ログイン 新規登録
言語:

WEKO3

  • トップ
  • ランキング


インデックスリンク

インデックスツリー

  • RootNode

メールアドレスを入力してください。

WEKO

One fine body…

WEKO

One fine body…

アイテム

  1. 研究報告
  2. オーディオビジュアル複合情報処理(AVM)
  3. 2020
  4. 2020-AVM-111

A Wasserstein Graph Kernel based on Substructure Isomorphism Problem of Shortest Paths

https://ipsj.ixsq.nii.ac.jp/records/208045
https://ipsj.ixsq.nii.ac.jp/records/208045
acc764ae-043e-4b9a-bf9b-0a2ae7eaf473
名前 / ファイル ライセンス アクション
IPSJ-AVM20111005.pdf IPSJ-AVM20111005.pdf (657.7 kB)
Copyright (c) 2020 by the Information Processing Society of Japan
オープンアクセス
Item type SIG Technical Reports(1)
公開日 2020-11-19
タイトル
タイトル A Wasserstein Graph Kernel based on Substructure Isomorphism Problem of Shortest Paths
タイトル
言語 en
タイトル A Wasserstein Graph Kernel based on Substructure Isomorphism Problem of Shortest Paths
言語
言語 eng
キーワード
主題Scheme Other
主題 学生セッション
資源タイプ
資源タイプ識別子 http://purl.org/coar/resource_type/c_18gh
資源タイプ technical report
著者所属
WASEDA University, Graduate School of Fundamental Science and Engineering
著者所属
WASEDA University, School of Fundamental Science and Engineering, Dept. of Communications and Computer Engineering
著者所属
WASEDA University, School of Fundamental Science and Engineering, Dept. of Communications and Computer Engineering
著者所属(英)
en
WASEDA University, Graduate School of Fundamental Science and Engineering
著者所属(英)
en
WASEDA University, School of Fundamental Science and Engineering, Dept. of Communications and Computer Engineering
著者所属(英)
en
WASEDA University, School of Fundamental Science and Engineering, Dept. of Communications and Computer Engineering
著者名 Jianming, Huang

× Jianming, Huang

Jianming, Huang

Search repository
Zhongxi, Fang

× Zhongxi, Fang

Zhongxi, Fang

Search repository
Hiroyuki, Kasai

× Hiroyuki, Kasai

Hiroyuki, Kasai

Search repository
著者名(英) Jianming, Huang

× Jianming, Huang

en Jianming, Huang

Search repository
Zhongxi, Fang

× Zhongxi, Fang

en Zhongxi, Fang

Search repository
Hiroyuki, Kasai

× Hiroyuki, Kasai

en Hiroyuki, Kasai

Search repository
論文抄録
内容記述タイプ Other
内容記述 For graph classification tasks, many methods use a common strategy to aggregate information of vertex neighbors. Although this strategy provides an efficient means of extracting graph topological features, it brings excessive amounts of information that might greatly reduce its accuracy when dealing with large-scale neighborhoods. Learning graphs using paths or walks will not suffer from this difficulty, but many have low utilization of each path or walk, which might engender information loss and high computational costs. To solve this, we propose a graph kernel using a longest common subsequence (LCS kernel) to compute more comprehensive similarity between paths and walks, which resolves substructure isomorphism difficulties. We also combine it with optimal transport theory to extract more in-depth features of graphs.
論文抄録(英)
内容記述タイプ Other
内容記述 For graph classification tasks, many methods use a common strategy to aggregate information of vertex neighbors. Although this strategy provides an efficient means of extracting graph topological features, it brings excessive amounts of information that might greatly reduce its accuracy when dealing with large-scale neighborhoods. Learning graphs using paths or walks will not suffer from this difficulty, but many have low utilization of each path or walk, which might engender information loss and high computational costs. To solve this, we propose a graph kernel using a longest common subsequence (LCS kernel) to compute more comprehensive similarity between paths and walks, which resolves substructure isomorphism difficulties. We also combine it with optimal transport theory to extract more in-depth features of graphs.
書誌レコードID
収録物識別子タイプ NCID
収録物識別子 AN10438399
書誌情報 研究報告オーディオビジュアル複合情報処理(AVM)

巻 2020-AVM-111, 号 5, p. 1-4, 発行日 2020-11-19
ISSN
収録物識別子タイプ ISSN
収録物識別子 2188-8582
Notice
SIG Technical Reports are nonrefereed and hence may later appear in any journals, conferences, symposia, etc.
出版者
言語 ja
出版者 情報処理学会
戻る
0
views
See details
Views

Versions

Ver.1 2025-01-19 18:56:53.989374
Show All versions

Share

Mendeley Twitter Facebook Print Addthis

Cite as

エクスポート

OAI-PMH
  • OAI-PMH JPCOAR
  • OAI-PMH DublinCore
  • OAI-PMH DDI
Other Formats
  • JSON
  • BIBTEX

Confirm


Powered by WEKO3


Powered by WEKO3