

stochastic gradients, the aggregator obtains an estimation

of β∗.

Before utility analysis, we confirm that output β(n) of Al-

gorithm 3 guarantees ǫ-LDP. To see that, it is sufficient to

show that it holds, for each i ∈ [n], any preparation-phase

output h̃ and main-phase output g̃, any stochastic gradients

h,h′,g,g′,

p(h̃i = h̃, g̃i = g̃|hi = h,gi = g)

p(h̃i = h̃, g̃i = g̃|hi = h′,gi = g′)

=
p(h̃i = h̃|hi = h)

p(h̃i = h̃|hi = h′)
× p(g̃i = g̃|h̃i = h̃,hi = h,gi = g)

p(g̃i = g̃|h̃i = h̃,hi = h′,gi = g′)

=
p(h̃i = h̃|hi = h)

p(h̃i = h̃|hi = h′)
× p(g̃i = g̃|gi = g)

p(g̃i = g̃|gi = g′)

≤eǫ/2eǫ/2 = eǫ.

The last inequality holds because of property of private sam-

pling.
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Algorithm 3: Two-phase Regression

Input: privacy parameter ǫ, learning rate ηp, ηm

1 Split ǫ into ǫ1 and ǫ2 such that ǫ1 + ǫ2 == ǫ

2 // Preparation phase

3 Initialize α(0)

4 for i = 1 to n do

5 // begin user local process

6 Compute ℓCE

(

α(i−1); yi,mi

)

7 hi := ∇αℓCE

(

α(i−1); yi,mi

)

8 h̃i := Q(hi;
√
2, ǫ1)

9 Submit h̃i to aggregator

10 // end local process

11 α(i) := arg min
α∈A

{

ηp 〈hi, α〉+ ‖α− α(i−1)‖22/2
}

12 end

13 pmin := miny∈[−1,+1] 1− 1

exp(−α
(n)
0 −α

(n)
1 y)

14 // Main phase

15 Initialize β(0)

16 for i = 1 to n do

17 // begin user local process

18 if mi == 0 then

19 Compute ℓCE

(

β(i−1);xi, yi
)

20 ĝi := ∇βℓCE

(

β(i−1);xi, yi
)

/σ(−
〈

α(n), y′n
〉

)

21 else

22 ĝi := 0

23 end

24 g̃i := Q(ĝi;
√
2/pmin, ǫ2)

25 // end local process

β(i) := arg min
β∈B

{

ηm 〈g̃i, β〉+ ‖β − β(i−1)‖22/2
}

26 end

Output: β(n)

We analyze the properties of β(n). The most important

property is that β(n) can converge to β with n → +∞, if

α(n) = α∗. We show that β∗ is the global minimum of

LTP (). To see that it is sufficient to show

EM,Y

[

1−M

p(m = 0|y, α∗)
∇ℓCE

(

β∗;X, y
)

∣

∣

∣
X = x

]

= 0

since ℓCE (; ) is convex. We can see that the above equality

holds as follows.

E

[

1−m

p(m = 0|y)∇ℓCE

(

β∗;x, y
)

∣

∣

∣
x

]

=

∫

1−m

p(m = 0|y, α∗)
∇ℓCE

(

β∗;x, y
)

f(y|x,m = 0)dy

=

∫

f(m = 0)

f(m = 0|y)∇ℓCE

(

β∗;x, y
) f(m = 0|y)f(y|x)

f(m = 0)
dy

=

∫

∇ℓCE

(

β∗;x, y
)

p(y|x)dy = 0.

This property is a significant advantage of this algorithm

over the dummy submission algorithm. We note that the

unbiased property is guaranteed only when α(n) = α∗.

5. Utility Analysis

Here, we analyze the utilities of the proposals. Our

target is to characterize the two estimators outputted by

the proposals. We compare the excess risk defined as

ED,q

[

LCE (β)(n)
]

−LCE (β∗) where q = (q1, . . . , qn) is the

randomness for the privacy protection. We upper bound

the excess risk. Before going into the individual analyses,

we show a lemma that is commonly used in both analyses.

The lemma is an extension of a standard SGD convergence

analysis for convex objective functions.

To derive a general utility guarantee, we consider a gen-

eral locally private SGD procedure:

β(i) :=ΠB

(

β(i−1) − ηig̃i

)

(10)

= arg min
β∈B

{

ηi 〈β, g̃i〉+
1

2
‖β − β(i−1)‖2

}

. (11)

This procedure contains Algorithm 2 and Algorithm 3. We

set learning rate ηi = c/
√
i with some constant c as stan-

dard SGD for convex objectives. In this update rule, g̃i is

some perturbed gi. As discussed in the above subsection, it

does not necessary hold Eqi [g̃i] = gi.

For the general LDP SGD, we show the following utility

theorem.

Theorem 1. We assume ‖g̃i‖ ≤ B, ‖B‖2 ≤ D, and

‖Exi,yi [Eqi [g̃i]− gi] ‖ < b for i = 1, . . . , n. Using update

rule (11), after n-times update, we have

ED,q

[

LCE

(

β(n)
)

− LCE

(

β∗)
]

(12)

≤
(

D2

c
+ cB2

)

2 + log(n)√
n

+ bD log(n+ 1). (13)

The upper bound consist of two terms, and we refer to the

first and the second terms by the variance term and the bias

term, respectively. The variance term is determined by the

noise scale B of perturbation or the scale D of the parame-

ter set and shrinks by 1/
√
n. The bias term is determined

by the parameter set scale D and the bias b of the perturbed

stochastic gradient. Unlike the variance term, the bias term

does not shrink by n. These fact implies that unbiased es-

timators of β∗ is not always better than biased estimators.

Even if the estimator is unbiased, the variance term can

make the estimator poor. In our setting, since the sample

size is finite and we should satisfy the LDP constraint, it

is difficult to make both the variance and the bias terms

small simultaneously. Thus, there is a trade-off relationship

between the variance and the bias terms.

Now, we show Theorem 1. We first prove the lemma be-

low, which we will use repeatedly to obtain the theorem.

Lemma 1. For some i = [n− 1],

n
∑

i=n−k

(

E

[

LCE

(

β(i)
)]

− LCE (β)
)

(14)

≤ 1

2ηn−k+1
E

[

‖β(n−k) − β‖2
]

(15)

+
∑

i=n−k+1

(

1

2ηi+1
− 1

2ηi

)

E

[

‖β(i+1) − β‖2
]

(16)

+
B2

2

n
∑

i=n−k

ηi+1. (17)

Proof. The proof relies on the convexity of LCE (). From

the convexity, for any β ∈ B and each i ∈ [n], we have the

following inequality:
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LCE

(

β(i)
)

− LCE (β)

≤
〈

∇LCE

(

β(i)
)

, β(i) − β
〉

=E

[〈

gi+1, β
(i) − β

〉]

=E

[〈

g̃i+1, β
(i) − β

〉]

− E

[〈

g̃i+1 − gi+1, β
(i) − β

〉]

.

(18)

The first term of (18) is the origin of the variance term, and

the second term is the origin of the bias term. This inequal-

ity is still hard to interpret. We upper bound the two term

in inequality (18).

First, we upper bound E

[〈

g̃i+1, β
(i) − β

〉]

. By convex-

ity of B√
2, for any β ∈ B√

2, we have the following inequal-

ity:

E

[

‖βi+1 − β‖2
]

=E

[

‖ΠB√
2
(βi − ηt+1g̃i+1)− β‖2

]

≤E

[

‖βi − ηt+1g̃i+1 − β‖2
]

=E

[

‖βi − β‖2
]

− 2ηt+1E [〈g̃i+1, βi − β〉]

+ η2t+1E

[

‖g̃i+1‖2
]

.

Rearranging the above inequality, we obtain the next in-

equality:

E [〈g̃i+1, βi − β〉]

≤ 1

2ηt+1
E

[

‖βi − β‖2
]

− 1

2ηt+1
E

[

‖βi+1 − β‖2
]

+ η2t+1E

[

‖g̃i+1‖2
]

≤ 1

2ηt+1
E

[

‖βi − β‖2
]

− 1

2ηt+1
E

[

‖βi+1 − β‖2
]

+
ηi+1

2
B2. (19)

Second, we bound −E

[〈

g̃i+1 − gi+1, β
(i) − β

〉]

. By the

Cauchy–Schwarz inequality, we have

− E

[〈

g̃i+1 − gi+1, β
(i) − β

〉]

=−
〈

E [g̃i+1 − gi+1] , β
(i) − β

〉

≤‖E [g̃i+1 − gi+1] ‖‖β(i) − β‖ ≤ bD. (20)

Plugging (19) and (20) into (18),

LCE

(

β(i)
)

− LCE (β)

≤ 1

2ηt+1
E

[

‖βi − β‖2
]

− 1

2ηt+1
E

[

‖βi+1 − β‖2
]

+
ηi+1

2
B2. (21)

Summing (21) up over i = n− k, . . . , n, we have

n
∑

i=n−k

(

E

[

LCE

(

β(i)
)]

− LCE (β)
)

≤ 1

2ηn−k+1
E

[

‖β(n−k) − β‖2
]

+
∑

i=n−k+1

(

1

2ηi+1
− 1

2ηi

)

E

[

‖β(i+1) − β‖2
]

+
B2

2

n
∑

i=n−k

ηi+1.

Here, we back to the proof of Theorem 1. Substituting

ηi+1 = c/
√
i and β = β(n−k) into inequality (17),

E

[

n
∑

i=n−k

LCE

(

β(i)
)

− LCE

(

β(n−k)
)

]

≤
(

D2

2c
+ cB2

)

(√
n−

√
n− k − 1

)

+

n
∑

i=n−k+1

bB

=

(

D2

2c
+ cB2

)

k + 1√
n+

√
n− k − 1

+ kbD

≤
(

D2

2c
+ cB2

)

k + 1√
n

+ kbD. (22)

Let Sk = 1
k+1

∑n
i=n−k E

[

LCE

(

βi
)]

. Then,

1

k + 1
E

[

n
∑

i=n−k

LCE

(

β(i)
)

− LCE

(

β∗)
]

=Sk − E

[

LCE

(

β(n−k)
)]

.

Combining this equation and inequality (22), we have

−E

[

LCE

(

β(n−k)
)]

≤ −Sk +
D2/2c+ cB2

√
n

+
kbD

k + 1
.

From the above inequality and the definition of Sk, we derive

the following inequality.

kSk−1 =(k + 1)Sk − E

[

LCE

(

β(n−k)
)]

≤(k + 1)Sk − Sk +
D2/2c+ cB2

√
n

+
kbD

k + 1

≤kSk +
D2/2c+ cB2

√
n

+
kbD

k + 1
. (23)

Dividing both sides by k,

Sk−1 ≤ Sk +
D2/2c+ cB2

k
√
n

+
bD

k + 1
.

Expanding this inequality repeatedly,

E

[

LCE

(

β(n)
)]

= S0 ≤Sn−1 +
D2/2c+ cB2

√
n

n−1
∑

k=1

1

k

+ bD

n−1
∑

k=1

1

k + 1
. (24)
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Sn−1 − LCE

(

β∗) =
1

n
E

[

n
∑

i=1

LCE

(

β(i) − LCE

(

β∗)
)

]

(25)

≤D2/c+ cB2

√
n

. (26)

Since
∑n−1

k=1 1/k ≤ (1 + log(n)), we complete the proof of

Theorem 1.

5.1 Variance Terms

We compare the variance terms of the two algorithms in

Section 4. Since the variance terms are identical except for

B, it is sufficient to compare B for the discussion. An algo-

rithm with greater B has a greater variance term.

In Algorithm 2, B is immediately obtained from the prop-

erty of private sampling as follows:

‖g̃i‖ = G
eǫ + 1

eǫ − 1

√
π

2

dΓ(d−1
2 + 1)

Γ(d2 + 1)
= B, (27)

where G is a constant such that ‖gi‖ ≤ G for any gi. In

Algorithm 3, B is obtained in sequence with the above:

‖g̃i‖ ≤ G
eǫ/2 + 1

eǫ/2 − 1

√
π

2

dΓ(d−1
2 + 1)

Γ(d2 + 1)
×

max{ 1

Pr(mi = 0|yi = 0, α(n))
,

1

Pr(mi = 0|yi = 1, α(n))
}

= B2

Comparing these B, we can see that this variance term in

the two-phase regression is always greater than that of the

dummy submission. This relationship is immediately de-

rived from the following two reasons. One is the monotonic

diminution of eǫ+1
eǫ−1 . Another is that the out of the max

operator is greater than or equal to 1.

5.2 Bias Terms

We next compare the bias terms of the proposals. Since

the bias terms are identical except for b, it is sufficient to

compare b.

In Algorithm 2, b is derived as

‖E [g̃i − gi] ‖ = ‖
∫

Pr(mi = 1|yi, α∗)gip(xi, yi)dxdy‖

≤ Gmax{Pr(mi = 1|yi = −1, α∗),

Pr(mi = 1|yi = +1, α∗)} (28)

= b.

This upper bound is always greater than 0 independent of ǫ

and n. In Algorithm 3, b is derived as

‖E [g̃i − gi] ‖

= ‖
∫

(

δ(mi = 0)

Pr(mi = 0|yi, α(n))
− 1

)

gip(xi, yi)dxdy‖

= ‖
∫

(

Pr(mi = 0|yi, α∗)

Pr(mi = 0|yi, α(n))
− 1

)

gip(xi, yi)dxdy‖

≤ Gmax

{

∣

∣

∣

∣

Pr(mi = 0|yi = +1, α∗)

Pr(mi = 0|yi = +1, α(n))
− 1

∣

∣

∣

∣

,

∣

∣

∣

∣

Pr(mi = 0|yi = −1, α∗)

Pr(mi = 0|yi = −1, α(n))
− 1

∣

∣

∣

∣

}

= b.

Unlike (28), the bias term of the two-phase regression can be

0. This is one of the advantages of the two phase regression.

Since b of the two phase regression depends on the accuracy

of estimator α(n) of α∗, the b can be significantly greater

than 1 when α(n) is poor. Thus, if ǫ or n is sufficiently

small, b in the two-phase regression can be larger than b in

the dummy submission.

Summarizing the analyses of the variance and the bias

terms, we obtain the following findings. (i) When ǫ or n

is small, the dummy submission has less cross entropy loss

than the two-phase regression. (ii) When ǫ and n are large,

you should use the dummy submission. We evaluate this

intuitions by numerical observations in Section 6.

6. Numerical Evaluation

Here, we evaluate our findings that, when ǫ or n is small,

the dummy submission is better and that, when ǫ and n is

large, the two-phase regression is better. We consider two

measures for β(n): ℓ2 norm ‖β(n)−β∗‖ and empirical excess

risk L̂CE

(

β(n);D
)

− L̂CE (β∗;D). We randomly generate

D ten times for each set of parameters and compute the

average of the measures over ten trials.

We perform numerical experiments in the low missing rate

case and the high missing rate case where we set α∗ = (1, 1)

and (0, 3), respectively. Variable xi has a missing value when

yi = 1 with higher probability in the high missing rate case

than in the low missing rate case. Comparing the two cases,

we also observe how α∗ affects the estimations of β∗, The

other parameters are set to the same values in both cases:

n = 100, 000, ǫ ∈ {0.1, 1, 10}, β∗ = (0, 1.). We choose the

sufficiently large n and large and small values for ǫ. We con-

sider that these parameter set is suitable for evaluating our

hypothesis.

First, we perform experiments in the low missing rate

case. Table 1 shows the mean with the standard deviation of

‖β(n)−β∗‖. Table 2 shows the mean with the standard de-

viation of observed with the same parameters as in Table 1.

In these tables, the differences between the two algorithms

are less than the standard deviations. So, we cannot deter-

mine which algorithm is better in this settings. This does

not agree with our intuition.

Next, we perform experiments in the high missing rate

case. Table 3 shows the mean with the standard deviation

of ‖β(n) − β∗‖. Table 4 shows the mean with the stan-
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dard deviation of observed with the same parameters as in

Table 3. With ǫ = 1 or 10, the two phase regression is sig-

nificantly better than the dummy submission on the both

measures. This results agree with our intuitions.

Summarizing those results in the two cases, we developed

a new hypothesis that the scale of α∗ strongly affects the

estimation accuracy. The large value for ǫ∗1 may cause a sig-

nificant difference between the estimators produced by the

dummy submission and the two-phase regression.

7. Related Work

We discuss related work on regression of incomplete data,

regression with local differential privacy, and incomplete

data handling with local differential privacy, clarifying the

difference between these studies and our work.

Regression with missing data is an important topic, which

has been studied over long time [5]. Previous research cov-

ers various mechanisms for missingness. In this paper, we

consider the case that the missingness in explanatory vari-

ableX probabilistically depends on the value in a dependent

variable Y .

Regression with local differential privacy attracts atten-

tion in [1], [2], [10]. Duchi et al. show minimax lower bounds

of regression problems with sequential-interactive local dif-

ferential privacy [1], [2]. Wang et al. study sparse regression

with local differential privacy. Since their theory does not

assume that the data are incomplete [10], it is not applicable

to the utility analysis in our setting.

There exist some LDP studies to obtain the mean of in-

complete data [8], [9]. Sun et al. proposed a scheme based

on the techinique of locally private matrix factorization [8].

Sun et al. propose the algorithm to obtain mean ignoring

missing values [9]. However, they implicitly assumes that

missingness occurs independent from data. Thus, we ex-

pect that their proposals induce bias into estimators in our

method ǫ = 0.1 ǫ = 1.0 ǫ = 10.0

dummy 0.084± 0.251 0.012± 0.038 0.022± 0.066
two phase 0.088± 0.265 0.016± 0.049 0.016± 0.049

Table 1 Averages of ‖β(n)−β∗‖ over ten trials, with low missing
rate data.

method ǫ = 0.1 ǫ = 1.0 ǫ = 10.0

dummy 0.075± 0.044 0.011± 0.014 0.002± 0.002
two phase 0.085± 0.074 0.020± 0.024 0.004± 0.005

Table 2 Averages of L̂CE

(

β(n);D
)

−L̂CE (β∗;D) over ten trials,
with low missing rate data.

method ǫ = 0.1 ǫ = 1.0 ǫ = 10.0

dummy 0.090± 0.270 0.057± 0.173 0.056± 0.170
two phase 0.117± 0.352 0.019± 0.056 0.004± 0.013

Table 3 Averages of ‖β(n) −β∗‖ over ten trials, with high miss-
ing rate data.

method ǫ = 0.1 ǫ = 1.0 ǫ = 10.0

dummy 0.060± 0.030 0.038± 0.021 0.032± 0.016
two phase 0.083± 0.061 0.021± 0.032 0.004± 0.005

Table 4 Averages of L̂CE

(

β(n);D
)

−L̂CE (β∗;D) over ten trials,
with hign missing rate data.

setting where the missingness occurs depending on data.

8. Conclusion

In this paper, we consider the problem of performing lo-

gistic regression on incomplete data while preserving local

differential privacy. We propose two algorithms, dummy

submission and two-phase regression, and derive the upper

bounds of their utilities. The obtained upper bounds im-

ply which algorithm is better varies in the parameter space

of the problem. We theoretically find privacy buduget for

local differential privacy and the size of dataset important

factors. In addition, our experimental results show that the

missing rate is another important factor.

As future work, we plan to evaluate the tightness of the

upper bounds in in Theorem 1 and also derive lower bounds

of the excess risks.
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