
Improve Counterfactual Regret Minimization for
Card Game Cheat

Cheng Yi1,a) Tomoyuki Kaneko2,b)

Abstract: Counterfactual Regret Minimization (CFR) is one of the most popular and effective iterative
algorithms to solve large zero-sum imperfect information games, especially in the area of pokers. Cheat
is one of the large card games due to the possible repetitions in the game histories. When solving such
games, the challenges lie in lowering the cost of the computation time and storage space. In this paper,
we implement the technique of External-Sampling Monte Carlo CFR and Best-Response Pruning on the
game Cheat. Both of them have provably shown improvements in time and space compared to the vanilla
CFR.

Keywords: Counterfactual Regret Minimization (CFR), External-Sampling Monte Carlo CFR, Imperfect
Information games, Best-Response Pruning, Card Game Cheat

1. Introduction
In the Artificial Intelligence research area, games often

act as our challenge problems and research benchmarks.
We are always curious about learning how well players with
different goals can effectively adjust their strategies in the
interaction situations with other players. Games can be
separated into two categories: one is perfect information
games, such as Chess and Go and the other one is imper-
fect information games such as Mahjong and most of the
poker games. The “information” here refers to the public
information in a game that is available to all the players.
In imperfect information games, the players do not know
everything about their opponents.

When dealing with imperfect information games, we
wish to find a Nash Equilibrium. A Nash Equilibrium is a
strategy profile of a game where no one has the incentive
to deviate from, because they cannot benefit from this.
For smaller games with 108 or fewer nodes as mentioned
in study [6], we can find the exact Nash Equilibrium, but
beyond that we can only approach the Nash equilibrium by
iterative algorithms. Counterfactual Regret Minimization
(CFR) is a famous iterative algorithm converging to a Nash
Equilibrium based on the regrets calculation for the play-
ers. Vanilla CFR requires a traversal of the whole game
tree in each iteration and tries to minimize the regret at
each node. But it becomes infeasible for us to store all the
information and the computation is beyond the calcula-
tion power of normal computers when we are dealing with

1 Graduate School of Interdisciplinary Information Studies, The
University of Tokyo

2 Interfaculty Initiative in Information Studies, the University of
Tokyo

a) yi-cheng199@g.ecc.u-tokyo.ac.jp
b) kaneko@acm.org

large games. The study [7] introduces Monte Carlo CFR
(MCCFR), a domain-independent CFR sample-based al-
gorithm. MCCFR restricts the number of terminal nodes
we deal with each iteration and the sampling scheme we
used in this paper is called External-Sampling. It samples
the actions of the opponents and chance player that are
“external” to the player. The researchers prove this ap-
proach helps to avoid traversing the entire game tree but
is still capable of keeping the expectation of counterfactual
regrets unchanged.

In this paper we also use the technique called Best-
Response Pruning (BRP), a pruning for iterative algo-
rithms, to improve our CFR performance. In the study
[3], experiments show that BRP provably speeds up the
convergence and reduces the space requirement by a fac-
tor of 7 and the larger the game is, the bigger the reduction
factor becomes. The main idea of BRP is that, when our
opponent’s strategy does not change sufficiently (that is
no faster than 1

t , where t is the number of iterations so
far), we can temporarily prune the actions in an infoset
which have shown poorly behaviours compared to other
actions against the opponent’s average strategy. We can
also bound the upper bound of improvements of such ac-
tions over specific number of iterations hence it is still safe
to ignore them at the same time. If we focus on the com-
petitive actions in every infoset, we can improve the overall
convergence to the Nash Equilibrium.

2. Background
2.1 Notations and terminology

A finite extensive-form of an imperfect-information
game is composed of the following parts: first, there is
a finite-size group of players, P. There is also a chance
player, representing the outcome which are not controlled

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 105 -

by any player (e.g. the outcome of dealing the cards). A
history h ∈ H is a node on the game tree, made up of all
the information at that exact game state, including public
information to all the players and private knowledge avail-
able to only one specific player. We use A to denote the set
of all the legal actions in the game and A(h) is the action
space for players at the history h. If history h′ is reached
after we choose action a ∈ A(h) at history h, which means
h′ is one of the child node of h and h is a prefix of h′, we
write h · a = h′ or h ⊑ h′ to represent this. A terminal
history z ∈ Z ⊆ H is where there is no more available ac-
tions and each player will get a payoff value for what they
have done following the game tree respectively. For each
player i ∈ P, there is a payoff function ui : Z → R and es-
pecially in two-player zero-sum games, u1 = −u2. Define
∆i = maxz∈Z ui(z) − minz∈Z ui(z) and ∆ = maxi ∆i.

An Information set (infoset) is a set of histories that
for a particular player, they cannot distinguish which his-
tory they are in between one another. Formally, ∀h, h′ ∈
I, A(h) = A(h′) = A(I). The term P (I) refers to the
player who is supposed to take actions in the infoset I.
H(σ) is the set of information sets that can be reached if
players follow the strategy σ. Note that any node/history
h ∈ H which are not terminal must and only belong to
one of the information sets. D(I, a) is the set of infos-
ets which are reachable by the player who takes action a

in the infoset I. Define U(I) and L(I) to be the upper
and lower bounds of the payoff reachable after reaching
the infoset I, i.e. U(I) = maxz∈Z,h∈I:h⊑z uP (I)(z) and
L(I) = minz∈Z,h∈I:h⊑z uP (I)(z) and ∆(I) = U(I) − L(U)

to be the range of the corresponding payoffs. Similarly
U(I, a), L(I, a) and ∆(I, a) are upper, lower and range of
payoffs reachable by taking action a in the infoset I.

A strategy (or policy), σt
i(I, a) for player i maps the in-

formation set I and the action a ∈ A(I) to the probability
that player i will exactly choose action a at the informa-
tion set I on iteration t and σi is a probability vector for
player i over all available strategies in the game. For all
the histories in one information set, we should also have
the identical strategy σ(I). A strategy profile σ is a tu-
ple of all the players’ strategies. A strategy σ∗

i such that
ui(σ

∗
i , σ−i) = maxσ′

i∈Σ ui(σ
′
i, σ−i) is a best response to

σ−i. So Nash equilibrium is formally defined as a strat-
egy profile σ∗, in which every player is playing the best
response. An ϵ-equilibrium is a strategy profile σ∗ such
that ∀i, u(σ∗

i , σ
∗
−i) + ϵ ≥ maxσ′

i∈Σi ui(σ
′
i, σ

∗
−i).

Let πσ(h) denote the reach probability of reaching the
game history h while all the players follow the strategy
profile σ. The contribution of player i to this probability
is πσ

i (h) and πσ
−i denotes the contribution of the chance

player and all the players other than i.

2.2 The game Cheat
Cheat (also known as Doubt or Bullshit) is a card game

of lying and bluffing while also detecting opponents’ de-
ception. There are different versions played all over the

Fig. 1 Game length with two-player, one-deck

Fig. 2 Game length with two-player, half-deck

world. In a common situation, one pack of 52 cards are
well shuffled and dealt to the players as equally as possible.
At the beginning of the game, a randomly chosen player is
set to be the discard player and the “Rank” which all the
players share is set to be Ace.

One turn in the game includes two phases, one is “Dis-
card” and the other one is “Challenge”. In Discard phase,
the discard player discards cards, puts them facing down at
the table and makes a claim. A claim includes the number
of cards he discarded and the current rank, for example,
“two aces”. But the players can tell lies - that means the
player can bluff it out when he is not holding any aces or
discard different cards even if he has the cards. Then we
move to the Challenge phase, all the other players, start-
ing from the player sitting next to the discard player, are
asked if they think the discard player is lying. If so, the
player can challenge the discard player by saying “Cheat!”.
When there is a challenge, the cards last discarded will
be revealed to see whether they are consistent with the
claim. If the accused player did lie then they must take
all the cards on the table back to his hands, otherwise the
challenger takes the pile. The Challenge phase ends either
after someone challenged the discard player or no one chose

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 106 -

to challenge after all the player other than the discard one
has been asked. For the next turn, we increase the rank
index (K is followed by Ace) and the discard player index
by one. The one who first discards all the cards and is not
successfully challenged at the last turn wins the game.

This game is often played among three or more play-
ers using two or more decks. Fig. 1 and Fig. 2 show the
game length of 1,000 games and their averages between two
Naive agents playing with the whole deck and half deck re-
spectively. While the game is not perfect recall, since the
game involves discarding and taking back cards, it is pos-
sible for players to run into similar or even the same states
during the game, especially when the number of players
is small. The repetitions in game histories result in deep
game trees and in such cases, also an exponential increase
in computation time and storage space when traversing
the whole game tree. In this paper, we focus on a sim-
plified but still strategically complex version of Cheat: a
two-player 6-card setups, in order to refrain from violat-
ing the proved convergence of CFR in two-player zero-sum
games.

2.3 Counterfactual Regret Minimization
Counterfactual Regret Minimization (CFR) is an algo-

rithm built on the regrets calculation of each action no
matter whether the player did or did not choose in the real
game history. It was first propounded in 2008 by Zinkevich
et al. in the paper [9] where the idea that claims minimiz-
ing overall regret can be used for approximating a Nash
equilibrium in extensive games with incomplete informa-
tion was demonstrated and proved. CFR is an iterative
algorithm and the basic steps of one iteration of vanilla
CFR are the following: first, it keeps a record of the regret
values for all actions (all zeros at the beginning); second,
the values are used to generate strategies and this step is
called Regret-Matching; third, the regret values are up-
dated based on the new strategies and then again from
the first step. After all iterations, the average strategy
obtained by normalizing overall actions belonging to the
action space of this information set, is proved to converge
to the best strategy and thus we approach Nash equilib-
rium as time tends to infinity. With the help of all the
expert researchers, different variants of CFR have been de-
veloped one by one, such as AI agents called DeepStack[8]
and Libratus[4] who defeated professional human players
in two-player Head-up No-limit (HUNL) Texas Hold’em
poker and Deep CFR[1] which combines the merits of
Deep learning and CFR. And the latest breakthrough also
made by Libratus’ creators [5] - they have solved the mul-
tiplayer version of the same poker game: they have trained
a stronger agent who can beat top human players in both
5-human-vs-1-AI and 5-AI-vs-1-human HUNL poker.

Here is some mathematical details of vanilla CFR. In a
finite extensive form game that is played repeatedly, define
the counterfactual value in the infoset I is:

vσi (I) =
∑
z∈Z

πσ
−i(I)πσ(I, z)ui(z) (1)

The counterfactual value of an action a is:

vσi (I, a) =
∑
z∈Z

πσ
−i(I)πσ(I · a, z)ui(z) (2)

A Counterfactual Best Response (CBR) is a strategy that
maximizes counterfactual value at infosets that it does not
have to actually reach. A Counterfactual Best Response to
σ−i is defined as CBR(σ−i) such that CBR(σ−i)(I, a) > 0

then v⟨CBR(σ−i),σ−i⟩(I, a) = maxa′ v⟨CBR(σ−i),σ−i⟩(I, a′).
The instantaneous regret for player i not choosing action
a when reaching the infoset I on iteration t is:

rti(I, a) = πσt

−i(v
σt

i (I, a) − vσ
t

i (I)), (3)

where v(I, a) is the value of choosing action a in the infoset
I. Then the cumulative regret on iteration T is:

RT
i (I, a) =

T∑
t=1

rti(I, a). (4)

Additionally, RT
i,+(I, a) = max{RT

i (I, a), 0} and RT
i (I) =

maxaR
T
i,+(I, a).

Player i will select action a ∈ A(I) according to a prob-
ability distribution over actions in an infoset with proba-
bility of each action proportional to the positive regret on
it (regret-matching):

σt+1
i (I, a) =

RTi,+(I,a)∑

a′∈A(I) R
T
i,+(I,a′)

, if
∑

a′∈A(I)R
T
i,+(I, a′) > 0

1
|A(I)| , otherwise

(5)
The average overall regret for player i on iteration T is:

RT
i =

1

T
max

σ∗
i ∈

∑
i

T∑
t=1

(ui(σ
∗
i , σ

t
−i) − ui(σ

t)) (6)

And the average strategy for player i on iteration T in the
information set I is:

σ̄T
i (I) =

∑T
t=1 π

σt

i (I)σt
i(I)∑T

t=1 π
σt
i (I)

(7)

Marc Lanctot et al.(2009)[7] presented Outcome-
Sampling and External-Sampling as two refined sampling
schemes of Monte Carlo Counterfactual Regret Minimiza-
tion (MCCFR). They first prove that in spite of different
regret updating algorithms, MCCFR remains unchanged
as CFR in the view of expectation of regret value then show
the overall regret of both sampling schemes are bounded.
Hence, the improved algorithm can bring a faster conver-
gence in various games.

MCCFR restricts the number of terminal histories we
need to consider on every iteration. Generally, there is a
set of subsets of terminal histories, Q = {Q1, . . . , Qr} that
spans Z. On each iteration, the algorithm will sample one
of the subsets (also referred as blocks), and focus on the
terminal histories in that subset.

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 107 -

The difference between the two sampling schemes is the
number of terminal histories in one such block, which we
have to update the regret and strategy of. For Outcome-
Sampling, this number is one (∀Q ∈ Q, |Q| = 1) so we only
choose a single terminal history and only update informa-
tion along that history. For each visited information set,
the sampled counterfactual regret is:

r̃(I, a) =

{
ωI · (1 − σ(a | z[I])), if (z[I] · a) ⊑ z

−ωI · σ(a | z[I]), otherwise
(8)

where
ωI =

ui(z)πσ
−i(z) · πσ

i (z[I] · a, z)

πσ′(z)
.

While the External one only samples the chance nodes
and nodes where the opponents choose actions yet consid-
ers all the possible actions of the player himself. In this
case, the counterfactual regret of each of the information
sets which have been visited is:∑

z∈Q
∩

ZI

ui(z)(πσ
i (z[I] · a, z) − πσ

i (z[I], z)) (9)

2.4 Best-Response Pruning
Pruning allows us to skip some parts of the game tree

in the CFR conduction. A basic pruning technique called
Partial Pruning allows the history h with πσ

−i(I) = 0 to be
ignored. From equation (1) and (2) the strategy at such
history contributes nothing to the corresponding regret of
I and the infosets beyond I. Hence there is no need to tra-
verse the paths that our opponent reaches with zero prob-
ability. An improved pruning called Regret-Based Pruning
allow the paths where the traverser reaches with zero prob-
ability to be temporarily pruned. Formally, Regret-Based
Pruning allows one to skip D(I, a) as long as σt(I, a) = 0.

Best-Response Pruning (BRP) will prune an action
when even we follow the Counterfactual Best Response
strategy (CBR), we still do worse than what has been
achieved at the current stage. The pruning will continue
until our opponent’s average strategy change so sufficiently
that the condition we just claimed no longer holds. When
the pruning ends, a CBR is computed against the average
strategy of our opponent so far and the regrets of pruned
poorly-performing actions are set to be exactly same as
if we played the CBR every iteration from the beginning,
even some of them are before the pruning begins.

Following the definitions in study [3], define a strategy
β(σ−i, T) as a T-near counterfactual best response (T-near
CBR) to σ−i if for all I belonging to player i:

∑
a∈A(I)

(v⟨β(σ−i),T),σ−i⟩(I, a) − v⟨β(σ−i),T),σ−i⟩(I))2+ ≤ xTI
T 2

(10)
where xTI lies in the range [0, (∆(I))2∥A(I)∥T]. If
xTI = 0, then a T-near CBR is always a CBR.
We also define T-near counterfactual best response
value as ψσ−i,T (I) = minσ′

i∈Σβ(σ−i,T) v
⟨σ′
i,σ−i⟩(I) and

ψσ−i,T (I, a) = minσ′
i
v⟨σ

′
i,σ−i⟩(I, a), where Σβ(σ−i, T) is

the set of strategies that are T-near CBRs to σ−i.
Specifically, on iteration T of CFR, if:

T (ψσ̄−i,T (I, a)) ≤
T∑

t=1

vσ
t

(I) (11)

then D(I, a) can be pruned for

T ′ =

∑T
t=1 v

σt(I) − ψσ̄−i,T (I, a)

U(I, a) − L(I)
(12)

iterations. After those T ′ iterations, a T +T ′-near CBR is
calculated in D(I, a) to the opponent’s average strategy.
We then suppose that T + T ′-near CBR had been played
on every iteration so far and then set the regret.

If πσT

−i (I) is very low, the (11) would continue to hold
for even more iterations. Specifically, we can prune D(I, a)

from iteration t0 to tn as long as

t0(ψσ̄−i,T (I, a)) +

tn∑
t0+1

πσT

−i (I)U(I, a) ≤
tn∑
t=1

vσ
t

(I) (13)

3. Experiments
3.1 Experimental Details

The game Cheat and CFR training and testing were im-
plemented in Python language. We used a single thread
of AMD Ryzen 5 1400 Quad-Core Processor Unit.

The basic setup of the game environment is two-player,
half deck. By half deck, we mean from rank Ace to Rank
7, four cards of each rank so 28 cards in total. To avoid
perfect-information cases and endless repetitions, we only
randomly deal 6 cards to each player so only 12 cards are
actually used in every game.

Our CFR agent does not need any domain-specific
knowledge. The nodes in the game trees of Cheat in the
view of CFR agent contain the following information: the
number of cards holding by every player, the number of
cards in the pile on the table and the currently holding
cards of the CFR agent. We ignore the histories because
of possible repetitions: for example, CFR agent is sup-
posed to discard at the beginning of the game and it is
then challenged by any other player and loses. The cards
it just discarded went straightly back to its hand and the
game state is the same as the very beginning. Similar
situations can happen every so often and since the Rank
index will be played in a loop we can make an slight ab-
straction by ignoring the past history in these cases. Fig.
3 is a simple representation of repetitions in the game.
On the other hand, the repeated histories will bring expo-
nential increases when storing them. We choose to use the
External-Sampling scheme to run a MCCFR algorithm. In
this case, we sample the chance node and the nodes where
the opponent make decisions. The counterfactual regret
of the visited infoset is calculated using function (9). On
every iteration, we check whether the actions with very
negative regrets meets the pruning starting conditions and

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 108 -

Fig. 3 An example of repetitions in the history

if so, we prune the brunches.
Except for the CFR agent, we also built two bots: Naive

player and Heuristic player, to test and evaluate the perfor-
mance of the algorithms. The Naive player chooses most
of the actions randomly, but it can detect obvious lies for
example when it is holding three fives and its opponent
claims to discard two fives. It will also discard all the cards
when they are all the correct rank of that round so the bot
can win the challenge thus the game by doing so. The
Heuristic player is more intelligent: it will memorize the
cards which were once in its hands and now in the pile on
the table or were revealed during the Challenge phase and
now are holding by other players in the game. It will up-
date its memory during the game play. Notice that even
though the Heuristic player keeps a record of the cards
that are discarded, it is still not completely perfect recall
because there are turns where no one wants to challenge
thus no one except the one who discarded the cards that
turn can be sure about those cards. The Heuristic player
is much stronger than the Naive ones, with a winning rate
about 98% in both 1-vs-1 and 1-vs-multiple games but on
the other hand, takes more time and memory to compute.

We compare the performance of CFR with BRP to no
pruning at all over 1000 iterations of training and after all
the iterations we compare the results of both CFR agents
playing against Naive agent and Heuristic agent, in the
view of computation time and winning rates.

3.2 Results and Conclusion
It is clear that BRP does help us accelerate the traver-

sals of CFR on each iteration. Our External-Sampling
MCCFR agents took over 280,000 seconds to run 100 it-
erations without any pruning, while with BRP we have
shortened the time into 30,000 seconds.

In Fig. 4, two lines represent the average game values of

Fig. 4 Average game values for CFR training with and without
pruning

Fig. 5 Winning rates of two CFR agents playing against Naive
Player

Fig. 6 Winning rates of two CFR agents playing against Heuris-
tic Player

CFR agents with and without BRP. We can see that the
blue line increases fast during the first 200 iterations of the
game and the rate of increasing decreases afterward and
the final average game value is about 0.12. While the red
line performs rather poorly, reaching 0.02 after a steady

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 109 -

growth. BRP helps us speed up the convergence to the
equilibrium.

Fig. 5 and Fig. 6 show the winning rate of CFR agents
after training 1000 iterations by self-playing and we can see
that the one with BRP performs better in both cases. The
performance of agents first experienced an unstable stage
and then reached stable winning rates of 60% and 20%
playing against Naive player and Heuristic player respec-
tively. Although the overall winning rates do not seem
competitive against these two players, it is better than
without any pruning.

4. Further Expectation
Hereby, we have shown the effectiveness of BRP in im-

proving the performance of CFR in our simplified version
of game Cheat and the reduction factor of computation
time. For the next step, we will focus on improving the
winning rates against players built by hands. After reach-
ing a reasonable winning rate, we can then expend the
game environments by using the whole deck and increas-
ing the number of cards actually dealt to each player in
games. We can also partition the information sets based
on the number of cards in one player’s hand, and calculate
the regrets for information sets with n cards by utilizing
the result from information sets with n−1 cards. As men-
tioned in the paper [3] the reduction factor increases with
game size, we hope a larger improvement can be achieved
at that time.

Although the BRP pruning helps us save time and
space, its performance remains unchanged compared to the
vanilla CFR at the early stage. In order to skip the early
iterations we can first solve an abstracted game and then
use the result to warm start the CFR. In the study [2], the
researchers also mentioned that the effectiveness of warm
starting is magnified by pruning. So we also want to see
how large the magnitudes of speed and space reductions
we can reach by combining these two methods.

For the next step, we will try to track the details of the
CFR agent’s behaviour. For example, with different train-
ing opponents (against Heuristic player and Naive player or
self-playing), how differently the CFR agent will perform
by keeping a record of the lying rate in Discard phase, the
challenging rate and the challenge-and-winning rate in the
Challenge phase.

References
[1] Brown, N., Lerer, A., Gross, S. and Sandholm, T.: Deep coun-

terfactual regret minimization, International conference on
machine learning, pp. 793–802 (2019).

[2] Brown, N. and Sandholm, T.: Strategy-based warm starting
for regret minimization in games, Thirtieth AAAI Conference
on Artificial Intelligence (2016).

[3] Brown, N. and Sandholm, T.: Reduced space and faster con-
vergence in imperfect-information games via pruning, Inter-
national conference on machine learning, pp. 596–604 (2017).

[4] Brown, N. and Sandholm, T.: Superhuman AI for heads-
up no-limit poker: Libratus beats top professionals, Science,
Vol. 359, No. 6374, pp. 418–424 (2018).

[5] Brown, N. and Sandholm, T.: Superhuman AI for multiplayer
poker, Science, p. eaay2400 (2019).

[6] Gilpin, A. and Sandholm, T.: Finding equilibria in large se-
quential games of imperfect information, Proceedings of the
7th ACM conference on Electronic commerce, pp. 160–169
(2006).

[7] Lanctot, M., Waugh, K., Zinkevich, M. and Bowling, M.:
Monte Carlo sampling for regret minimization in extensive
games, Advances in neural information processing systems,
pp. 1078–1086 (2009).

[8] Moravčík, M., Schmid, M., Burch, N., Lisỳ, V., Morrill, D.,
Bard, N., Davis, T., Waugh, K., Johanson, M. and Bowling,
M.: Deepstack: Expert-level artificial intelligence in heads-
up no-limit poker, Science, Vol. 356, No. 6337, pp. 508–513
(2017).

[9] Zinkevich, M., Johanson, M., Bowling, M. and Piccione, C.:
Regret minimization in games with incomplete information,
Advances in neural information processing systems, pp. 1729–
1736 (2008).

The 25th Game Programming Workshop 2020

© 2020 Information Processing Society of Japan - 110 -

