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Abstract: General Purpose programming languages such as C++, Python suffer from resource management
and input errors because they are Turing-complete. These languages assume the properties of a Turing
machine, with infinite memory and computational power. For most real world scenarios however, Turing-
complete programs are unnecessary. The goal of this paper is to introduce a prototype functional Domain
Specific Language (DSL) called PRSafe. The design of PRSafe is based on the memory and input properties
of Primitive Recursive Functions (PRFs). Hence, all computations must terminate. For the language imple-
mentation, we use the Lex and Bison softwares for lexing and parsing respectively and LLVM (Low-Level
Virtual Machine) compiler infrastructure for code generation and optimization. PRSafe is designed such
that syntactically and semantically, it prohibits the creation of Turing-complete programs. It is eventually
intended to be a mathematically verifiable, friendly compiler with better error-diagnostics for eBPF programs
than the eBPF verifier.
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1. Introduction

A language compiler was originally looked at as a black-

box, which accepted some High level language program as

input, performed some invisible processing on this input and

generated some machine code which is platform specific, as

output. However, over the last 20 years, with the intro-

duction of the LLVM Compiler Infrastructure project [1],

the compiler has become more analyzable. Using LLVM,

almost any High level language program can be processed

to obtain a readable, descriptive Intermediate Representa-

tion (IR) known as LLVM IR. This LLVM IR is platform

agnostic. Also, any compiler level optimizations can be per-

formed on this IR, such as constant folding [2] or ‘Dead-code

elimination’. This benefits the user program, independent

of the platform it is run on. Due to these features of LLVM,

it is used extensively to create Domain Specific Languages

(DSLs).

The domain of this project is the eBPF tool. The ex-

tended Berkeley Packet Filter (eBPF), an extension of the

Berkeley Packet Filter (BPF)[3], is an in-kernel virtual ma-

chine that allows user-space programs to attach to specific

hooks in the kernel and run safely. In eBPF, programs are

passed to LLVM to generate eBPF bytecode. This bytecode

is passed to the eBPF verifier, a module that only allows

programs with a specific feature-subset of C, to run inside
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the BPF VM. This ensures the safety property. Some of the

checks that the eBPF verifier performs include verifying if

the program forms a Directed Acylic Graph (DAG), ensur-

ing that no loops are allowed. The strictness of the eBPF

verifier albeit essential for safety, puts the onus on the aver-

age network programmer to learn to write only eBPF verifier

approved programs, even before generating bytecode.

To simplify the burden on the user, this project aims

to provide a user-friendly pre-verifier to the eBPF verifier.

PRSafe is intended to accept user written programs that

semantically adhere to the requirements of the eBPF ver-

ifier, generate LLVM IR, to allow the user to leverage the

optimization methods provided by LLVM, and finally gener-

ate bytecode that is acceptable by the eBPF verifier. Thus,

it intends to provide a time-saving, syntactic and semantic

check to verify that programs are acceptable by the eBPF

verifier, even before bytecode generation is done and passed

to it.

PRSafe, is based on the memory and input safety prop-

erties of Primitive Recursive Functions (PRFs) and hence,

adhere to the safety properties assured by PRFs.

2. Background and Related Work

In this section we discuss the tools behind language de-

sign, the drawbacks of a General-purpose programming lan-

guage, the goals to be met while designing a new Domain

Specific Language and the properties of Primitive Recursive

functions.
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Fig. 1 Phases of a standard compiler

Fig. 2 Phases of PRSafe compiler

2.1 Tools used to design PRSafe

The standard phases of a compiler are split into roughly 4

modules that include a Lexer, Parser, AST, Code Generator

for a target machine architecture. Phases of a compiler is

clear in Figure 1.

[4] For PRSafe, the structure of the compiler is in Figure

2.

The first module is the lexical analyzer or lexer. The

PRSafe lexer accepts the source language input only if con-

tains a permitted set of tokens, including user-defined terms

such as identifiers, basic data types, operators. The lexer

is written in the Lex software. The tokens recognized by

the lexer module are then passed as input to the second

module, the parser. The parser implements the Extended

Backus–Naur form grammar (EBNF) specified for PRSafe

using Bison software. The grammar is described in detail

in Section 5. Next, the statements in the source language

are organised into an Abstract Syntax Tree (AST) written

in LLVM using an AST module. Finally, code-generation is

performed by the LLVM based code-generator module using

the AST generated as a program structure template.

2.1.1 Introduction and Advantages of LLVM :

The Compiler Infrastructure

Any Programming language falls under two broad cate-

gories by method of compilation - compiled language (C++)

vs interpreted language (Python). The major difference

is that a compiled language compiles its source code to

machine code directly translated on the target machine,

whereas an interpreted language does a line-by-line code

translation. This leads to some obvious differences between

the two methods of compilation. For example, a compiled

language offers better performance but cannot accept run-

time changes, whereas an interpreted language addresses its

debugging issues only at run time.

This is where LLVM, is beneficial. Among other features

of LLVM, it provides some features that combine those of

compiled and interpreted languages.

Some features of LLVM used in PRSafe:

• PRSafe accepts a C program input and performs code-

generation by generating LLVM IR. This IR is used for

code analysis, optimization and new feature inclusion.

• PRSafe uses the LLVM Just-in-Time (JIT) compiler.

This implies that LLVM converts source language input

to an LLVM bytecode, rather than a regular compiled

or interpreted language.

• In PRSafe, LLVM uses a symbol table to ensure a static,

semantic restrictions, i.e. keeping track of identifiers

and variables scope, type.

2.2 Turing Complete vs. Non-Turing complete

Languages

In this section, we describe the drawbacks of General-

purpose programming languages.

2.2.1 Turing Complete Language

Structured programming languages such as C, C++,

Python etc. are Turing complete in nature. i.e. these lan-

guages use the model of a Turing machine, a machine which

has an infinite memory that can run any computable func-

tions of a program of a finite length; based on program in-

puts and constructs, it is determined what the program will

do next. Although the general notion is that Turing com-

plete languages are the basic requirement for programming

language design, this is not necessarily true. Owing to the

safety-threatening properties of Turing complete language,

a number of Domain Specific Languages (DSL) have been

designed.

Fundamental safety-threatening features of a Turing Com-

plete Language:

• Unbounded memory ; This means an infinite memory

can be used

• Infinite loops

An example of an unsafe function that can be written in
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a Turing language, with a logical error.

i n t a=0;

whi l e ( 1 ) :

{
a++;

i f ( a > 0)

p r i n t f ( a ) ;

}

This leads to a non-terminating loop. If this function had

authorized access to the kernel space in a machine, an unau-

thorised user could not only perform an unsafe, infinite com-

putation but also deplete a huge amount of computational

resources in the process.

2.2.2 Non-Turing complete Languages

In contrast, we have Non-Turing complete Languages. A

non-Turing complete language essentially ensures the follow-

ing properties:

• Does not support infinite loops

• Random accesses to memory

• Types of Recursion such as Mutual recursion, Multiple

Recursion

• Jump statement and variants.

2.3 Primitive Recursive Functions

2.3.1 What is Primitive recursion?

Primitive recursion is a scheme that permits to define

a function by descending recursion in one variable, or to

phrase it in the imperative paradigm: it has for-loops as the

only iterative control structure. Therefore primitive recur-

sive programs always terminate [5]. To eliminate the un-

safe properties associated with a Turing complete language,

while ensuring computational power, we rely on a set of func-

tions called Primitive Recursive Functions (PRF). Primitive

Recursive Functions can be used to express almost all real-

life application mathematical functions.

2.3.2 Expressing a PRF

A Function is considered primitive recursive if it can be

obtained from some specific initial functions (Zero Function,

Successor Function and Projection Rule) and through finite

number of composition and primitive recursion steps.

The two powerful functions to derive PRF are

• Composition Rule

• Recursion rule

2.3.3 Composition Rule

If a function f is defined as the composition of (previously

defined) primitive recursive functions i.e.

if g1(x1, . . . , xn), g2(x1, . . . , xn), . . . , gk(x1, . . . , xn)

(1)

are primitive recursive and

h(x1, . . . , xk) (2)

is primitive recursive, then

f(x1, . . . , xn) = h(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)

(3)

2.3.4 Recursion rule

If a function f is defined by recursion of two primitive

recursive functions, i.e.

if g(x1, . . . , xn−1)h(x1, . . . , xn+1)

are primitive recursive , then the following function is also

primitive recursive

f(x1, . . . , xn−1, 0) = g(x1, . . . , xn−1) (4)

f(x1, . . . , xn−1,m+ 1) =

h(x1, . . . , xn−1,m, f(x1, . . . , xn−1,m)).
(5)

2.3.5 Example of a PRF:

The exponentiation function exp(x, y) = x y is primitive

recursive. Explanation: We can define exp() primitive re-

cursively as

exp(x, 0) = 1 (6)

exp(x, y + 1) = mult(x, exp(x, y)). (7)

where
f(x) = succ(zero(x)) = 1,

g(x, y, z) = x · z
(8)

2.4 Related Work

By virtue of the restricted functionality in a Primitive

Recursive Function based Language, many languages have

been designed for purely theoretical discussion or academic

exploration. Three such languages used in Academia are (i)

BlooP [6], (ii) Exanoke - a pure functional language only to

express PRFs [7] (iii) Agda- a dependently typed functional

programming language [8]

The grammar of these languages ensure bounded loops,

lack forms of recursion and focus on type safety. The basic

design rules of construction of simple languages is very sim-

ilar to PRSafe, however it differs in the intent of application

and hence infrastructure tools used for implementation of

these languages.

2.5 Overview

The combined power of the safety provided by Primitive

Recursive Functions (PRFs) and the re-usability offered by

LLVM, allow us to ensure the memory-bound and time-

bound consumption of resources while also offering the flex-

ibility to increase or restrict the type of input accepted and

thus inherently implement properties like type-safety.

Primitive Recursive Functions can be used to express almost

all mathematical functions, however we can use the recur-

sion properties of PRFs to restrict the scope of application

to functions that definitely terminate.

When it comes to LLVM, the LLVM infrastructure is not

monolithic. The Frontend can be used to accept a wide

range of General Purpose Programming Languages, the

LLVM IR can be used to optimize the Intermediate Code
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generated and the back-end is responsible for the retar-

getable code generator, i.e. LLVM Code Generator gen-

erates target specific machine code. This is ideal for a DSL

that can accept varied inputs and be applied to various do-

mains.

2.5.1 Domain in Focus : eBPF Verifier

The Domain we intend to focus on is eBPF. [3] The Ex-

tended Berkeley Packet Filter (eBPF) is a Linux subsystem

that allows the safe execution of untrusted user-defined ex-

tensions inside the kernel. It relies on static analysis to pro-

tect the kernel against buggy and malicious extensions.[9]

The verification of input programs passed to the the eBPF

Verifier module, a solution that helps overcome the access

limitations of a Linux kernel, allows a user to escalate user-

space programs into kernel-space privilege.

However, the eBPF verifier, despite being continuously

under development, still poses a number of restrictions to

developers, such as

• False positives: many correct programs are rejected

• Lack of scalability: Cannot efficiently handle programs

with many paths.

• Does not support loops and backward edges - compul-

sory loop unrolling has to be used.

• Lack of formal foundations, just DFG (Data Flow

Graph) based verification

• Unclear or unfriendly error diagnostic messages.

2.5.2 Domain application of PRSafe

With the supportive and user-friendly features of PRFs,

LLVM, PRSafe is eventually intended to be a pre-Verifier of

sorts to the eBPF Verifier module. It offers the following

features:

• Compensate for the lack of clear error diagnostics by

the eBPF verifier module.

• Scalable

• Provides LLVM IR, a user-friendly, comprehensive In-

termediate Representation that can be used to perform

code optimization, retargetable code generation.

• Acceptance of finite loops such as for loops.

3. Design of PRSafe

PRSafe uses the ideas of Exanoke [7] to implement basic

Primitive Recursive properties. This section describes the

outline of PRsafe ’s design and construction. Some basic

rules to tell if a functional program is primitive recursive:

• General recursion does not occur (Mutual recursion in-

cluded)

• When recursion happens, it’s always with arguments

that are “strictly smaller” values than the arguments

the function received.

• There is a base case argument that ensures the function

always terminates.

3.1 EBNF Grammar

PRSafe proposes a simple grammar which facilitates basic

operations and primitive recursion. The grammar is under

modification to add new features and refine functionalities.

However, the broad categorization of commands allowed in

the language are : (i) Expressions (ii) Statements (iii) Func-

tions composed of expressions and statements

• Expressions Includes Function calls.

• Statements Includes Variable declarations, Variable def-

inition and assignment statements.

• Functions composed of expressions and statements Re-

cursive functions are usually composed of other prim-

itive recursive functions expressed using basic mathe-

matical and logical operations such as addition, multi-

plication, comparison, etc.

For example, in a factorial function,

i n t f a c t o r i a l ( i n t n )

{
i f n==1

return 1 ;

e l s e i f n > 1

return n ∗ f a c t o r i a l (n−1);

}

the function is composed of multiplication, equality

check and greater-than check . Even the recursive call

is permitted to be made only with an argument (n-1)

that is strictly lesser than (n).

3.1.1 Core Grammar

The core eBNF grammar of PRSafe is listed as follows.

⟨program⟩ ::= ‘{’⟨stmts⟩‘}’

⟨stmts⟩ ::= ⟨statement⟩
| ⟨stmts⟩ ⟨statement⟩
| ⟨empty⟩

A standard PRSafe program is composed of a block of state-

ments, that may be empty or finite.
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⟨statement⟩ ::= ⟨variable Declaration⟩
| ⟨variable Definition⟩ | ⟨function prototype⟩
| ⟨Function Declaration⟩ |

⟨Function Definition⟩
| ⟨expr⟩
| ‘for’ ⟨ident⟩ ‘=’ ⟨expr⟩ ‘to’ ⟨expr⟩ ‘do’

⟨statement⟩
| ‘PRINT’ ‘(’expression ‘)’ ⟨expr⟩
| ‘RETURN’ ⟨expr⟩

⟨block⟩ ::= ⟨empty⟩
| ‘{’⟨stmts⟩ ‘}’
| ‘{’ ‘}’

⟨variable Declaration⟩ ::= ⟨ident⟩⟨ident⟩

⟨variable Definition⟩ ::= ⟨ident⟩⟨ident⟩ ‘=’ ⟨expr⟩

⟨function prototype Defn⟩ ::= ⟨ident⟩⟨ident⟩
‘(’⟨function prototype⟩‘)’⟨block⟩

⟨func proto args⟩ ::= ⟨variable Declaration⟩

The statements accepted are similar to basic C++ blocks

of a program, the types of statements are explained below.

• Declarative statements such as variable declarations,

variable definitions, function prototypes, function defi-

nitions.

• Expression statements that comprise of all function

calls, arithmetic expressions, variable definitions.

• Finite looping statement indicated by the ‘for’ keyword,

followed by an expression.

• Print and Return statements.

⟨numeric⟩ ::= ⟨Integer⟩
| ⟨Boolean⟩

To implement a Primitive Recursive Language, we require

only natural numbers and conditionals to be expressed. Fur-

ther, by restricting the data types that are allowed, we do

not concern ourselves with type-safety issues at this point

of development.

Hence, only the following two data types are accepted by

the language currently.

• Integer

• Boolean

⟨expr⟩ ::= ⟨ident⟩
| ⟨ident⟩ ‘=’ ⟨expr⟩
| ⟨ident⟩ ‘(’ ⟨call args⟩ ‘)’
| ⟨numeric⟩
| ⟨expr⟩ ⟨bin op⟩ ⟨expr⟩

⟨call args⟩ ::= ⟨expr⟩
| ⟨ident⟩⟨expr⟩

An expression in PRSafe basically evaluates to some re-

sult. It could be any of the following forms.

• A variable declaration or definition being declared or

assigned to by a user-defined identifier.

• A function call defined by an arbitrary function name.

It accepts as input a single argument of either of the

following types - Integer, Boolean or another expres-

sion. Note: A function call could also be a recursive

call, provided it only accepts recursive arguments that

are “strictly smaller” than the original call argument.

This is expressed by expressing the given recursive func-

tion call using a previously accepted primitive recursive

function. The primitive recursive functions accepted

are hence, strictly some composition of basic operations

such as Addition function, Multiplication function, Suc-

cessor Function, Zero Function.

• An arithmetic expression to be evaluated, compris-

ing of any acceptable binary operator and acceptable

operands.

⟨bin op⟩ ::= ‘==’

| ‘!=’

| ‘<’

| ‘>’

| ‘+’

| ‘-’

| ‘*’

The set of operators allowed include the following stan-

dard operators :

• Assignment Operator ‘=’

• Arithmetic Operators: ‘+’ (Addition), ‘-’ (Subtrac-

tion), ‘*’ (Multiplication),

• Comparison Operators: ‘<’ (Compare if less-than), ‘>’

(Compare if greater-than), ‘==’ (Compare if equal to

), ‘!=’ (Compare if not equal to)

The grammar of PRSafe expresses that only finite loops,

recursion with smaller arguments, Primitive Recursion func-

tions, and composition of Primitive Recursive Functions can

be accepted. However, in order to prove that only s̀trictly

smallerárguments will be accepted, we plan to use an SMT

solver

3.2 Code Generation performed by PRSafe and

LLVM IR

Code Generation done by PRSafe has been implemented

using the LLVM APIs. [10]. These APIs can generate

IR Code that looks like human-readable assembly code, for

any ‘value’ in a program. Any term that is represented in

a source language, can be considered a ‘value’ in LLVM.

Hence, LLVM can be used to generate code for operators,

operands, functions, classes, any expression etc. There is no

restriction on representation format. For example, in terms

of bit width 64-bit Integer can be expressed as well as a 1-bit

integer.

Sample High-Level Input:
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void main ( i n t i )

{
i = 10

}

Corresponding PRSafe output generated:

$ . / toy testFunc

Succeeded to parse !

0 x563e13337ed0

Creat ing va r i ab l e d e c l a r a t i on i n t i

Creat ing ass ignment f o r i

Creat ing i n t e g e r : 10

Creat ing block

Creat ing func t i on : main

Creat ing block

Corresponding LLVM IR generated:

d e f i n e i n t e r n a l void @main . 1 ( i 64 ) {
entry :

%i = a l l o c a i64 , addrspace (1 )

s t o r e i 64 10 , i 64 addrspace (1 ) ∗ %i

r e t void

}

4. Evaluation and Discussion

Table 1 shows a comparison between PRSafe and conven-

tional langulages. In this section, we evaluate and discuss

based on this table.

4.1 Mathematical Verification of PRSafe

Mathematical verification of PRSafe is currently a work-

in-progress, just as additional functionalities are being

added. We are currently using Z3, an easy-to-use SMT

solver [11]. A Z3 script is a sequence of commands. For

verification of the PRF properties of PRSafe, we specify a

set of definitions as user-defined formulas.

For example, to restrict the properties of recursive func-

tions in PRSafe, we can specify the following properties.

(1) All inputs and outputs can only be of Integer or Boolean

Datatype

(2) Recursive calls are allowed in a function, only if the re-

cursive call accepts arguments are ‘strictly smaller’ than the

original argument. Hence, the recursive call must be ex-

pressed as a function expression that evaluates to a value

lesser than the original function expression.

4.2 Alternate methods to PRSafe: F*

PRSafe acts as a verification language using mathemat-

ical functions and syntax specifications. However, instead

of using PRFs to define a language, we can use languages

such as F*, a general-purpose functional programming lan-

guage with effects aimed at program verification. [12] Since

F* harnesses the SMT solver Z3, it does not require a sepa-

rate verification tool. F* can be used to perform the exact

same functions such as ensuring type safety, proving termi-

nation, or designing a language based on a chosen mathe-

matical model, such as Lambda Calculus. However, there is

a certain learning curve involved in learning and verifying a

programming language using F*.

At this stage in our work, we are still adding features to

PRSafe and hence, we present purely a qualitative evalua-

tion between F*, PRSafe and General purpose programming

languages such as C.

5. Conclusion and Future Work

The main incentives to PRSafe is the user-friendly ap-

proach, the mathematical foundation in design, scope for

optimization and scaling of features. PRSafe is able to re-

duce the burden on the user to design safe programs. Hence,

it achieves its preliminary goals. However, the project has a

long way to become a fully functional tool. Some of the

work-in-progress includes the following ideas. Firstly, as

PRSafe grows in functionalities, the PRF-based property

checks must be completely verified using Z3. Second, a

quantitative evaluation is required to compare benchmarks

among methods equivalent to using PRSafe. Third, the un-

rolling of possible ‘safety-threatening’ features, such as mu-

tual recursion in the space of eBPF can be explored.
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