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Minimizing a Vertex Set Satisfying Specific Graph
Properties

Yuma Tamura1,a) Takehiro Ito1,b) Xiao Zhou1,c)

Abstract: Let Π1,Π2, . . . ,Πc be graph properties for a fixed integer c. Then, (Π1,Π2, . . . ,Πc)-Partition is the problem
of asking whether the vertex set of a given graph can be partitioned into c subsets V1,V2, . . . ,Vc such that the subgraph
induced by Vi satisfies the graph property Πi for every i ∈ {1, 2, . . . , c}. Minimization and parameterized variants of
(Π1,Π2, . . . ,Πc)-Partition have been studied for several specific graph properties, where the size of the vertex subset
V1 satisfying Π1 is minimized or taken as a parameter. In this paper, we first show that the minimization variant is hard
to approximate for any nontrivial additive hereditary graph properties, unless c = 2 and both Π1 and Π2 are classes of
edgeless graphs. We then give FPT algorithms for the parameterized variant when restricted to the case where c = 2,
Π1 is a hereditary graph property, and Π2 is the class of acyclic graphs.
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1. Introduction
Various combinatorial problems on graphs can be seen as prob-

lems of partitioning the vertex set of a given graph into a fixed
number of vertex subsets satisfying prescribed properties. For
example, c-Coloring is the problem of deciding whether the ver-
tex set of a given graph can be partitioned into c independent sets
(i.e., edgeless graphs). Another example is Near-Bipartiteness,
which is the problem of deciding whether the vertex set of a
given graph can be partitioned into two subsets such that one
forms an independent set and the other forms an acyclic graph.
These problems can be unified as the problem (Π1,Π2, . . . ,Πc)-
Partition for a fixed integer c, where Π1,Π2, . . . ,Πc denote graph
properties: (Π1,Π2, . . . ,Πc)-Partition, also known as General-
ized Graph Coloring [1], is the problem of asking whether the
vertex set of a given graph can be partitioned into c subsets
V1,V2, . . . ,Vc such that the subgraph induced by Vi satisfies the
graph property Πi for every i ∈ {1, 2, . . . , c}. We call such a
vertex partition a (Π1,Π2, . . . ,Πc)-coloring of the graph. (See
Fig. 1 as an example.) Minimization and parameterized variants
of (Π1,Π2, . . . ,Πc)-Partition have been also studied in the liter-
ature for several graph properties Π1,Π2, . . . ,Πc, where the size
of the vertex subset V1 satisfying Π1 is minimized or taken as a
parameter.

We here define some terms for graph properties. A graph prop-
erty, or simply a property, is a property of graphs closed under
isomorphism. We sometimes regard a graph property as a class
of graphs (i.e., a set of all graphs) satisfying the property. A graph
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Fig. 1 (a) A graph G, and (b) a (Π1,Π2)-coloring of G, where Π1 is the class
of edgeless graphs and Π2 is the class of path graphs. The number of
hatched vertices is minimum among all (Π1,Π2)-colorings of G.

property Π is hereditary if, for any graph G satisfying Π, every
induced subgraph of G also satisfies Π. A graph property Π is
additive if, for any two graphs G and H satisfying Π, the disjoint
union of G and H also satisfies Π, where the disjoint union of
G = (VG, EG) and H = (VH , EH) is the graph whose vertex set is
VG∪VH and edge set is EG∪EH . A graph property Π is nontrivial
if there exists at least one graph satisfying Π and there exists at
least one graph which does not satisfy Π.

1.1 Related Results and Known Results
Farrugia [3] showed that (Π1,Π2, . . . ,Πc)-Partition is NP-

hard for any fixed nontrivial additive hereditary graph properties
Π1,Π2, . . . ,Πc, unless c = 2 and both Π1 and Π2 are classes of
edgeless graphs. Notice that if c = 2 and both Π1 and Π2 are
classes of edgeless graphs, then the problem is equivalent to 2-
Coloring and hence it can be solved in linear time for general
graphs.

Kanj et al. [7] widely studied the parameterized complexity
of (Π1,Π2)-Partition. They mentioned that a simple branching
technique yields a single-exponential FPT algorithm for Param-
eterized (Π1,Π2)-Partition if Π1 and Π2 are hereditary graph
properties such that the membership of Π1 can be decided in
polynomial time and Π2 can be characterized by a finite set of
forbidden induced subgraphs.

Many FPT algorithms have been developed for various prob-
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lems, which can be seen as Parameterized (Π1,Π2)-Partition
with specific graph properties Π1 and Π2, such as Feedback Ver-
tex Set [6], Independent Feedback Vertex Set [8], [12], and G-
Bipartization [11]. On the other hand, Parameterized (Π1,Π2)-
Partition is fixed-parameter intractable even if Π1 is the class
of all graphs: the problem is W[P]-complete if Π2 is the class
of d-degenerate graphs for any d ≥ 2 (this corresponds to d-
DegenerateVertexDeletion) [10], and the problem is W[2]-hard
if Π2 is the class of wheel-free graphs (this corresponds to Wheel-
Free Deletion) [9].

From the viewpoint of approximation, there is a polynomial-
time 2-approximation algorithm for Feedback Vertex Set [2],
which is equivalent to Min (Π1,Π2)-Partition if Π1 is the class
of all graphs and Π2 is the class of acyclic graphs. However, if
we change Π1 to the class of edgeless graphs, then the problem is
equivalent to Independent Feedback Vertex Set and it is hard to
approximate even for planar bipartite graphs [14].

1.2 Our Contribution
In this paper, we study the approximability of Min

(Π1,Π2, . . . ,Πc)-Partition and the fixed-parameter tractability of
Parameterized (Π1,Π2)-Partition.

We first study the approximability. It is already NP-hard
to decide if a given graph has at least one (Π1,Π2, . . . ,Πc)-
coloring for nontrivial additive hereditary graph properties
Π1,Π2, . . . ,Πc [3]. In this paper, we give inapproximability re-
sults of Min (Π1,Π2, . . . ,Πc)-Partition even for the case where
we know that a given graph has at least one (Π1,Π2, . . . ,Πc)-
coloring. We show that Min (Π1,Π2, . . . ,Πc)-Partition, any fixed
c ≥ 2, is hard to approximate for any fixed nontrivial additive
hereditary graph properties, unless c = 2 and both Π1 and Π2

are classes of edgeless graphs. In addition, we show that Min
(Π1,Π2)-Partition for planar bipartite graphs remains hard to ap-
proximate if each of Π1 and Π2 has a minimal forbidden induced
subgraph that is planar and bipartite. Interestingly, as we will dis-
cuss in Section 3, Min (Π1,Π2, . . . ,Πc)-Partition can be solved in
polynomial time for bipartite graphs if c ≥ 3 and Π1,Π2, . . . ,Πc

are nontrivial additive hereditary graph properties. We note that
various well-known graph properties are additive and hereditary:
for example, the classes of acyclic graphs, interval graphs, planar
graphs, and more generally,H-free graphs for a graph familyH .

We then investigate the fixed-parameter tractability of Param-
eterized (Π1,Π2, . . . ,Πc)-Partition when restricted to c = 2 and
Π2 is the class of acyclic graphs. We first develop an FPT algo-
rithm for the problem if Π1 is a hereditary graph property; we
also show that the running time can be improved for bounded de-
generacy graphs. Note that this result cannot be covered by [7],
because the class of acyclic graphs is characterized by the infinite
forbidden cycles. We then give an FPT algorithm for the case
where Π1 is the class of graphs with maximum degree ∆, for a
fixed ∆. We also develop a faster FPT algorithm when restricted
to ∆ = 1.

2. Preliminaries
In this paper, we assume that graphs are simple, finite, undi-

rected, and unweighted. Let G = (V, E) be a graph. We some-

times denote by V(G) and E(G) the vertex set and edge set of
G, respectively. For a vertex subset V ′ of G, let G[V ′] be the
subgraph of G induced by V ′. We denote simply by G − V ′ the
induced subgraph G[V \ V ′]. We say that an induced subgraph H
of G is proper if V(G)\V(H) , ∅. For a vertex v in G and a vertex
subset V ′ ⊆ V , we denote by N(v,V ′) the set of all neighbors of v
in G[V ′∪{v}], that is, N(v,V ′) = {w ∈ V ′ : vw ∈ E}. We denote by
d(v,V ′) the degree of v in G[V ′∪{v}], that is, d(v,V ′) = |N(v,V ′)|.

We have already defined the terms graph property, hereditary,
additive, and nontrivial in Introduction. Recall that we some-
times regard a graph property as a class of graphs (i.e., a set of
all graphs) satisfying the property. For a property Π, a graph is
said to be a forbidden induced subgraph for Π if it does not sat-
isfy Π. A forbidden induced subgraph H is said to be minimal
if any proper induced subgraph of H satisfies Π. A minimal for-
bidden set F (Π) of Π is a set of all minimal forbidden induced
subgraphs for Π. Any additive hereditary property can be charac-
terized by a (possibly infinite) minimal forbidden set F (Π) such
that every graph in F (Π) is connected. Moreover, if the prop-
erty is nontrivial, every graph in F (Π) has at least two vertices.
For example, F (Π) = {K2} if Π is the class of edgeless graphs,
and F (Π′) = {C3,C4,C5, . . .} if Π′ is the class of acyclic graphs,
where Kn is a complete graph of n vertices and Cn is a cycle of n
vertices.

In the remainder of this paper, we regard a partition of the
vertex set of a graph G as a (vertex) coloring of G. Let C =

{1, 2, . . . , c} be a color set, where c is a positive integer. Then, a
coloring of G is simply a mapping f : V(G)→ C. For properties
Π1,Π2, . . . ,Πc, a coloring f of G is called a (Π1,Π2, . . . ,Πc)-
coloring of G if G[ f −1(i)] satisfies Πi for every i ∈ C. We say
that a (Π1,Π2, . . . ,Πc)-coloring f of G is optimal if | f −1(1)| is
minimum among all (Π1,Π2, . . . ,Πc)-colorings of G. We define
OPT(G) as follows:

OPT(G) = min{| f −1(1)| : f is a (Π1,Π2, . . . ,Πc)-coloring of G}

if G has a (Π1,Π2, . . . ,Πc)-coloring; otherwise we let OPT(G) =

+∞. For fixed properties Π1,Π2, . . . ,Πc, we define Min
(Π1,Π2, . . . ,Πc)-Partition as the problem of computing OPT(G)
for a given graph G. We also study the problem parameterized by
the solution size k: Parameterized (Π1,Π2, . . . ,Πc)-Partition is
the problem of determining whether OPT(G) ≤ k or not.

3. Inapproximability
In this section, we study the inapproximability of Min

(Π1,Π2, . . . ,Πc)-Partition. We say that an algorithm for Min
(Π1,Π2, . . . ,Πc)-Partition is ρ(n)-approximation if it returns a
value z for a given graph G with n vertices such that z ≤
ρ(n) · OPT(G) and G has a (Π1,Π2, . . . ,Πc)-coloring f satisfy-
ing | f −1(1)| = z. Then, OPT(G) ≤ z ≤ ρ(n) · OPT(G) always
holds, and hence the algorithm must compute OPT(G) if either
OPT(G) = 0 or OPT(G) = +∞ holds. In this section, we
give inapproximability results that hold even if we know that a
given graph G satisfies both OPT(G) , 0 and OPT(G) , +∞.
We say that a graph G is promised if both OPT(G) , 0 and
OPT(G) , +∞ hold.

The main result of this subsection is the following theorem.
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Theorem 1. Let Π1 and Π2 be any two fixed nontrivial additive
hereditary graph properties. Let G be a promised graph of n ver-
tices, and let ε be any fixed constant such that 0 < ε ≤ 1. Under
the assumption that P , NP, Min (Π1,Π2)-Partition admits no
polynomial-time approximation algorithm for G within a factor
n1−ε unless both Π1 and Π2 are classes of edgeless graphs.

Note that if both Π1 and Π2 are classes of edgeless graphs,
Min (Π1,Π2)-Partition is solvable in polynomial time, because
the problem is equivalent to 2-Coloring.

We can construct an approximation-preserving reduction from
Min (Π1,Π2)-Partition to Min (Π1,Π2, . . . ,Πc)-Partition for any
fixed c ≥ 3, and obtain the following corollary.

Corollary 1. Let c ≥ 3 be a fixed constant, and let Π1,Π2, . . . ,Πc

be any fixed nontrivial additive hereditary graph properties. Let
G be a promised graph of n vertices, and let ε be any fixed con-
stant such that 0 < ε ≤ 1. Under the assumption that P , NP,
Min (Π1,Π2, . . . ,Πc)-Partition admits no polynomial-time ap-
proximation algorithm for G within a factor n1−ε.

We also study Min (Π1,Π2)-Partition for planar bipartite
graphs. Notice that any bipartite graph G has a (Π1,Π2)-coloring
(i.e., OPT(G) , +∞) if both properties Π1 and Π2 are nontrivial,
additive and hereditary.

Theorem 2. Let Π1 and Π2 be any two fixed nontrivial additive
hereditary graph properties, each of which contains a minimal
forbidden induced subgraph that is planar and bipartite. Let G be
a planar bipartite graph of n vertices which is promised, and let ε
be any fixed constant such that 0 < ε ≤ 1. Under the assumption
that P , NP, Min (Π1,Π2)-Partition admits no polynomial-time
approximation algorithm for G within a factor n1−ε unless both
Π1 and Π2 are classes of edgeless graphs.

In contrast to Theorem 1, Theorem 2 cannot be generalized for
c ≥ 3. In fact, it always holds that OPT(G) = 0 for any c ≥ 3
and any bipartite graph G if Π1,Π2, . . . ,Πc are nontrivial additive
hereditary properties, because G has a (Π2,Π3, . . . ,Πc)-coloring.

Theorem 2 immediately yields the following corollary.

Corollary 2. Let Π1 and Π2 be any two classes of graphs listed
below:

• edgeless graphs,
• cluster graphs

(P3-free graphs),
• cographs

(P4-free graphs),
• star graphs,
• path graphs,

• acyclic graphs,
• outerplanar graphs,
• series-parallel graphs,
• interval graphs,
• chordal graphs, or
• graphs of bounded max-

imum degree.

Let G be a planar bipartite graph of n vertices which is promised,
and let ε be any fixed constant such that 0 < ε ≤ 1. Then, under
the assumption that P , NP, Min (Π1,Π2)-Partition admits no
polynomial-time approximation algorithm for G within a factor
n1−ε unless both Π1 and Π2 are classes of edgeless graphs.

We prove Theorems 1 and 2 by giving a gap-producing reduc-
tion from Positive 1-in-3-SAT. In this paper, however, we omit
the details due to the page limitation.

4. FPT Algorithm
In this section, we focus on the fixed-parameter tractability of

Parameterized (Π1,Π2)-Partition when the graph property Π2 is
the class of acyclic graphs.

4.1 Hereditary Properties
We first consider the case where the graph property Π1 is

hereditary.

Theorem 3. Let Π1 be any hereditary graph property, and let
Π2 be the class of acyclic graphs. Given a graph G and a
nonnegative integer k, suppose that one can decide in t(k) time
whether a subgraph H with at most k vertices of G satisfies Π1.
Then, Parameterized (Π1,Π2)-Partition for G can be solved in
2O(k2)(t(k) + n + m) time, where n and m are the numbers of ver-
tices and edges in G, respectively.

In this subsection, we also prove that the running time above
can be improved for bounded degeneracy graphs. A graph G is
d-degenerate if any subgraph of G has a vertex of degree at most
d. It is known that many graph classes have bounded degeneracy:
for example, planar graphs, graphs of bounded maximum degree,
and bounded treewidth graphs.

Theorem 4. Let Π1 be any hereditary graph property, and let
Π2 be the class of acyclic graphs. Given a d-degenerate graph
G and a nonnegative integer k, suppose that one can decide
in t(k) time whether a subgraph H with at most k vertices of
G satisfies Π1. Then, Parameterized (Π1,Π2)-Partition for G
can be solved in 2O(h(k,d))(t(k) + n + m) time, where h(k, d) =

max{d3 + 3d2 + 3d, (d + 1) log k + log(d + 1)} · k, and n and m
are the numbers of vertices and edges in G, respectively.

For many natural properties, one can decide in kO(1) or 2O(k)

time whether a subgraph H with at most k vertices satisfies Π1:
for example, the classes of edgeless graphs, planar graphs, and
proper c-colorable graphs for a fixed integer c. Thus, Parame-
terized (Π1,Π2)-Partition is solvable in 2O(k2)(n + m) time for
general graphs and in 2O(k log k)(n + m) time for bounded degener-
acy graphs, when Π1 is such a natural hereditary property and Π2

is the class of acyclic graphs.
To prove Theorems 3 and 4, we use the idea of a compact repre-

sentation of minimal feedback vertex sets [4], [13]. Recall that a
feedback vertex set S of a graph G is a vertex subset of G such that
G − S is acyclic. A compact representation for a set of minimal
feedback vertex sets of a graph G is a set C of pairwise disjoint
subsets of V(G) such that choosing exactly one vertex from every
set in C results in a minimal feedback vertex set of G. We say that
a minimal feedback vertex set S of G is contained in a compact
representation C if S can be obtained from C by this operation. A
compact representation C is called a k-compact representation if
the number of sets in C is at most k. We can efficiently enumerate
k-compact representations of minimal feedback vertex sets in G,
as follows:

Theorem 5 ([13]). Given a graph G with m edges and an integer
k, there exists an algorithm which enumerates k-compact repre-
sentations of G in O(23.1km) time such that any minimal feedback
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vertex set of size at most k is contained in some k-compact rep-
resentation. Moreover, the number of k-compact representations
output by the algorithm is at most O(23.1k).

An instance (G, k) of Parameterized (Π1,Π2)-Partition is a
yes-instance if and only if there is a (Π1,Π2)-coloring f of G
such that f −1(1) forms a minimal feedback vertex set of size at
most k of G, because Π1 is hereditary. Therefore, Parameter-
ized (Π1,Π2)-Partition can be rephrased as the problem of ask-
ing whether there exists a minimal feedback vertex set S of G
such that |S | ≤ k and G[S ] satisfies Π1. A compact representation
C is called good if C contains such a minimal feedback vertex
set S . Given a graph and a k-compact representation C, one can
determine whether C is good or not, by the following lemma.

Lemma 1. Let G be a graph with m edges. Given a k-compact
representation C of minimal feedback vertex sets in G, assume
that each set in C has at most α vertices. Then, one can determine
whether C is good in O(αk(t(k) + m)) time under the assumption
that one can decide in t(k) time whether a subgraph H with at
most k vertices of G satisfies Π1.

Proof. We enumerate all minimal feedback vertex sets of G con-
tained in C. Since C has at most k sets and each set in C has at
most α vertices, C contains at most αk minimal feedback vertex
sets. For each minimal feedback vertex set S contained in C, we
construct G[S ] in O(m) time and confirm that G[S ] satisfies Π1

in t(k) time. Therefore, we can determine whether C is good in
O(αk(t(k) + m)) time. ut

Therefore, our strategy is to enumerate k-compact representa-
tions of minimal feedback vertex sets in G by Theorem 5, and
then check whether each enumerated k-compact representation C
is good. Note that, however, the number α of vertices of each
set in C is not always bounded by a function of k. Therefore, we
kernelize each enumerated k-compact representation C to prove
Theorems 3 and 4.

We now explain how to kernelize a k-compact representation
C of minimal feedback vertex sets in G. A set in C is said to
be singleton if the set consists of exactly one vertex, otherwise
multiple. Then, the following proposition holds.

Proposition 1 ([4]). Let C1 and C2 be any two distinct multiple
sets in a compact representation C of minimal feedback vertex
sets in a graph G. Then, any two vertices v1 ∈ C1 and v2 ∈ C2 are
not adjacent in G.

Let X be the set of the vertices of all singleton sets in C. For a
multiple set C in C and a subset X′ ⊆ X, let CX′ be the subset of
C such that N(u, X) = X′ holds (on G) for every vertex u in CX′ .
We iterate the following reduction rule for C until the rule is not
applicable.

Reduction Rule. If there is a multiple set C in C such that
|CX′ | ≥ 2 for some X′ ⊆ X, then choose an arbitrary vertex u
from CX′ and remove all vertices of CX′ \ {u} from C.

Lemma 2. Let C be a k-compact representation of minimal feed-
back vertex sets in a graph G. By applying Reduction Rule to C,

one can obtain a k-compact representation C∗ of minimal feed-
back vertex sets in G such that

(a) each set in C∗ has at most 2k vertices of G; and
(b) C is good if and only if C∗ is good.

Proof. We first prove the claim (a). Suppose that C has a multi-
ple set C with at least 2k + 1 vertices. Since |X| ≤ k, two vertices
u, u′ ∈ C exist such that N(u, X) = N(u′, X) on G. Then, we apply
Reduction Rule to C and obtain another k-compact representa-
tion. Thus, we can obtain a k-compact representation C∗ such
that each set in C∗ has at most 2k vertices by iterating Reduction
Rule.

We next prove the claim (b). Let C′ be a k-compact represen-
tation of G obtained by applying Reduction Rule to C once. It
suffices to show that C is good if and only if C′ is good. The
if direction is straightforward, namely, if C′ is good, then C is
also good. We thus prove the only-if direction. Suppose that C
is good, and let S be a minimal feedback vertex set of G such
that S is contained in C and G[S ] satisfies Π1. If u ∈ S , then C′

also contains S and hence C′ is good. Therefore, we suppose that
u < S and S has a vertex u′ in CX′ \ {u}. Let S ′ = (S ∪ {u}) \ {u′}.
Then, S ′ is contained in C, because u and u′ are in the same set C
in C. Thus, S ′ is also contained in C′. Moreover, from Proposi-
tion 1 and the assumption that N(u, X) = N(u′, X) holds, G[S ′] is
isomorphic to G[S ]. Therefore, G[S ′] satisfies Π1, and hence C′

is good. ut

Proof of Theorem 3. Let (G, k) be an instance of Parameterized
(Π1,Π2)-Partition, and let n = |V(G)| and m = |E(G)|. Using
Theorem 5, we first enumerate k-compact representations of all
minimal feedback vertex sets in G in O(23.1km) time. We then ap-
ply Reduction Rule to all enumerated k-compact representations.
For each k-compact representation C, by Lemma 2 we obtain a
kernelized k-compact representation C∗ such that each set in C∗

has at most 2k vertices of G; this can be done in O(2kkn+m) time.
For each kernelized k-compact representationC∗, by Lemma 1 we
decide whether C∗ is good in O(2k2

· (t(k) + m)) time. Theorem 5
says that there are at most O(23.1k) k-compact representations of
G, and hence we produce kernelized k-compact representations in
O(23.1k · (2kkn + m)) time in total and determine whether there is
a good k-compact representation of G in O(23.1k · 2k2

· (t(k) + m))
time in total. Therefore, the total running time of the algorithm is
2O(k2)(t(k) + n + m). This completes the proof of Theorem 3. ut

We then prove Theorem 4. Suppose that a given graph G is
d-degenerate for some integer d ≥ 1. We apply the same algo-
rithm (and hence the same Reduction Rule) to G. Using the fact
that G is d-degenerate, we can estimate the size of each set in a
kernelized compact representation more sharply, as follows.

Lemma 3. Suppose that a graph G is d-degenerate for some in-
teger d ≥ 1. Let C be a k-compact representation of minimal
feedback vertex sets in G. By applying Reduction Rule to C, one
can obtain a k-compact representation C∗ of minimal feedback
vertex sets in G such that

(a) each set in C∗ has at most 2d3+3d2+3d vertices of G if
k ≤ d3 + 3d2 + 3d, otherwise it has less than

∑d+1
i=0

(
k
i

)
vertices of G; and
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(b) C is good if and only if C∗ is good.

Proof. We apply Reduction Rule to C until Reduction Rule is
not applicable, and let C∗ be the resulting compact representa-
tion. We here prove only the statement (a) because the statement
(b) has been proved in the proof of Lemma 2.

We first consider the case that k ≤ d3 + 3d2 + 3d. In this case,
for each set C in C∗, it holds that |C| ≤ 2k ≤ 2d3+3d2+3d by the
same proof as that of Lemma 2.

Next, we consider the case that k > d3 + 3d2 + 3d. As-
sume for a contradiction that C∗ has a multiple set C with at
least

∑d+1
i=0

(
k
i

)
vertices. Let w1, w2, . . . be the vertices of C in

the non-increasing order of degree d(wi, X) on G. We pick the
first

∑d+1
i=0

(
k
i

)
vertices on the order, and we denote by W a set of

the vertices. Consider a bipartite graph G′ = (W ∪ X, E), where
E = {wx ∈ E(G) : w ∈ W ∧ x ∈ X}.

We calculate the value |E|−d|W∪X| to lead a contradiction. For
every d-degenerate graph H, it holds that |E(H)| ≤ d|V(H)|. This
can be shown inductively as follows. If |V(H)| = 1, it is trivial.
If |V(H)| > 1, we pick a vertex v with at most degree d. Then, it
holds that |E(H)| ≤ |E(H−{v})|+ d ≤ d|V(H−{v})|+ d = d|V(H)|.
Therefore, since G′ is a subgraph of G and hence G′ is a d-
degenerate graph, we have |E| − d|W ∪ X| ≤ 0.

On the other hand, we also show that we have |E|−d|W∪X| > 0.
Obviously, we have |W∪X| ≤

∑d+1
i=0

(
k
i

)
+k. Moreover, it holds that

|E| ≥
∑d+1

i=0 i ·
(

k
i

)
, because there is at most

(
k
i

)
vertices of degree i

in W by Reduction Rule. Thus, we have

|E| − d|W ∪ X| ≥
d+1∑
i=0

i ·
(
k
i

)
− d

(d+1∑
i=0

(
k
i

)
+ k

)

=

d+1∑
i=0

(i − d) ·
(
k
i

)
− dk

=

d∑
i=0

(i − d) ·
(
k
i

)
+

(
k

d + 1

)
− dk

≥ −

d∑
i=0

d ·
(
k
d

)
+

(
k

d + 1

)
− dk

= −d(d + 1) ·
(
k
d

)
+

k − d
d + 1

(
k
d

)
− dk

=

(
−d(d + 1) +

k − d
d + 1

)(k
d

)
− dk.

From the assumption that k > d3 + 3d2 + 3d, we have

|E| − d|W ∪ X| > d
(
k
d

)
− dk ≥ d

(
k
1

)
− dk ≥ 0.

This completes the proof of Lemma 3. ut

Proof of Theorem 4. By Lemma 3, we can obtain a k-compact
representation C∗ of a d-degenerate graph G such that each set
in C∗ has at most max{2d3+3d2+3d, 2(d+1) log k+log(d+1)} vertices in
O(2kkn + m) time from a given k-compact representation of G.
Combined with Lemma 1, we decide whether a k-compact rep-
resentation of G is good in O(2h(k,d) · (t(k) + m)) time, where
h(k, d) = max{d3+3d2+3d, (d+1) log k+log(d+1)}·k. Theorem 5
says that there are at most O(23.1k) k-compact representations of
G, and hence we produce kernelized k-compact representations in

O(23.1k ·(2kkn+m)) time in total and determine whether there is a
good k-compact representation of G in O(23.1k ·2h(k,d) · (t(k)+m))
time in total. Therefore, the total running time of the algorithm is
2O(h(k,d))(t(k)+n+m). This completes the proof of Theorem 4. ut

4.2 Graph Properties with Bounded Maximum Degree
The parameterized variant of Independent Feedback Vertex

Set is equivalent to Parameterized (Π1,Π2)-Partitionwhen Π1 is
the class of edgeless graphs and Π2 is the class of acyclic graphs.
Since the class of edgeless graphs is the class of graphs with max-
imum degree zero, it is natural to consider the case where Π1 is
the class of graphs with bounded maximum degree. In this sub-
section, we give the following theorem for such a case.

Theorem 6. Let Π1 be the class of graphs with maximum degree
∆ for a fixed integer ∆, and let Π2 be the class of acyclic graphs.
Given a graph G with n vertices and m edges, Parameterized
(Π1,Π2)-Partition can be solved in O(23.1km) + 2O(∆k log k)(n + m)
time.

Our algorithm for Theorem 6 takes a similar strategy as in Sec-
tion 4.1, but employs the following modified reduction rule to
kernelize a k-compact representation C of minimal feedback ver-
tex sets in a graph G. We iterate each reduction rule for C until the
rule is not applicable. Recall that X denotes the set of the vertices
of all singleton sets in C.

Modified Reduction Rule.
Rule A: if there is a multiple set C in C containing a vertex

u such that |N(u, X)| ≥ ∆ + 1, then remove u from
C; and

Rule B: if there is a multiple set C in C such that |CX′ | ≥ 2
for some X′ ⊆ X, then choose an arbitrary vertex u
from CX′ and remove all vertices of CX′ \ {u} from
C.

The correctness of Rule A is clear because G[X ∪ {u}] does not
satisfy Π1, and the correctness of Rule B has been proved in the
proof of Lemma 2.

Proof of Theorem 6. We first enumerate k-compact representa-
tions of all minimal feedback vertex sets in G in O(23.1km) time
by Theorem 5. For each k-compact representation C, we obtain
a kernelized k-compact representation C∗ such that each set in C∗

has at most ∆k∆ vertices of G because there are at most
(

k
i

)
ver-

tices of degree i, where 0 ≤ i ≤ ∆, in C after applying Rule A
and Rule B. This can be done in O(2kkn + m) time in total. Since
any graph H with at most k vertices can be checked in O(∆k) time
whether H satisfies Π1, for each kernelized k-compact representa-
tion C∗, we decide whether C∗ is good in O((∆k∆)k ·(∆k+m)) time
by Lemma 1. Therefore, the total running time of the algorithm
is O(23.1km) + 2O(∆k log k)(n + m) time in total. This completes the
proof of Theorem 6. ut

Although one can obtain the faster FPT algorithm from Theo-
rem 6 when ∆ is a constant, its running time does not achieve a
single exponential even if ∆ = 1. For this reason, we give a single
exponential FPT algorithm when ∆ = 1.
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Theorem 7. Let Π1 be a class of graphs with maximum degree
one and let Π2 be a class of acyclic graphs. Then, Parameterized
(Π1,Π2)-Partition can be solved in O(23.1k(k2.5 + n + m)) time.

Given an instance (G, k) of Parameterized (Π1,Π2)-Partition,
our algorithm first enumerates all k-compact representations of
G. For each k-compact representation C, we apply the following
four reduction rules from top to bottom.

Reduction Rule 1. If G[X] does not satisfy Π1, then deter-
mine that a k-compact representation is not good.

Reduction Rule 2. If there is a vertex u of a multiple set C
in a k-compact representation such that N(u, X) = ∅, then
remove all vertices of C \ {u} from C. This reduction rule is
iterated until it is not applicable.

Reduction Rule 3. If there is a vertex u of a multiple set C
in a k-compact representation such that G[X ∪ {u}] does not
satisfies Π1, then remove u from C. This reduction rule is
iterated until it is not applicable.

Reduction Rule 4. Construct a bipartite graph B = (W∪X, E)
from a k-compact representation C, where each vertex w ∈ W
corresponds to a multiple set Cw ∈ C. A vertex x ∈ X and a
vertex w ∈ W are joined by an edge if and only if a multiple set
Cw corresponding w has a vertex u such that N(u, X) = {x} on
G. Then, compute a maximum matching M of B. If |M| = |W |,
determine that C is good, otherwise C is not good.

The correctness of Reduction Rules 1 and 3 are straightfor-
ward. We show that the correctness of Reduction Rules 2 and 4.

Lemma 4. Reduction Rule 2 is correct.

Proof. Let C′ be a k-compact representation of G obtained by
applying Reduction Rule 2 to C once. It suffices to show that
C is good if and only if C′ is good. The if direction is straight-
forward, namely, if C′ is good, then C is also good. We thus
prove the only-if direction. Suppose that C is good, and let S be
a minimal feedback vertex set of G such that S is contained in
C and G[S ] satisfies Π1. If u ∈ S , then C′ also contains S and
hence C′ is good. We suppose that u < S and S has a vertex
u′ ∈ C \ {u}. Let S ′ = (S ∪ {u}) \ {u′}. Then, S ′ is contained
in C, because u and u′ are in the same set C in C. Thus, S ′ is
also contained in C′. Moreover, from Proposition 1 and the as-
sumption that N(u, X) = ∅ holds, u is an isolated vertex on G[S ′].
Therefore, since G[S ] satisfies Π1, G[S ′] satisfies Π1 and hence
C′ is good. ut

Lemma 5. In Reduction Rule 4, there is a matching M of a bi-
partite graph B = (W ∪ X, E) with size exactly |W | if and only if
C is good.

Proof. We first show the if direction. Suppose that S be a min-
imal feedback vertex set of G such that S is contained in C and
G[S ] satisfies Π1. Let S ′ = S \ X. From Reduction Rule 2 and

the assumption that G[S ] satisfies Π1, each vertex in S ′ has de-
gree exactly one on G[S ]. Moreover, edges incident to a vertex
in S ′ do not share an endpoint; otherwise, G[S ] has a vertex with
degree at least two. Therefore, we can construct a matching M′

of G with size exactly |S ′| such that every vertex in S ′ is an end-
point of some edge in M′. Since all vertices in S ′ are contained in
distinct multiple sets of C and each multiple set corresponds to a
vertex of W in a bipartite graph B, we can also obtain a matching
M of B with size exactly |W | from M′.

We next show the only-if direction. For each edge wx ∈ M
such that w ∈ W and x ∈ X, there is a vertex u in a multiple
set Cw corresponding w such that N(u, X) = {x} on G from the
definition. Let S ′ be a set of such a vertex u for each edge in
M, and let S = S ′ ∪ X. Since each vertex in S is chosen from
each set in C, the vertex set S forms a minimal feedback vertex
set of G. To show that C is good, we prove that G[S ] satisfies
Π1. Each vertex u in S ′ has degree exactly one on G[S ] from
the fact that N(u, X) = {x} and Proposition 1. Any vertex in X
that is not an endpoint of an edge in M has degree at most one on
G[S ] because Reduction Rule 1 is not applicable to C. Moreover,
any vertex x ∈ X that is an endpoint of some edge in M has de-
gree exactly one on G[S ] as follows. x has degree at most one on
G[X] from Reduction Rule 1. If x has degree zero on G[X], since
there exists exactly one edge in M that has x as an endpoint, x has
degree exactly one on G[S ]. If x has degree one on G[X], there
exists no vertex in W that is adjacent to x from Reduction Rule 3
and hence x has degree exactly one on G[S ]. As a conclusion, ev-
ery vertex in G[S ] has degree at most one, that is, G[S ] satisfies
Π1. This completes the proof of Lemma 5. ut

Finally, we estimate the running time of our algorithm. All
k-compact representations of G are enumerated in O(23.1km)
time by Theorem 5. For each k-compact representation, Reduc-
tion Rules 1-3 can be executed in O(n + m) time. In Reduction
Rule 4, a bipartite graph B is constructed in O(m) time. Since B
has at most k vertices and at most k2 edges, a maximal match-
ing of B can be computed in O(k2.5) by Hopcroft-Karp algo-
rithm [5]. Theorem 5 says that there are at most O(23.1k) k-
compact representations of G, and hence the total running time
is O(23.1km + 23.1k(k2.5 + n + m)) = O(23.1k(k2.5 + n + m)). This
completes the proof of Theorem 7. ut
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ity View on Collapsing k-Cores, 13th International Symposium on
Parameterized and Exact Computation (IPEC 2018) (Paul, C. and
Pilipczuk, M., eds.), Leibniz International Proceedings in Infor-
matics (LIPIcs), Vol. 115, Dagstuhl, Germany, Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, pp. 7:1–7:14 (online), DOI:
10.4230/LIPIcs.IPEC.2018.7 (2019).

[11] Marx, D., O’sullivan, B. and Razgon, I.: Finding Small Separators
in Linear Time via Treewidth Reduction, ACM Transactions on Algo-
rithms, Vol. 9, No. 4 (online), DOI: 10.1145/2500119 (2013).

[12] Misra, N., Philip, G., Raman, V. and Saurabh, S.: On Pa-
rameterized Independent Feedback Vertex Set, Theoreti-
cal Computer Science, Vol. 461, pp. 65–75 (online), DOI:
https://doi.org/10.1016/j.tcs.2012.02.012 (2012).

[13] Misra, N., Philip, G., Raman, V., Saurabh, S. and Sikdar, S.: FPT
algorithms for Connected Feedback Vertex Set, Journal of Combi-
natorial Optimization, Vol. 24, No. 2, pp. 131–146 (online), DOI:
10.1007/s10878-011-9394-2 (2012).

[14] Tamura, Y., Ito, T. and Zhou, X.: Approximability of the Indepen-
dent Feedback Vertex Set Problem for Bipartite Graphs, WALCOM:
Algorithms and Computation - 14th International Conference (WAL-
COM 2020), pp. 286–295 (online), DOI: 10.1007/978-3-030-39881-
1 24 (2020).

ⓒ 2020 Information Processing Society of Japan 7

Vol.2020-AL-180 No.4
2020/11/25


