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A Wasserstein Graph Kernel
based on Substructure Isomorphism Problem of

Shortest Paths

Jianming Huang1,a) Zhongxi Fang2,b) Hiroyuki Kasai2,c)

Abstract: For graph classification tasks, many methods use a common strategy to aggregate information of
vertex neighbors. Although this strategy provides an efficient means of extracting graph topological features,
it brings excessive amounts of information that might greatly reduce its accuracy when dealing with large-
scale neighborhoods. Learning graphs using paths or walks will not suffer from this difficulty, but many have
low utilization of each path or walk, which might engender information loss and high computational costs.
To solve this, we propose a graph kernel using a longest common subsequence (LCS kernel) to compute more
comprehensive similarity between paths and walks, which resolves substructure isomorphism difficulties. We
also combine it with optimal transport theory to extract more in-depth features of graphs.

1. Introduction

Graph-structured data have been used widely in various

fields, such as chemoinformatics, bioinformatics, social net-

works, and computer vision [1], [2]. In graph-structured

data classification tasks, a key difficulty is finding a crite-

rion with which to compare graphs. However, no matter

what method is used for comparison, graph isomorphism is

a common difficulty that must be confronted and overcome:

Do two graphs have identical topology? The degree to which

two graphs mutually fit is usually regarded as similarity be-

tween two graphs. However, graph isomorphism has not

been proved as NP complete. To date, no polynomial-time

solution has been reported [3].

Various strategies are available to assess graph isomor-

phism. Some studies specifically find a relation between ver-

tices and their neighbors. This type of strategy is a breadth-

first strategy, which tends to construct a neighbor network

surrounding a certain vertex. However, such breadth-first

strategies entail several shortcomings. (1) Because breadth-

first strategies are based on aggregating information of all

neighbors, the embedding of a vertex usually involves ex-

cessive information, especially in a dense graph. (2) As the

depth of a neighbor network increases, it grows geometri-

cally, as does the quantity of information, especially when

we want to assess the relationships of vertices that are mu-

1 WASEDA University, Graduate School of Fundamental Science
and Engineering

2 WASEDA University, School of Fundamental Science and Engi-
neering, Dept. of Communications and Computer Engineering

a) koukenmei@toki.waseda.jp
b) fzx@akane.waseda.jp
c) hiroyuki.kasai@waseda.jp

tually distant.

In other avenues of development, some studies have specif-

ically examined paths and walks of graphs. In contrast to

breadth-first strategies, they learn graph topology by com-

paring paths or walks. We consider these as depth-first

strategies, which use a simple form of subgraphs to learn the

subgraph structure. It becomes easier to solve problems pre-

sented by breadth-first strategies. Nevertheless, path-based

(or walk-based) methods are adversely affected by the com-

mon truth that they entail high computational costs because

sampled paths (or walks) are usually numerous and have

high redundancy.

Because of computational improvements in solving opti-

mal transport problems in recent years, optimal transport

theory [4], [5] has been used in many machine-learning do-

mains. Many studies have examined graph classification

based on optimal transport theory. Our proposed method

also uses optimal transport schemes to compute kernel val-

ues. More specifically, we computed optimal transport over

two sets of paths.

To overcome shortcomings of breadth-first strategies, and

to reduce high computational costs of current path-based

methods, we propose path-comparison methods using the

longest common subsequences (LCS) and optimal transport

theory. We also apply this method to graph classification

tasks, and present the LCS graph kernel. Generally, our

contributions can be summarized as described below.

• We present a method to compare labeled graphs using

the LCS of path sequences and optimal transport the-

ory, which transforms the graph isomorphism problem

to a sequence comparison problem.
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• We proposed a new strategy of comparing graphs based

on the LCS metric space.

2. Related Work

For graph classification tasks, graph kernel methods have

been used widely for several decades. They are also de-

veloping rapidly in recent years. Graph kernels are kernel

functions that compute similarity between two graphs. For

now, graph kernel methods can be generally divided into

two categories as methods of (1) Traditional graph kernel

and (2) OT-based graph kernel. The first of those clas-

sifications of methods includes traditional graph kernels,

most of which are based on R-convolution framework. To

compute similarity between graphs in various data min-

ing tasks, random walk kernel [6] has been developed and

used widely as an important tool for graph classification.

However, it also faces a difficulty of high computational

cost. Subsequent work on Weisfeiler–Lehman graph ker-

nel [7] has brought great success. They improved the orig-

inal Weisfeiler–Lehman test using a form of multiple itera-

tion, where neighbor patterns are aggregated. Although this

method yields attractive performance, it still presents diffi-

culties of breadth-first strategies and R-convolution meth-

ods. The second class includes graph kernels combined with

optimal transport theory. Recent research by [8], presents a

Wasserstein-based Weisfeiler–Lehman graph kernel (WWL),

which maps node embedding of a Weisfeiler–Lehman pattern

to a feature space, and which computes kernel values using

the Wasserstein distance of two point clouds in the feature

space. They received better results than those yielded by

the original Weisfeiler–Lehman kernel. GOT [9] uses opti-

mal transport differently to compute the Wasserstein dis-

tance between two normal distributions derived by graph

Laplacian matrices, instead of generating walks or compar-

ing vertex neighbors in graphs. Another attractive work by

[10] proposes the Fused Gromov–Wasserstein (FGW) dis-

tance which combines both the Wasserstein distance and

the Gromov–Wasserstein distance.

3. Preliminaries

This section first introduces some notation and prelimi-

nary points of graphs. Hereinafter, we represent scalars as

lower-case letters (a, b, . . .), vectors as bold typeface lower-

case letters (a, b, . . .), and matrices as bold typeface capitals

(A,B, . . .). An element at (i, j) of a matrix A is represented

asA(i, j). 1n = (1, 1, . . . , 1)T ∈ Rn. We write Rn
+ to denote

non-negative n-dimensional vector. Also, Rn×m
+ represents

a nonnegative matrix of size n×m. The unit-simplex, sim-

ply called simplex, is denoted by ∆n, which is the subset of

Rn comprising all nonnegative vectors for which sums are 1.

In addition, δx is the Dirac function at x.

3.1 Preliminaries of graphs

A graph is a pair G = (V, E) consisting of a set of n ver-

tices (or nodes) V = {v1, v2, . . . , vn} and a set of m edges

E ⊆ V × V . G is an undirected graph if a graph G in-

cludes only edges with no direction. The numbers of vertices

and edges are, respectively, |V| and |E|. If two vertices, say

vi, vj ∈ V, are connected by an edge e, then this edge is

denoted as eij . These two vertices are said to be adjacent

or neighbors. We consider only undirected graphs with no

self-loop.

Given an undirected graph G = (V, E) and a vertex

vi ∈ V, the degree of vi in G, denoted as σi, is the number of

edges incident to vi. It is defined as σi = |{vj : eij ∈ E}| =
|N (vi)|, where N (vi) represents the neighborhood set of vi.

A walk in a graph G = (V, E) is a sequence of vertices

v1, v2, ..., vk+1, where vi ∈ V for all 1 ≤ i ≤ k + 1 and

vi, vi+1 ∈ V for all 1 ≤ i ≤ k. The walk length is equal to

the number of edges in the sequence, i.e., k in the case above.

A walk in which vi ̸= vj ⇔ i ̸= j is called a path. The path

between the two adjacent vertices is equivalent to the edge.

A set of paths between two non-adjacent vertices is denoted

as Pi,j . One path of Pi,j is denoted as pi,j . Moreover, the

length of pi,j is denoted as |pi,j |. A shortest path, denoted

as p⋆i,j , from vertex vi to vertex vj of a graph G, is a path

from vi to vj such that no other path exists between these

two vertices with smaller length.

3.2 Longest common subsequence

A sequence is defined mathematically as an enumerated

collection of objects of a certain order, where repetition of

elements is allowed. The length of a sequence denotes the

number of its elements. Given a sequence with length n, it

can be written as x = (xi)
n
n=1, where xi denotes the i-th

element. A subsequence of a given sequence is derived by

removing some elements of the original sequence under the

premise that the order of the remaining elements is retained

as the original sequence. For example, given a sequence of

(1, 2, 3, 4, 5), both (2, 3, 4) and (1, 3, 5) are subsequences of

the original sequence. The definition of the longest com-

mon subsequence problem can be presented as shown below

[11], [12].

Definition 1 (Longest Common Subsequence Problem).

The goal of a longest common subsequence problem is to

find a sequence x⋆ that satisfies the following conditions:

(1) x⋆ is a subsequence of each sequence in a set of se-

quences X = {x1,x2...,xn}. (2) x⋆ is the longest among

all subsequences that satisfy condition (1). Then we con-

sider x⋆ as the longest common subsequence in X .

3.3 Optimal transport (OT)

Optimal transport provides a means of comparing proba-

bility distributions, which are histograms in the finite dimen-

sional case [4], [5]. This quantity is defined over the same

ground space or multiple pre-registered ground spaces. This

comparison is interpreted as a mass movement problem,

which seeks an optimum plan to move the mass from one dis-

tribution to the other at minimal cost. OT is rapidly gain-

ing popularity in a multitude of machine learning problems,

ranging from low-rank approximation, to dictionary learn-

ing, domain adaptation, clustering, and semi-supervised
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learning.

We define two simplexes of histograms with n1 and n2

on the same metric space, which are defined, respectively,

as ∆n1 = {p ∈ Rn1
+ ;

∑
i pi = 1}, and ∆n2 = {q ∈

Rn2
+ ;

∑
j qj = 1}, where in mass movement problem, p, q

are usually regarded as mass vectors of each histogram,

with elements denoting the mass of each bin. Subsequently,

we define two probability measures µ =
∑n1

i=1 piδxi , and

ν =
∑n2

j=1 qjδyj , where xi ̸= xj for i ̸= j is assumed without

loss of generality. We also consider the ground cost matrix

C ∈ Rn1×n2
+ , where C(i, j) represents the transportation

cost between the i-th and j-th element. The optimal trans-

port problem between these two histograms is defined as

T∗(C,p, q) = arg min
T ∈ Un1n2

⟨T,C⟩,

where Un1n2 is defined as

Un1n2 :=
{
T ∈ Rn1×n2

+ : T1n2 = p, TT1n1 = q
}
,

and Un1n2 represents the polytope of n1×n2 nonnegative ma-

trices such that their row and column marginals are respec-

tively equal to pi and qj . Then, the Wasserstein distance

between the two measures, denoted as W(µ, ν), is equal to

the total distance traversed by the mass under the opti-

mal transport plan T∗. Furthermore, by adding an entropic

regularizer H(T) = −
∑n1

i=1

∑n2

j=1 T(i, j)(log(T(i, j))− 1),

a solution of the entropically regularized optimal transport

problem is solvable efficiently using Sinkhorn’s fixed-point

iterations [13], [14], [15]. If no prior information is known

about a space, then we set p = 1
n1

1n1 and q = 1
n2

1n2 .

4. Longest Common Subsequence (LCS)

Kernel

This section proposes a metric between two labeled graphs

through comparison of all the shortest path sequences, and

presents elaboration of the proposed longest common sub-

sequence (LCS) kernel.

4.1 Basic concepts

This subsection first introduces several basic concepts in

our LCS kernel. They show the operation of transforming

the path into a manageable form of data, and a formula of

path sequence similarity used in graph comparison.

4.1.1 Shortest path serialization

Given an undirected and connected graphG = (V, E) with
a set of vertices V = {vi}Ni=1 and a set of edges E = {eij},
then both vertices and edges in G are assigned a categorical

label. To describe the subgraph structure of G, we choose

the shortest path set which contains all shortest paths in G.

Let P denote the shortest path set of G, P defined as

P ≜
{
p⋆i,j |∀vi, vj ∈ V

}
,

where p⋆i,j represents the shortest path from vertex vi to vj .

Assuming that two vertices vk, vl are in the shortest path

p⋆i,j , except for the start vertex vi and the end vertex vj ,

then p⋆i,j can be expressed as

p⋆i,j : vi
ei,k−→ vk

ek,l−→ vl
el,j−→ vj (1)

Because of the difficulty in comparing paths directly, we

perform a kind of shortest path serialization before path

comparison, for which we serialize these paths as label se-

quences. We define the operation of this serialization as

Definition 2 (Shortest Path Serialization). Let l : V → Σ

denote a function that maps a vertex object v to its cate-

gorical node label assigned from a finite label alphabet Σ.

Furthermore, let w : E → Σ be the edge label mapping

function. The operation of shortest path serialization is

definable as (take p⋆i,j in Eq. (1) for instance):

x = (l(vi),−w(ei,k), l(vk),−w(ek,l), l(vl),−w(el,j), l(vj)) ,

where x is a shortest path sequence derived from p⋆i,j . In

the special condition in which the graph has no edge label,

p⋆i,j is serialized as x = (l(vi), l(vk), l(vl), l(vj)).

It is noteworthy that we take the negative value of edge

label as −w(ei,j) so that edge labels are distinguished from

node labels during path sequence comparison.

4.1.2 Path sequence similarity

Using shortest path serialization, we transform the path

comparison problem to a sequence comparison problem. As

described ealier, to make use of a path sequence maximally,

we solve the substructure isomorphism problem of paths in-

stead of simply judging whether or not these two paths are

completely identical.

As sequence comparison strategies, many methods might

be chosen, such as longest common substring (LCStr) and

longest common subsequence (LCSeq). The difference be-

tween them is that the LCStr demands continuity of se-

quence above LCSeq. We prefer to use LCSeq rather than

LCStr because we discover LCSeq as typically more robust

and stable than LCStr. Using the length of LCSeq, we pro-

pose our formula of path sequence similarity as

Definition 3 (Path Sequence Similarity). Given two path

sequences x1,x2, their similarity is defined as

Fsim(x1,x2) :=
Flcs(x1,x2)

max(len(x1), len(x2))
, (2)

where Flcs(x1,x2)denotes the function returning the length

of the LCS of x1,x2, and where len(·) denotes the function

returning the length of a sequence.

We use the maximum length of the objective path se-

quences as a denominator to limit its value in [0, 1]. When

two path sequences have a longer common subsequence, the

value of their similarity will be larger. From the perspective

of the graph, large similarity of path sequences shows large

similarity of subgraph structures.

4.2 LCS Kernel in graph comparing

4.2.1 Generating graph representation

Given two undirected and connected graphs G1(V1, E1)
and G2(V2, E2) with nodes and edges labeled, then using a

classical algorithm like Floyd–Warshall or the Dijkstra algo-

rithm, the shortest path sets P1 and P2 of G1 and G2 can be
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obtained, respectively. Through shortest path serialization,

we first transform all paths in P1 and P2 as shown below.

X1 =
{
x
(1)
i,j |x

(1)
i,j = Fserialize(p

⋆
i,j), p

⋆
i,j ∈ P1

}
X2 =

{
x
(2)
i,j |x

(2)
i,j = Fserialize(p

⋆
i,j), p

⋆
i,j ∈ P2

}
Therein, Fserialize denotes the operation of shortest path

serialization described earlier. Actually, X1 and X2 respec-

tively represent two path sequence sets derived from P1 and

P2, respectively describing the subgraph structures of G1

and G2. For every path sequence x
(1)
i,j and x

(2)
i,j , the super-

script denotes the graph to which they belong.

It is noteworthy that some path sequences that are ex-

actly the same as those in the path sequence set. To avoid

the increase of the identical sequences, we do not add them

to the sequence set X and store the number of identical se-

quences in a mass vector m. For example, the i-th element

in m denotes the number of sequences which are identical

to the i-th path sequence in X . In doing so, we obtain two

mass vectors m1 and m2 respectively belonging to X1 and

X2.

4.2.2 Wasserstein Distance in LCS metric space

To compare path sequence sets X1 and X2, we propose a

metric space of path sequence over the union of X1 and X2,

where we use path sequence similarity to define the metric.

Definition 4 (LCS Metric Space). Given two path se-

quence sets X1,X2, and X := X1 ∪ X2 is their union. The

LCS Metric Space of X1 and X2 is written as S(X , d),

where the metric d : X × X → R is defined as below.

d(x1,x2) = 1− Fsim(x
(1)
i ,x

(2)
j ) (3)

Actually, X1 and X2 can be regarded as two distributions

in their LCS Metric Space, where the path sequence is a

discrete point of these distributions. Finally, we propose to

leverage the Wasserstein distance between these two distri-

butions to define our graph distance as

Definition 5 (LCS Graph Distance). Given two undirected

and connected graphs G1(V1, E1) and G2(V2, E2) and their

respectivepath sequence sets X1 and X2 and mass vectors

m1 and m2, then the LCS Graph Distance between G1

and G2 is defined as

dG(G1, G2) = W1(X1,X2) = ⟨T⋆(D,
m1

|m1|1
,

m2

|m2|1
),D⟩

where W1(X1,X2) represents the 1-Wasserstein distance

between X1 and X2, and where D denotes the ground

distance matrix including the distances d(x1,x2) between

x1 ∈ X1 and x2 ∈ X2 in the LCS Metric Space S(X1 ∪
X2, d). Here, T⋆(D, m1

|m1|1 ,
m2

|m2|1 ) denotes the optimal

transport plan w.r.t. mass vectors m1 and m2 of X1 and

X2, respectively, and D, where | · |1 denotes the l1 norm.

We use LCS graph distance to compute a similarity mea-

sure between two graphs. The measure will be used in ma-

chine learning algorithm as a kernel value. To guarantee

the positive definiteness of our proposed kernel, we combine

the LCS graph distance with the Laplacian kernel function

to construct a graph kernel. The LCS graph kernel is then

defined as presented below.

Definition 6 (LCS Graph Kernel). Given a set of graphs

G, then Gi and Gj are two arbitrary graphs in G. The LCS

graph kernel is defined as

kLCS(Gi, Gj) = e−λdG(Gi,Gj), (4)

where dG denotes the LCS graph distance, and where λ is

within the range of (0,+∞].

5. Conclusion

We propose an LCS graph kernel of computing similarity

between graphs using the Wasserstein distance in LCS met-

ric space, which successfully transforms graph classification

problem to sequence comparing problem. For results of nu-

merical experiments, we will show them in the presentation.
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