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Abstract: With the increasing spread of smartphones and wearable devices equipped with various sensors, human
activities, biometric information, and surrounding situations can be recognized. The process of human activity recog-
nition must construct a model that has learned annotated sensor data, i.e., ground truth, labels, or answer activity, in
advance. Therefore, a large and diverse set of annotated data is required to improve and evaluate model performance.
It is difficult to judge a user’s situation even after observing acceleration data; thus, it is necessary to annotate the
collected acceleration data. In this paper, we propose a method to estimate user and device situations from the user’s
response to a notification generated by a device, e.g., a smartphone. The user and device situations are estimated
from the user’s response time to the notification and the device’s acceleration values. An estimation result with high
confidence is given to the sensor data as an annotation. Increasing the frequency of notifications, response to the
notifications can be used as a sensor. We assume that acceleration values are affected by a user and device situation
when the device notifications are taken instantly after its generation. The system pursues a high precision of estimation
by selecting input acceleration data based on the interaction to the notification so that the estimations can be used as
annotations. Through an evaluation experiment, for seven types of annotation classes, an average precision of 0.769
and 0.963 for user-independent experiments and user-dependent experiments were achieved, respectively. We also
tested the proposed method in a natural environment, where 25 correct annotations were given for 45 responses to
notifications, no annotations were given for 19 responses, and only one incorrect notification was observed.
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1. Introduction

With the increasing spread of smartphones and wearable de-
vices equipped with various sensors, human activities, biomet-
ric information, and surrounding situations can be recognized
anytime and anywhere through sensor data, e.g., such as accel-
eration [11], angular velocity, light, pulse, position, radio wave
status, electromyogram [21], electrocardiogram [7], galvanic skin
reflexes [15], and manually configured devices [17]. The ob-
tained information is applied to many services, e.g., a health man-
agement system [15] that automatically extracts life patterns and
warns of lack of exercise and overwork, support during assembly
and maintenance tasks [31] that presents manuals and required
tools by predicting the next task from the current operation, med-
ical support systems that record time of medication and blood
sugar level measurement outside hospital environments, sports
support systems to acquire the number of times of tackle and
sprint and strength [6], entertainment whose effect changes ac-
cording to audience behavior [25], personal authentication based
on gait, input interfaces, and games.

For human activity recognition (HAR), a model that has
learned annotated sensor data, i.e., ground truth, labels, or an-
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swer activities, must be constructed in advance. Therefore, a large
and diverse annotated dataset is required to improve and evaluate
model performance. Sensor data can be stored on servers and
cloud storage via Wi-Fi and cellular networks at low cost once
the application is released; however, annotations must be applied
manually in a separate process.

In addition, annotation must be accurate. Accurate annotations
can be collected by video recording the test subject; however,
it is difficult to employ cameras when the application is widely
distributed to general users. Annotations by a subject not under
surveillance are not reliable. Images, sounds, and texts can be
annotated after data collection because such data can be under-
stood by humans; however, it is difficult to infer the situation of
acceleration data by seeing it. In short, there is no accurate and
scalable annotation method for human activity recognition.

Recently, due to the diverse and large amounts of high-quality
data handled by smart devices, notifications occur continuously,
e.g., scheduler reminders, messages from friends on social me-
dia, weather forecasts, and news notifications. Some notifications
may be taken by the user instantly; however, most are not taken
because the users cannot be aware of them (e.g., while sleep-
ing, being away from the smartphone, during a presentation, or
in a crowded train). The notification reaction rate generated from
online shopping and news apps affects sales volumes and adver-
tisement expenses, and research into increasing the notification
opening rate has attracted a great deal of attention.

In this paper, we propose a method to estimates user and de-
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vice situations from user responses to notifications generated by
a device, e.g., a smartphone. User and device situations are es-
timated from the user’s response time to a notification and the
device’s acceleration values. Increasing the frequency of notifi-
cations, response to the notifications can be used as a sensor. We
assume that acceleration values are affected by a user and device
situation when the device notifications are taken instantly after
its generation. The system pursues a high precision of estima-
tion by selecting input acceleration data based on the interaction
to the notification so that the estimations can be used as annota-
tions. Some may think that human activity recognition requires
recognition results continuously or at an arbitrary timing of the
application, while the occurrence of notifications is sporadic. It
is not necessary to annotate all the data collected since unlabeled
data can be discarded in the training phase. Only the confidence
samples are annotated in this study. If even a small amount of
the collected data can be annotated automatically, we can achieve
the automatic construction of a large annotated dataset. For these
reasons, we would say that notification is compatible with anno-
tation.

The contributions of the proposed method are as follows.
• It is highly scalable and sustainable because it uses the user’s

interaction in response to a notification as part of normal
smartphone use, rather than annotations based on the user’s
spontaneous recording of images, videos, notes, etc., as is
the case with existing methods.

• Compared to spontaneous annotation, the annotations are
not affected by the user’s error, imprecise response, or non-
response, and the quality of the annotations is stable.

• A high precision is achieved by annotating only when a
user responds immediately to a notification. If even a small
amount of the collected data can be annotated automatically,
we can achieve the automatic construction of a large an-
notated dataset, although the rate at which annotations can
be given to the acquired acceleration data, i.e., recall, is re-
duced.

2. Related Work

2.1 Annotation Method
Annotated data is required for human activity recognition with

an accelerometer as well as computer vision, voice recognition,
and natural language processing. Images, sounds, and texts can
be annotated after the data collection as these data can be under-
stood by a human, however it is difficult to infer the situation of
acceleration data by seeing it.

In many studies into HAR using an accelerometer, annotations
were collected by video-recording subjects or taking a memo of
activities. Annotating sensor data from video is a manual task that
requires more time than the duration of the original sensor data.
With the recent development of deep learning, caption generation
for images [24] and videos [26] has also been actively studied.
Since detailed descriptions can be generated as sentences rather
than words, it is possible to annotate sensor data automatically
if the user’s video is recorded. However, it is difficult to use a
camera and record a user’s image or video when the application
is distributed widely to general users.

For annotation using memo, noise may be included in the data
since memo is taken during activities, i.e., movement of taking
a memo is included in sensor data. Moreover, it is bothersome
to record activities all the time the user’s activity changes. In
contrast to the voluntary recording of the user’s notes, another
method is called experience sampling [18], in which the system
asks the user about the situation and the user responds to it. We
can collect annotations by sending a notification to the user’s ter-
minal and letting the user choose a choice or describe freely. The
authors previously proposed a labeling method for activity recog-
nition using an execution sequence of activities [16]. This method
partitions and classifies unlabeled data into segments, and then
clusters and assigns a cluster to each segment. Then, labels are
assigned according to the best-matching assignment of clusters
with the user-recorded activities. This method obtained a preci-
sion of 0.812 for data about seven types of activities. It was also
confirmed that recognition accuracy with training data labeled by
their method gave a recall of 0.871, which was equivalent to that
of the ground truth.

These memo-based annotations would work well under a labo-
ratory setting where researchers can accompany the users. When
scaling sensor data collection beyond the internet, a variety of
people will be users, some of whom might not be hardworking.
Annotations by the users not under surveillance is unreliable. In
short, annotations recorded by the user are unreliable and unscal-
able.

The task of annotating for human activity recognition still re-
quires a large amount of time and labor, which is a barrier to
construct an activity recognition system with ease. Active learn-
ing [8], [13] has been proposed as a method to reduce annotation
tasks in the field of machine learning. When there is a labeled
dataset and an unlabeled dataset, it effectively selects a sample
from the unlabeled dataset and assigns a label to that sample by
human power or other means, and trains it. In this way, when
there is a small amount of labeled data and a large amount of
unlabeled data, only a portion of the unlabeled data can be la-
beled instead of all the unlabeled data, thus saving time and labor.
However, since labeling is done by human power, it is effective
for image, sound, and text because a human can annotate it, but in
the case of acceleration-based behavioral recognition, a recording
such as a video is required.

2.2 Semi-supervised Learning
One method to learn fully labeled data is called supervised

learning, and learning partially labeled data is referred to as semi-
supervised learning. Both supervised and semi-supervised learn-
ing techniques use a classifier to obtain recognition results. These
classifiers require fully labeled data, and unlabeled data are dis-
carded. Semi-supervised learning spreads the labels of labeled
data to unlabeled data, and then the learning process is performed
as supervised learning. However, the spread labels only represent
inference and may be incorrect.

In a previous study [20], several semi-supervised learning
methods were compared, and a simple self-training algorithm was
introduced [23]. Assume a small amount of labeled data and a
large amount of unlabeled data. The self-training algorithm con-
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structs models from labeled data, and then classifies unlabeled
data using the models. The classification results are then fed back
to the unlabeled data as labels, and all data are labeled. Then, the
recognition models are reconstructed using all available data.

Maja et al. [19] proposed a method to spread the labels of la-
beled data to unlabeled data by focusing on the fact that the la-
bels for similar data in the feature and time domains are likely to
be the same. This method constructs graphs, where the data are
nodes and vertices represent similarity values. Then, this method
calculates the similarity among data from the distance of feature
values and time difference. The labels of the labeled data are
spread to unlabeled data with a high similarity. The amount of la-
bels for each activity is controlled to follow the prior distribution
of activities. In the evaluation, labeling accuracy is measured for
labeling intervals of 10 to 180 minutes, and this method obtained
90% accuracy for the 10-minute interval and 55% accuracy for
the 180-minute interval. Labeling in 10 minutes equals 2.5% of
all data, and the 180-minute interval equals 0.1% of all data.

In addition, a previous study that investigated the eigenspace
has been reported [30]. Here, a single eigenspace is obtained us-
ing principal component analysis, which is primarily used to re-
duce the dimensionality of multidimensional data; however, mul-
tiple eigenspaces can be found using a multiple eigenspace al-
gorithm, and, by applying it to acceleration data, each sample
belongs to one of the eigenspaces. This study focused on the fact
that there is a relationship between the eigenspace and the activ-
ity, and uses the indices of eigenspace as labels to train a support
vector machine. Then, this method consolidates the eigenspaces
on error ratio. By giving a small amount of labeled data to the
eigenspace, the indices of the eigenspace and activities are asso-
ciated. In an evaluation of eight types of activities, 88.3% recog-
nition accuracy with 80% labeled data and 80.3% accuracy with
20% labeled data were obtained, and these results are higher than
the results obtained using only labeled data. However, their evalu-
ations were conducted in an environment where the amount of la-
bels decreased evenly over time, which means that the frequency
of labeling lessens but labeling is still needed. Therefore, this
approach cannot be considered a fundamental solution.

Evaluations in these studies are conducted in the environment
where the amount of label is evenly decreased over the time,
which means that the frequency of labeling lessens but labeling
is still needed. Semi-supervised learning works effectively if a
certain amount of annotated data can be obtained. The proposed
method also provides annotations based on the data collected in
advance, but it also uses some novel information, the notification
response time, which can be collected automatically, to limit the
number of samples that can accurately be annotated.

2.3 Effect, Control, and Management of Notifications
It has been reported that notifications on mobile devices affect

the user’s performance. The notification can be considered an in-
terrupt, and it has been reported that untimely interruptions can
increase stress and reduce productivity [9], [12].

Many studies have investigated detecting notification tim-
ing that does not disturb the user. For example, Okoshi et
al. [27], [28] focused on the physical activity breakpoint, which

is the boundary of the user’s action, as appropriate timing to
open push notifications. When a smartphone receives a notifica-
tion, it is suspended. Then, if a break point is detected based on
the result of activity recognition obtained using the device’s ac-
celerometer, the system shows the notification to the user, which
improves the notification opening rate. In addition, Okoshi et
al. [29] also conducted experiments with real services. They inte-
grated estimation logic using mobile sensing and machine learn-
ing into Yahoo! Japan’s Android application and experimented
with 680,000 users. As a result, the notification response time
of the user was reduced, and it successfully investigated how
many times the user used the app per week and confirmed user
engagement improvement. Ho et al. [4] proposed a method to
optimize notification timing and improved the notifications re-
sponse time using a reinforcement learning-based personalization
method called Nurture. These studies have improved the notifi-
cation response time and opening rate by controlling notification
timing. In addition, studies into content management based on
user preference have been conducted. It has been reported that
uninteresting notices, e.g., promotional emails and invitations to
games on social networking service (SNS), tend to be removed
without opening [3], [14]. In addition, users can become annoyed
by unnecessary notifications from unrelated applications or ap-
plications to be uninstalled [2], [3]. Mehrotra et al. [1] proposed
a method that detects user preference from a combination of no-
tification title and activity, location, place, etc., and only allows
notifications that are meaningful to the user.

3. Proposed Method

We propose a method to annotate sensor data by estimating
user and device situations from the user responses to notifications
generated by a device, e.g., a smartphone. This section describes
the proposed method.

3.1 Assumed Environment
We assume that the users of the proposed method are people

who want to collect annotated data, e.g., researchers evaluating
the performance of a new recognition algorithm and application
engineers developing new general purpose applications using the
HAR technique.

As shown in Fig. 1, a researcher looks for workers using a
crowdsourcing service, e.g., Amazon Mechanical Turk, or looks
for volunteers from among their acquaintances. Then, the work-
ers and volunteers install our application, which logs sensor data
and responses to notifications. While the smartphone is in use,
when an installed application (not our app) generates a notifica-
tion and the notification is removed by the user, our application
logs information about the notification, e.g., application name,
posted time, and removed time. The detailed implementation of
the application is explained in a later section. Our application up-
loads the sensor data and response to notifications to the server
or cloud storage at fixed intervals. On the server, the proposed
method annotates the data using the response to notifications and
acceleration values. Finally, the researcher can obtain annotated
data. In addition, our system can generate dummy notifications
from the researcher to arbitrary users grouped by user attributes,
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Fig. 1 Assumed environment.

Fig. 2 Flow of the proposed method.

e.g., gender and age, which enables us to collect responses to
notifications under equalized conditions. Therefore, once users
have installed our application, annotated data are collected auto-
matically.

3.2 Overview of Proposed Method
The flow of the proposed method is shown in Fig. 2. Before

using the system, as a training phase, the response time from no-
tification generation to notification removal and the smartphone’s
acceleration data from notification generation to notification re-
moval are collected in all situations to be annotated. In this
paper, the following seven situations are assumed classes to be
annotated: (1) standing while holding the smartphone unused
in a hand; (2) using the smartphone and placing it on a table;
(3) leaving the smartphone unused on a table; (4) holding the
smartphone and using it; (5) standing with the smartphone in a
pocket; (6) walking while holding the smartphone unused in a
hand; (7) walking while using the smartphone. Then, we con-
struct models of two classifiers using the acceleration data and
response time. One classifier estimates the seven situations from
the response time and the other estimates the seven situations
from the acceleration data.

After the training phase, as an estimation phase, when a noti-
fication is generated at the user device and the user removes it,
the response time and acceleration data from notification gener-
ation to notification removal are obtained. In order to validate
only the data when the notification has been taken instantly af-
ter its generation, the proposed system discards the obtained data
with a long response time at filter. The validated response time
and acceleration data are fed into the classifiers separately, and
each classifier outputs more likely situation classes. At last, if the
situation classes from the classifiers include common class, the

class is fed back to the input acceleration data as an annotation.
If there is no common class, annotation is not given to the input
data.

3.3 Response Time Filtering
When a notification is generated, i.e., when an application

posts a notification to the operating system, the smartphone in-
forms the user of the notification using the LED, sound, vibra-
tion, and on-screen visual effects, the system records the time-
stamp of notification generation Tgen. Then, when the notifica-
tion is removed from the notification area by swiping or tapping
the notification bar, the system records the timestamp of notifica-
tion removal Trm. The time difference Tdiff between Tgen and Trm

is calculated as follows (referred to as the notification response
time).

Tdiff = Trm − Tgen (1)

When the user was not aware of the notification instantly af-
ter its generation and removed it later, the response time Tdiff

becomes long. In this case, it is difficult to estimate the user
and device situation since the user may have performed several
actions before deleting the smartphone notification. Therefore,
the system discards acceleration data whose Tdiff is longer than
Tfilter. Regarding Tfilter, if Tfilter is too long, precision of annota-
tion would deteriorate. On the other hand, if Tfilter is too short,
annotations can only be given to the motions that can be com-
pleted in a short time, such as when the smartphone is in the hand,
resulting in the limited types of annotations. Therefore, notifica-
tions with a response time longer than Tfilter are discarded. Tfilter

is the longest of the average response times for all annotations
(set to 10 s in this paper).

When the user did not respond to the notification intentionally,
e.g., while in a meeting, response time cannot be calculated as the
removal time Trm is not obtained. In this case, the system is not
executed.

Then, if Tdiff ≤ Tfilter is satisfied, acceleration data [[x(Tgen),
. . . , x(Trm)], [y(Tgen), . . . , y(Trm)], [z(Tgen), . . . , z(Trm)]] between
Tgen and Trm is extracted, where x(t), y(t), and z(t) are the accel-
eration values of three axes x, y, and z at time t, respectively. In
other words, acceleration data is extracted over a window whose
size is Tdiff starting at Tgen. This segmentation is applied to train-
ing data preparation as well.

3.4 Situation Estimation Using Response Time
Histograms of response time of training data collected in ad-

vance ranging from 0 to 10 s are created for each class. Here, the
histogram bin width is 0.5 s, and the number of bins is 20. The
frequency of each bin is denoted h(k) (k = 1, . . . , 20), and the
likelihood of the response time Tdiff is obtained as follows:

L(Tdiff ) =
h(ceil(Tdiff /0.5))
∑20

k=1 h(k)
, (2)

Here, ceil(x) is the ceiling function, which maps x to the smallest
integer greater than or equal to x, i.e., ceil(1.25) = 2. Specif-
ically, given a 100-sample dataset, if the number of samples
whose response times are in the range 1 < t ≤ 1.5 is five,
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L(1.2) = 5/100 = 0.05.
The proposed system calculates the likelihood of Tdiff for all

annotation classes. If the highest likelihood is below the thresh-
old Lth, the situation estimation result obtained using response
time is empty Φ. If, the likelihood of multiple classes exceeds
Lth, a set of these classes becomes the result. We consider that
the distributions of response time in different classes may over-
lap, and the distribution of response time in a class may be wider;
therefore Lth is set to a low value to avoid outputting incorrect re-
sults. Note that we set the Lth to 0.05 to avoid rejective the correct
results.

3.5 Situation Estimation Using Acceleration Data
Calculating the similarity between time-series data is required

to do data mining in these fields. A simple method to measure
similarity is Euclidean distance; however this approach has sev-
eral drawbacks, e.g., it is susceptible to temporal distortion and
the number of samples in two data sequences must be equal. The
dynamic time warping (DTW) [5] algorithm measures the simi-
larity of two time-series data, which mitigates the drawbacks of
the Euclidean distance approach. The DTW algorithm calculates
temporal nonlinear elastic distance, and the similarity between
two sequences that may vary in time or speed can be measured.
In addition, with the DTW algorithm, the number of both sam-
ples does not need to be equal. The proposed method calculates
DTW distance between the input acceleration data and training
acceleration data.

Detailed algorithm is as follows. When two time-series ges-
ture data X = (x1, . . . , xm) and Y = (y1, . . . , yn) are compared,
whose length are m and n, respectively, an m × n matrix d is
defined by d(i, j) = (xi − y j)2. Subsequently, a warping path
W = (w1, . . . , wk) is found, which is a path of pairs of indices of
X and Y . At that time, the pass W is meeting the following three
conditions.
• Boundary condition
w1 = (1, 1), wk = (m, n)

• Seriality
wk = (a, b), wk−1 = (a′, b′)⇒ a − a′ ≤ 1 ∧ b − b′ ≤ 1

• Monotony
wk = (a, b), wk−1 = (a′, b′)⇒ a − a′ ≥ 0 ∧ b − b′ ≥ 0

So as to find the path with the lowest cost with meeting the above
conditions, the following steps are applied.

1. DTW(0, 0) = 0, DTW(i, 0) = DTW(0, j) = ∞
(1 ≤ i ≤ m, 1 ≤ j ≤ n)

2. for i = 1 to m

for j = 1 to n

DTW(i, j) = d(i, j) +min{DTW(i − 1, j − 1),
DTW(i − 1, j), DTW(i, j − 1)}

3. return DTW(m, n)/(m + n)
The obtained cost DTW(m, n) becomes a distance between X and
Y . The returned DTW(m, n) is divided by m + n since DTW dis-
tance increases with the length of the training data and test data.

The proposed method calculates the distance between the in-
put acceleration data and the acceleration data of all annotation
classes collected in advance. If the shortest distance is greater
than the threshold Dth, the situation estimation result obtained

Table 1 Examples of annotation based on situation estimation results (C1,
C2, and C3 are annotation classes; Φ is empty set; – represents no
annotation given).

Cases Response time Acceleration Annotation
#1 C1 C1 C1
#2 C1, C2 C1 C1
#3 C2 C1 –
#4 C1, C2 C3 –
#5 Φ C1 –
#6 C1 Φ –
#7 Φ Φ –

using acceleration data is empty; otherwise, the class whose dis-
tance is the shortest is considered the result.

Actually, notifications are often taken in situations other than
the assumed annotation classes. If the untrained acceleration data
are fed to the system, the DTW distance of all annotation classes
become large, and the result is erroneously output from among
the classes because the system determines that the class with the
shortest DTW distance is the result. Dth is employed to avoid
outputting the result in unexpected situations. Here Dth is set
to μ + 2σ, where μ and σ are the mean and standard deviation.
For example, if there are three types of annotations and five sam-
ples in the training data for each annotation, you can calculate the
DTW distances of one sample and 14 samples excluding yourself.
Among them, if both samples with the minimum DTW distance
are the same annotation, the average and standard deviation are
calculated, and this is performed for all 15 samples.

3.6 Annotation
Using the situation estimation results obtained using the re-

sponse time and acceleration data, the proposed method deter-
mines whether an annotation is given. The judgment cases are
listed in Table 1. If the response time and acceleration data re-
sults have a common class, the class is given to the acceleration
data as an annotation (refer to cases #1 and #2 in Table 1). If
the response time and acceleration results do not have a common
class, no annotation is not given to the acceleration data (refer to
cases #3 to #7 in Table 1).

4. Implementation

The Android OS includes the Notification Listener Service
API [22], which can obtain information about notifications. Our
android application obtains the notification type, content, notifi-
cation generation time, notification removal time, sound volume
at notification generarion, and vibration on/off setting at notifi-
cation generation using the Notification Listener Service API.
When installing our application, the user is required to turn on
the notification access to the application, which differs from gen-
eral permission confirmation, e.g., “Allow [app name] to access
photos, media, and files on your device?”

Note that our application runs in the background. In addi-
tion, the user interface and data logging are separated in our app.
By terminating the app using the task list, only the user inter-
face stops (data logging continues to run in the background). By
launching the app again, the user interface starts and data log-
ging is unaffected. However, by selecting “DISABLE,” “FORCE
STOP,” or “UNINSTALL” on the app info screen, all the applica-
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tion functions will stop (including data logging). The application
collects acceleration and notification data. The application can
receive Firebase Cloud Messaging (FCM) by Google [10]. FCM
is a reliable cross-platform messaging solution that makes it pos-
sible to send and receive messages and notifications on iOS, An-
droid, and the web. Data for the acquired notification information
and acceleration data are stored in Firebase Cloud Storage.

5. Evaluation

We evaluate the accuracy of annotations obtained using the
proposed method to verify its effectiveness. Two kinds of eval-
uation experiments were conducted. The first one was a labo-
ratory environment where data were collected for the situations
of the required annotation classes, and the annotation accuracy
was evaluated. The second experiment was a natural environment
where data were collected for two days (outside of the labora-
tory). In the natural environment, test subjects lived as usual and
received notifications without considering the annotation classes;
therefore, notifications were often received in unexpected situa-
tions. The purpose of this experiment was to observe how accu-
rately annotations were given in expected situations and not given
in unexpected situations.

5.1 Laboratory Experimental Environment
5.1.1 Setup

Five male subjects in their twenties participated in this exper-
iment. The experiment was conducted in the laboratory at noon
in November 2019. The subjects took annotations in seven situa-
tions of annotation classes: (1) standing while holding the smart-
phone unused in a hand; (2) using the smartphone and placing it
on a table; (3) leaving the smartphone unused on a table; (4) hold-
ing the smartphone and using it; (5) standing with the smartphone
in a pocket; (6) walking while holding the smartphone unused in
a hand; (7) walking while using the smartphone. These data were
used for training and testing.

In addition, for unexpected situations, the subjects took anno-
tations for three additional situations: (8) smartphone in chest
pocket; (9) leaving the smartphone unused on a bed; (10) stand-
ing with the smartphone in a bag. These data were only used for
testing to determine whether the proposed method did not anno-
tate sensor data in unexpected situations.

The subjects used a smartphone (ASUS ZenFone3, ZS570KL,
Android 8.0.0, acceleration sampling rate of 400 Hz). One of
the authors intentionally generated dummy notifications approx-
imately 100 times for each situation using FCM from a laptop
(Lenovo ThinkPad X1 Carbon, Windows 10) with 15-second in-
tervals. A total of (10 situations) × (100 times) × (5 subjects) =
5,000 notifications were sent, of which 4,868 notifications were
taken within 10 s and used in the evaluation.

Subjects were asked to swipe out the notifications on the smart-
phone’s screen. Specifically, our instructions were “swipe out the

notification as soon as possible when you are aware of it”. Note
that the notifications were provided using sound and vibration;
therefore, all notifications were basically swiped out. The user
was then asked to return to the initial situation. This procedure
was iterated 100 times with 15-second intervals. Then, we took a

30-minute break between different situations. Data in classes (1)
to (5) were collected on one day, and data in classes (6) to (10)
were collected on another day.

Each subject used the same smartphone. The smartphone was
not locked. The subjects were instructed not to change the smart-
phone settings. The subjects were instructed to browse the in-
ternet while using the smartphone, and not to use any other ap-
plications. Regarding a pocket for class (5), the subjects wore
the trousers they were wearing on that day. The subjects wore
trousers with front side pockets and none of the subjects wore ir-
regular trousers. In addition, regarding a chest pocket for class
(8), the subjects were asked to wear a collared shirt that the au-
thors provided. There was one chest pocket on the left chest.
Regarding a bed for class (9), the users were asked to lie down
on the bed that the authors provided and to place the smartphone
next to the pillow. Then, when the notifications were generated,
the subjects picked up the smartphone and swiped out the noti-
fications with remaining lying down. Regarding a bag for class
(10), the subjects were asked to use the same bag that the authors
provided and put the smartphone in the bag. There was nothing
in the bag, the bag had no zippers, and the bag was open during
the experiment.

The data for situations (1) through (7) were used for training,
and the data for situations (1) through (10) were used for test-
ing. We applied two experimental designs, i.e., cross-validation
across subjects (user-independent), and cross-validation across
the samples per subject (user-dependent). To compare the pro-
posed method, we tested a method that uses response only re-
sponse time and a method that uses only acceleration data. The
former method finds the class of maximum likelihood upon re-
sponse time and outputs the class as an annotation if the likeli-
hood exceeds the Lth (0.05; the same as the proposed method).
The latter method finds the class of the shortest DTW distance
from the acceleration data. Here the output is as an annotation if
the distance is less than the Dth (μ+2σ over the training data; the
same as the proposed method).
5.1.2 Results of User-independent Experiment

The precision, recall, and F-measure of the compared and
proposed methods for the seven annotation classes in the user-
independent design are shown in Table 2. In addition, to facilitate
a thorough investigation, confusion matrices for the three meth-
ods in the user-independent design are shown in Fig. 3, Fig. 4,
and Fig. 5. Here, “Unk.” shows that the number of rejections, i.e.,
the number of inputs for which our system did not output anno-
tations. Note that precision is the most important metric because
the purpose of this work is annotation. Annotations do not have
to be given to all the data; therefore, recall, i.e., coverage, is not
critical. However, annotations given to sensor data must be very
accurate; therefore, high precision, i.e., the accuracy of the out-
put, is required.

The compared method using response time achieved the high-
est precision of 0.309 (average precision: 0.222). The compared
method using acceleration achieved the best precision of 0.936
(average precision: 0.743). The proposed method achieved the
best precision of 0.990 (average precision: 0.769). Among the
three methods, the proposed method demonstrated the best pre-
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Table 2 Annotation accuracy of compared and proposed methods (user-independent design).

Annotation class
Response time Acceleration Proposal (Response+Acc)

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure
(1) Stand, no use, in hand 0.108 0.139 0.121 0.497 0.831 0.622 0.509 0.632 0.564
(2) Use, on table 0.246 0.088 0.130 0.883 1.00 0.938 0.891 0.919 0.905
(3) No use, on table 0.136 0.186 0.157 0.587 0.882 0.705 0.534 0.524 0.529
(4) Use, in hand 0.308 0.272 0.289 0.567 0.909 0.698 0.618 0.780 0.690
(5) Stand, in pocket 0.231 0.524 0.321 0.905 0.916 0.911 0.990 0.628 0.769
(6) Walk, no use, in hand 0.309 0.543 0.394 0.823 0.208 0.332 0.879 0.178 0.295
(7) Walk, use, in hand 0.214 0.285 0.244 0.936 0.451 0.609 0.960 0.398 0.562
Average 0.222 0.291 0.237 0.743 0.742 0.688 0.769 0.580 0.616

Fig. 3 Confusion matrix of annotations for compared method using re-
sponse time in user-independent design.

Fig. 4 Confusion matrix of annotations for compared method using accel-
eration data in user-independent design.

Fig. 5 Confusion matrix of annotations for the proposed method in user-
independent design.

cision; however, 0.769 precision is insufficient for annotation.
These results were due to the fact that the distribution of response
times and the accelerations differed for each person.
5.1.3 Results of User-dependent Experiment

As with the user-independent design, here, the precision, re-
call, and F-measure of the compared and proposed methods for
seven annotation classes in the user-dependent design are shown
in Table 3. In addition, confusion matrices for the three meth-
ods in the user-dependent design are shown in Fig. 6, Fig. 7, and
Fig. 8.

The compared method using response time achieved the best
precision of 0.473 (average precision: 0.400), and the com-
pared method using acceleration data achieved the best preci-
sion of 0.998 (average precision: 0.930). However, the pro-
posed method achieved the best precision of 1.00 (average preci-

Fig. 6 Confusion matrix of annotations for compared method using re-
sponse time in user-dependent design.

Fig. 7 Confusion matrix of annotations for compared method using accel-
eration data in user-dependent design.

Fig. 8 Confusion matrix of annotations for the proposed method in user-
dependent design.

sion: 0.963). Therefore, among the three methods, the proposed
method demonstrated the best performance.
5.1.4 Discussion

From the results obtained by the compared method using re-
sponse time (Fig. 3 and Fig. 6), the output annotations were dis-
tributed on the nondiagonal cells, which indicate that most an-
notations were incorrect. For unexpected situations (8), (9), and
(10), only 50 to 183 (of approximately 500) trials were identi-
fied correctly as unknown. It can be said that the distributions
of response time for several annotation classes overlapped, and
it was difficult to identify the situation by considering only the
likelihood of response time.

From the results for the compared method using acceleration
data in the user-dependent design (Fig. 7), we found that the out-
put annotations for inputs (1) to (7) were almost correct. The in-
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Table 3 Annotation accuracy of compared and proposed methods (user-dependent design).

Annotation class
Response time Acceleration Proposal (Response+Acc)

Precision Recall F-measure Precision Recall F-measure Precision Recall F-measure
(1) Stand, no use, in hand 0.338 0.679 0.451 0.870 0.987 0.925 0.953 0.908 0.930
(2) Use, on table 0.417 0.360 0.387 0.998 1.00 0.999 1.00 0.955 0.977
(3) No use, on table 0.324 0.439 0.373 0.755 1.00 0.860 0.865 0.938 0.900
(4) Use, in hand 0.452 0.438 0.445 0.897 0.998 0.945 0.927 0.952 0.940
(5) Stand, in pocket 0.334 0.712 0.455 0.994 0.971 0.982 0.993 0.881 0.934
(6) Walk, no use, in hand 0.465 0.482 0.473 0.997 0.720 0.836 1.00 0.702 0.825
(7) Walk, use, in hand 0.473 0.424 0.447 0.998 0.924 0.960 1.00 0.879 0.936
Average 0.400 0.505 0.433 0.930 0.943 0.930 0.963 0.888 0.920

puts of an unexpected situation (10) were identified correctly as
unknown (75.4%), which means the annotations were not given to
the data in unexpected situations. With the compared method us-
ing acceleration data in the user-independent design (Fig. 4), the
situations (6) and (7) produced many misclassifications, which
may have been caused by the difference between individuals
while walking.

Finally, the results for the proposed method in user-dependent
design (Fig. 8) demonstrate that annotations incorrectly given by
the compared method were omitted, as indicated by the results
classified as unknown. For example, as shown in Fig. 7, class
(6) was estimated as class (1), and class (10) was estimated as
class (3). There were many incorrect estimation results; however,
the distribution of response time for (1) and (3) is fast-sided be-
cause the user was stationary while holding the smartphone in
their hand. Even if the acceleration values of the input data were
close to the acceleration values of class (1) or (3), the response
time was slower, which resulted in an unknown result by the pro-
posed method (Fig. 8). The state that could not be omitted only by
acceleration can be omitted by using response time together with
acceleration values. Note that the precision increased by 0.033
over that of the comparison method.

5.2 Experiment in Natural Environment
In an actual use of our system, users will receive notifications

in any situations other than our expectations. In order to observe
how accurately the system filters out input data obtained in the
unexpected situations and how correctly the system annotates in-
put data obtained in the expected situations, we conducted an ex-
periment where users receive notifications in daily life out of the
laboratory.
5.2.1 Experimental Setup

Three of the five male subjects from the laboratory experiment
(referred to as subjects A, B, and C) participated in this exper-
iment. The subjects were asked to use the same smartphone as
in the laboratory setting (ASUS Zen-Fone3, ZS570KL, Android
8.0.0, acceleration sampling rate of 400 Hz) for two days in their
daily lives. In order to collect samples efficiently, dummy no-
tifications were generated automatically approximately once ev-
ery 30 minutes using the same laptop as in the laboratory setting
(Lenovo ThinkPad X1 Carbon, OS Windows 10) via FCM using
a Python program. We gave the subjects a smartphone in which
our app was installed and asked them to use it freely. We also
asked them to remove notifications only when they can do. The
subjects recorded the groundtruth on the smarphone. When the
user situation was one of classes (1) to (7), the corresponding

Table 4 Number of notifications generated, removed, and removed within
10 s in natural environment.

User response System output System output
Subject Rm in in user-dependent in user-independent

Gen Rm 10 s TP TN FN FP TP TN FN FP
A 67 24 17 12 2 3 0 1 2 14 0
B 84 32 23 11 4 7 1 14 4 4 1
C 11 8 5 2 2 1 0 2 2 1 0

number was input; otherwise, “other” was input. Here, the data
collected in the laboratory experiment were used for training, and
we performed two experiments, i.e., using the data of the other
subjects for training (user-independent), and mixing all data for
training (user-dependent).
5.2.2 Results

The number of notifications generated, removed, and removed
within 10 s, as well as the outputs of the proposed method in the
user-dependent and user-independent designs for the subjects are
shown in Table 4. For subject C, the number of notifications
generated is small. Data for only five hours were recorded be-
cause network conditions were poor. In the table, TP stands for
true positive and indicates the number of annotations correctly
given for notifications removed within 10 s in classes (1) to (7);
TN stands for true negative and indicates the number of “no an-
notation” correctly given for notifications removed within 10 s in
other situations; FN stands for false negative and indicates the
number of “no annotation” incorrectly given for notifications re-
moved within 10 s in classes (1) to (7); FP stands for false posi-
tive and indicates the number of annotations incorrectly given for
notifications removed within 10 s in any situations. Specifically,
when the user removed a notification within 10 s in class (1) and
our system gave no annotation, it is counted as FN. When the
user removed a notification within 10 s in class (8) which should
not be annotated and our system incorrectly gave annotation class
(5), it is counted as FP.

The following part of this subsection explains the system out-
put in detail. For subject A, 67 notifications were generated dur-
ing the experiment, 24 of which were removed regardless of re-
sponse time, and 17 of which were removed within 10 s. The de-
tailed annotations given for the 17 notifications are shown in Ta-
ble 5. For the table, 2, 12, 1, and 2 notifications were removed in
classes (2), (3), (4), and other class, respectively. Of these, in the
user-dependent design, 2 of 2 (hereafter, denoted as 2/2) for class
(2) were correctly annotated, 9/12 for class (3) were correctly
annotated, 1/1 for class (4) was correctly annotated, and 2/2 for
other class were correctly annotated as no annotation; however,
3/12 for class (3) were incorrectly annotated as no annotation.
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Table 5 Annotations given for notifications removed within 10 s for subject
A in natural environment.

True class Response Annotation
in 10 s user-dependent user-independent

(1) 0
(2) 2 (2):2 (2):1, no annotation:1
(3) 12 (3):9, no annotation:3 no annotation:12
(4) 1 (4):1 no annotation:1
(5) 0
(6) 0
(7) 0

other 2 no annotation:2 no annotation:2
total 17

Table 6 Annotations given for notifications removed within 10 s for subject
B in natural environment.

True class Response Annotation
in 10 s user-dependent user-independent

(1) 0
(2) 0
(3) 15 (3):11, no annotation:4 (3):14, no annotation:1
(4) 3 (1):1, no annotation:2 (1):1, no annotation:2
(5) 1 no annotation:1 no annotation:1
(6) 0
(7) 0

other 4 no annotation:4 no annotation:4
total 23

Therefore, TP is 12, TN is 2, FN is 3, and FP is 0. Here, the an-
notation precision was 1.00 (12/12), and recall was 0.80 (12/15).
In the user-independent design, 1/2 for class (2) and 2/2 for other
class were correctly annotated; however, 1/2 for class (2), 12/12
for class (3), and 1/1 for class (4) were incorrectly annotated as
no annotation. Therefore, TP is 1, TN is 2, FN is 14, and FP is
0. Here, the annotation precision was 1.00 (1/1), and recall was
0.07 (1/15).

For subject B, 84 notifications were generated during the ex-
periment, 32 of which were removed regardless of response time,
and 23 of which were removed within 10 s. The detailed annota-
tions given for the 23 notifications are shown in Table 6. For the
table, 15, 3, 1, and 4 notifications were removed in classes (3),
(4), (5), and the other class, respectively. Of these, in the user-
dependent design, 11/15 for class (3) and 4/4 for other class were
correctly annotated; however, 4/15 for class (3), 2/3 for class (4),
1/1 for class (5) were incorrectly annotated as no annotation, and
1/3 for class (3) was incorrectly annotated as class (1). There-
fore, TP is 11, TN is 4, FN is 7, and FP is 1. Here, the annotation
precision was 0.92 (11/12), and the recall was 0.61 (11/19). In
the user-independent design, 14/15 for class (3) and 4/4 for other
class were correctly annotated. 1/15 for class (3), 2/3 for class (4),
and 1/1 for class (5) were incorrectly annotated as no annotation,
and 1/3 for class (4) was incorrectly annotated as class (1). There-
fore, TP is 14, TN is 4, FN is 3, and FP is 1. Here, the annotation
precision was 0.93 (14/15), and recall was 0.74 (14/19).

For subject C, 11 notifications were generated during the ex-
periment, 8 of which were removed regardless of response time,
and 5 of which were removed within 10 s. The detailed annota-
tions given for the five notifications are shown in Table 7. For
the table, 1, 1, 1, and 2 notifications were removed in classes (1),
(3), (5), and other class, respectively. Of these, in user-dependent
design, 1/1 for class (1), 1/1 for class at (3), and 2/2 for other
class were correctly annotated; however, 1/1 for class (5) was in-

Table 7 Annotations given for notifications removed within 10 s for subject
C in natural environment.

True class Response Annotation
in 10 s user-dependent user-independent

(1) 1 (1):1 (1):1
(2) 0
(3) 1 (3):1 (3):1
(4) 0
(5) 1 no annotation:1 no annotation:1
(6) 0
(7) 0

other 2 no annotation:2 no annotation:2
total 5

correctly annotated as no annotation. Therefore, TP is 2, TN is
2, FN is 1, and FP is 0. Here, the annotation precision was 1.00
(2/2), and recall was 0.67 (2/3). In the user-independent design,
1/1 for class (1), 1/1 for class (3), and 2/2 for other class were
correctly annotated; however, 1/1 for class (5) was incorrectly
annotated as no annotation. Therefore, TP is 2, TN is 2, FN is 1,
and FP is 0. Here, the annotation precision was 1.00 (2/2), and
recall was 0.67 (2/3).
5.2.3 Discussion

From the results, we found that subject A obtained more an-
notations in the user-dependent design than the user-independent
design because the response of subject B was quick in the labo-
ratory environment, which did not fit the distribution of subject
A’s response time in the natural environment. However, further
investigations are required to evaluate the performance of the pro-
posed method using training data from many people in a user-
independent design.

For the three subjects, the annotation precision was 0.92+ but
recall was low, which means accurate annotation can be given to
the limited amount of data; However, since the proposed method
has an automatic annotation collection mechanism, even if the re-
call is small, it can collect a large amount of annotated data for a
large number of people for a long period of time.

6. Limitations

There are innumerable situations in real life. This paper em-
ployed only a few situations. As an example, class (5) smart-
phone in the pocket was assumed standing still, and our method
may incorrectly annotate data as class (5) when the user takes a
smartphone from pocket and removes a notification while sitting,
or may not annotate data.

In addition, test subjects were all male and wore similar
clothes. Clothes for females have more diverse design, and the
position of pockets is different from clothes to clothes. The pro-
posed system has to learn the data with target clothes to annotate
the data. However, even if the proposed system has not learned
the data with several users’ clothes, our system would not give
annotations to the data rather than give incorrect annotation. If
a researcher wants to add a new kind of annotation, its training
data is needed, which may interfere with other annotation classes.
A scaled investigation with many users recruited through crowd-
sourcing for the long term is our future study.

7. Conclusion

In this paper, we have proposed a method to estimate the user
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and device situations from the user responses to the notifications
generated by a smartphone. In an evaluation experiment, an aver-
age precision of 0.769 and 0.963 for user-independent and user-
dependent experiments was obtained by the proposed method,
respectively. We also tested the proposed method in a natural
environment, where 25 correct annotations were given for 45 re-
sponses to notifications with only a single incorrect notification.
In future, we will conduct long-term experiments to determine
whether the proposed method is effective in various unexpected
situations. We will also evaluate the improvement in the perfor-
mance of classifier by using data annotated with the proposed
method. In addition, we will verify the method in other user-
independent situations.
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