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Abstract: With the development of information and communication technology (ICT), smart home technologies are
expecting to be a potential solution for the population aging problem. Smart home simulators and testbeds have been
introduced to provide materials for researchers in the field of ambient assisted living to develop and evaluate their solu-
tions. Since simulators reduce costs in terms of money and time, researchers are utilizing simulators to expand services
to enhance user comfort, save energy, and detect abnormal behaviors in daily living activities, etc. However, available
smart home simulators seem to focus on the operational aspects of simulated devices and environments. The network
communication aspects have not been fulfilled so far. Following the development of the Internet of Things, smart
home networks are more complex, and users in the smart home are ordinary people without knowledge about network
management. Therefore, intelligent operation, administration, and maintenance (OAM) services for smart homes
are desired. This paper proposes a smart home network simulator to generate a network dataset of a home network,
which is essential to develop machine learning technologies for providing intelligent OAM services in smart homes.
The simulator is implemented based on ECHONET Lite, a leading smart home protocol in Japan.
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1. Introduction

As stated in Ref. [1], home network (HN) is
A short-range communications system designed for the
residential environment, in which two or more devices
exchange information under some sort of standard con-
trol.

By utilizing the Internet of Thing (IoT) and ambient assisted liv-
ing (AAL) concepts, the HN will change to a smart home net-
work where enormous numbers of home appliances can connect
and communicate to support the quality of life for people who
live in the smart home. The HN is more and more complicated
because it changes from home appliances that are operated by
humans into being operated by home automation services such
as home energy management services and ambient assisted living
services. Meanwhile, most of the future users in smart homes are
general users without or with insufficient knowledge of network
management. Therefore, there is a need to provide intelligent op-
erations, administration, and maintenance (OAM) services in
order to manage the smart home networks.

The basic network model of smart homes referred from the
ITU-T Y.4113 [2] is visualized in Fig. 1. Essentially, the Ac-

cess Network, Core Network, and IoT Application Server are
managed by service providers with experienced operators. Con-
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trarily, the IoT Area Network is managed by naive smart home
users. Recently, machine learning (ML) evolution has achieved
breakthroughs in several domains such as computer vision,
speech recognition, self-driving cars, and also network manage-
ment [3]. Unlike the policy-based network management approach
(PBNM) [4], where computers can consistently perform repeti-
tive and well-defined policies provided by the network opera-
tors, machine learning-based network management (MLBNM)
can additionally generate policies by learning from network op-
erator perspectives [5]. ML-based management approaches have
achieved promising results in network traffic prediction [6], [7],
[8], network fault prediction and detection [9], [10], [11], net-
work security [12], and so on. The critical success of ML-based
approaches is the availability of dataset [13], and lack of data is
the biggest barrier to build ML-based OAM solutions for smart
homes.

A network dataset such as network traffic, logs from network
devices could be collected by deploying a real network testbed, a
network simulation, or a synthetic environment [14]. Since simu-

Fig. 1 Basic model of IoT network in the smart home contexts.
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lation achieves high flexibility and low cost in terms of time and
money, this research introduces a network simulator to generate
datasets of the IoT Area Network. The main contributions of this
work include the following:

1 Propose and implement a smart home network simulator that
can (i) simulate network traffic from various of smart home
services; (ii) simulate network traffic of normal devices and
faulty devices;

2 Propose a solution for data processing which extracts fea-
tures from raw network traffic data.

3 To verify the proposed solution, ML solutions are investi-
gated with the dataset generated from the proposed solu-
tions.

2. Related Work

2.1 Target Home Network Protocol: ECHONET Lite
ECHONET Lite is an open international communication pro-

tocol that supports layers 5 to 7 of the OSI model and defines
parts of the application and standard command systems for elec-
trical appliances [15]. The ECHONET Lite protocol satisfies all
requirements of a protocol of the IoT Area Network, as stated in
the ITU-T Y.2070 [16] and ITU-T Y.4113 [2]. In the scope of this
paper, the ECHONET Lite is the target protocol.

As shown in Fig. 2 (a), the Communication Middleware [17] is
a part of the specification which defines the frame format for com-
munication and basic sequences of an ECHONET Lite node. Ba-
sic sequences of an ECHONET Lite node that cover operational
aspects of a node, such as a sequence for node start-up, the se-
quence for node control, and the sequence for receiving a request,
are also defined in the specification.

As illustrated in Fig. 2 (b), a network of ECHONET Lite de-
vices is a collection of nodes. A node is a physical device con-
nected to the network. Each node contains the Network Address

and Profile Object which identify a node, and a list of Device

Object. A device object represents a logical device which is clas-
sified into seven groups and 113 classes of devices in the latest
English specification released in 2018 [18]. Device objects offer
a standardized method to represent device resources and services
via a list of Property and constraints for each property.

2.2 Smart Home Simulator
In Refs. [19], [20] and [21], authors presented an interactive

smart home simulator which provides a configurable virtual smart
space for the dataset generation purposes. However, these sim-
ulators focus on providing time-series data of devices in smart
homes, and from these device state transitions, a dataset for user
activity recognition could be generated. It lacks to consider the
network traffic from devices, as well as abnormal behaviors of
devices.

In Ref. [22], a simulated 3D smart home is proposed. It allows
simulating operations and communications of devices in smart
homes. It simulates the device’s communication using the UPnP
protocol and supports a flexible mechanism to add more devices
by connecting commercial devices into the virtual space. How-
ever, abnormal behaviors of devices are not yet considered.

Fig. 2 ECHONET Lite Protocol Stack(a) and Device Object(b).

Table 1 ECHONET Lite SDKs.

Name Description
SSNG

SSNG for iPhone
SSNG for NodeJS

Tools to send and receive ECHONET Lite packet
Support graphic user interface (GUI)

Device Emulator
ECHONET Lite device emulator
Display sent and received ECHONET Lite frames
Support GUI

EL Lighting
EL Blind

Controller for ECHONET Lite devices
Mobile application to control device object via GUI

node-echonet-lite
Middleware supports creating, parssing, sending
and listening for ECHONET Lite packets in Node.js.
It allows creating and managing device objects

OpenECHO
Middleware supports creating, parssing, sending and
listening for ECHONET Lite packets in Java. Also,
It allows creating and managing device objects

2.3 ECHONET Lite Emulator
Since ECHONET Lite is the country’s recommended protocol

for smart homes in Japan, there have been many efforts to pro-
mote the protocol by introducing middleware, tools, and emula-
tors. The summary of ECHONET Lite software development kit
(SDK) referred from the HEMS (ECHONET Lite) Interoperabil-
ity Test Center *1 is shown in Table 1.

Currently, ECHONET Lite is getting more attention, especially
in European countries by a collaboration project [23], these tools
and emulators are helpful to get started since ECHONET Lite
equipment is not accessible in Europe. However, it is challenging
to build a smart home simulator by using these SDKs because it
is not flexible enough to simulate a new device rather than prede-
fined devices.

3. Network Simulator

Essentially, the network simulator involves two main compo-
nents: the home gateway (HGW) and devices connected to the
HGW.

3.1 Home Gateway
In the HN, the HGW is a central point that manages and rep-

*1 http://sh-center.org/
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Fig. 3 Home Gateway Concept & ECHONET Lite HGW.

Table 2 Requirements for device.

Requirements Functions Description

Device
Operation

Device
Object

To support an abstract data model
representing resources and
functionalities of the device

Management
Managed

Agent

To respond to resource information
collection request sent from the home
gateway. Moreover, it is required to
check the status of device and report
in the case of failure

resents devices that are connecting to the HGW. Smart home
services operate devices via the HGW. Therefore, the network
traffic between the HGW and devices reflects these services and
can be utilized to diagnose the health of the network.

As visualized in Fig. 3 (a), the HGW provides the abstraction
between (i) the southbound interface that manages the network
of connected devices and (ii) the northbound interface that allows
service interactions. In Ref. [24], an adaptation layer that pro-
vides the network abstraction for the ECHONET Lite protocol
has been implemented (Fig. 3 (b)).

The HGW of the simulator is implemented by simulating ser-
vice scenarios on the top of this adaptation layer.

3.2 Device Emulator
Requirements of a device in the HN, as stated in the ITU-T

Y.2070 is summarized in Table 2. Thus, the device emulator (DE)
is designed while keeping in mind the following points
• Decoupling the Device Objects and Communication Middle-

ware (in Fig. 2) to improve flexibility when simulating new
devices.

• Supporting a mechanism to simulate faulty devices.
• To reduce memory usage, the GUI is not necessary. How-

ever, an alternative interface for device interaction must be
supported.

• Be able to simulate all classes of devices (113 classes in
Ref. [18]).

• Be able to simulate a network with hundreds of devices.
The overview of the ECHONET Lite DE is illustrated in Fig. 4.

The purpose of this DE is to take a device configuration file
(CF) as input and create an ECHONET Lite node which be-
haves precisely the same to a commercial device. The proposed
DE includes two main components that cover two parts of the
ECHONET Lite specifications (Fig. 2 (a)) (i) device object con-
figuration and (ii) middleware and a mechanism to interact with

Fig. 4 ECHONET lite device emulator overview.

Fig. 5 Device object configuration structure.

the simulated device via a file system (FS).
• Device object configuration (DOC) is a xml [25] document

which provides device identification, device resources and
services. The structure of the DOC is visualized in Fig. 5.
The network address is either an IP address or the MAC ad-
dress of a node and specified by the file name of the DOC.
The DOC reflects concepts of the Device Object in which
(i) device resources are properties with initial values and (ii)
device services are specified by Access Rule. Each property
is attached with a unique Access Path, it is a relative path of
the property in the FS. The property value can be updated
using this path.

• Middleware (MW) represents the standard operating proce-
dure of an ECHONET Lite node including start-up (restart)
sequence, request handling sequence, and notify sequence
which are required by the ECHONET Lite protocol stack.
The proposed MW supports three layers: (i) Object Module

imports the object definition from the DOC and also moni-
tors the data object value changed event in the FS. (ii) Trans-

action Module manages transactions of request-response cy-
cle and notify cycle. (iii) Subnet Module implements net-
work drivers (Wi-Fi, Ethernet, Bluetooth, Wi-SUN, etc.) and
a frame translator to translate ECHONET Lite frame into
data and vice versa.

A simulated device can be created by defining a DOC and im-
porting to the MW. The FS is respectively generated based on the
Access Path of each device object. By updating values of prop-
erties via the FS, the device status can be simulated by external
agents.
3.2.1 Faulty Device Simulation

A faulty device could be simulated by mimicking abnormal be-
haviors (faults) of commercial devices. In Refs. [26], [27], [28],
and [29], faulty behaviors of IoT devices and wireless sensors
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Fig. 6 Simulator middleware (Humming) flowchart.

based on the data-centric approach are specified. The data-centric
approach focuses on data values reported by devices and a fault
can be determined by a data point that deviates from the expected
data. These faults can be represented by simulating the value of
properties of a target device via the FS without changing the MW
or the DOC.

From the view of communication, as stated in Ref. [30], a fault
can be categorised into:
• Crash Fault: A device completely stops responding. The

crash fault happened when a device totally drops either the
incoming frames or outgoing frames and it can be imple-
mented by adding a mechanism to drop incoming/outgoing
frames to the Subnet Module of the MW

• Omission Fault: A device does not reply one or more re-
quests. The omission fault shares the same phenomenon as
the crash fault but since it happens with a possibility of the
drop rate is less than 100%.

• Timing Fault: Responses of a device occur outside of the
specified time interval. The timing fault is simulating by
adding a time delay before transmitting frames to the Sub-

net Module

• Response Fault: A device replies incorrectly either by an
incorrect request return value or an incorrect state transition.
The response fault can be implemented by editing the frame
value at the Subnet Module to a faulty value before transmit-
ting the outgoing frames.

3.2.2 Implementation
The simulator middleware namely Humming is implemented

and released as an open source project via github *2. Hum-

ming is a Java implementation that supports all operations of an
ECHONET Lite node as stated in Section 2.1. The flowchart of
humming is shown in Fig. 6. A node is created by deploying the
MW together with a DOC that describes the node. The Object

Module loads the DOC file and extracts the node’s configura-
tion which contains information to simulate a target node. The
DOC is generated by mapping all required properties of the tar-
get node stated in Ref. [18] into the XML format. Additionally,
the DOC also provides instructions to simulate a faulty node (de-
vice). When a faulty node is desired, the configuration is applied

*2 https://github.com/ymakino/humming

Fig. 7 Deployment overview.

to the Subnet Module as follows:
• Crash fault is falling into two cases: (i) a device keeps re-

booting, or (ii) a device does not reply to any request. Since
an ECHONET Lite node must notify the node instance in-

formation which contains node identification and supported
device objects at the time the node joins a network, the re-
booting scenario is simulated by sending the node instance

information after a short arbitrary timing (about one second)
to the multicast address of the network. The non-response
scenario is simulated by declining all incoming requests af-
ter joining a network and it is implemented by setting the
rate to drop incoming frames to one hundred percent.

• Omission fault and Timing fault are normally adjusting the
rate to drop incoming frames and the delay time before send-
ing outgoing frames at the Subnet Module.

• Response fault has several patterns such as (i) replying to
a request with a wrong result, (ii) replying to a request by a
non-ECHONET Lite frame, or (iii) replying to a request by
an invalid value.

3.2.3 Deployment
The overview of the deployment model of the DE is as in

Fig. 7.
To support an easy and scalable deployment, each DE is de-

ployed as a docker container by the script in Algorithm 1. By
utilizing the deployment script, a collection of DOC is mappable
to a network of ECHONET Lite nodes.
3.2.4 Evaluation

Firstly, an experiment to evaluate the operational aspects of
simulated devices and commercial devices is conducted as in
Fig. 8.

To verify whether the simulated device can mimic commer-
cial device operations, an ECHONET Lite HGW that supports
ambient assisted living services [31] is deployed together with

c© 2020 Information Processing Society of Japan
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Fig. 8 Experiment configuration.

Table 3 Response time of commercial and simulated devices.

ECHONET Lite
Light 1

ECHONET Lite
Light 2

Simulated
Light 1

Simulated
Light 2

Time to detect
device

1067
(ms)

1080
(ms)

1027
(ms)

1048
(ms)

Time to get
Profile Object

8
(ms)

7
(ms)

4
(ms)

3
(ms)

Time to get
Device Object

20
(ms)

18
(ms)

12
(ms)

13
(ms)

Time to set
(ON/OFF)

82
(ms)

76
(ms)

35
(ms)

36
(ms)

commercial devices and simulated devices. The HGW is able
to detect devices and enable basic interaction sequences such as
GET, SET. Two commercial ECHONET Lite light bubs (Toshiba
LEDD85021N-LS) as shown in Fig. 8 (a) used as commercial de-
vices. Two simulated lighting devices are configured the same to
commercial devices in terms of a number of properties and initial
data of each property.

Table 3 summaries the response time for requests sent by the
HGW to real and emulated devices. The necessary amount of
time for the HGW to detect devices is around 1,000 ms after
multi-casting the request. It requires an additional 13 ms to de-
tect the second commercial device and 21 ms to detect the sec-
ond emulated device. The required time to process the request of
emulated devices is shorter than commercial devices because the
hardware performance of emulated and commercial devices are
different. The time variance is several ms for the GET operation
and less then 50 ms for the SET operation. Obviously, the pro-
cessing time of emulated devices is shorter because the process-
ing power of the emulated device is much higher. Since the pro-
cessing power of the emulated deployment environment (docker
container) is adjustable, the time variance between emulated de-
vices and commercial devices can be eliminated. However, the
time variance is small enough, and in the real deployment, it is
interfered with by the communication media, this time variance
could be ignored. Therefore, emulated devices are functioning in
the same way as real ECHONET Lite devices.

Furthermore, packets transmitted between devices (emulated
and commercial devices) and the HGW are captured as well. The
result shows that emulated devices and commercial devices be-
haved in the same manner in responding to requests from the
HGW.
• Both of the emulated devices and commercial devices

replied to the node finding message request from the HGW

Fig. 9 Faulty device and normal device response time.

with a 60-byte packet with the same payload data.
• Both of the emulated devices and commercial devices

replied to the get request from the HGW with the same
packet size and the same payload data.

The average amount 100 MB of memory is required to simulate
an ECHONET node.
3.2.5 Faulty Device Evaluation

The response time of 100 requests of emulated devices is vi-
sualized in Fig. 9 and the response timeout 5,000 ms will be ap-
plied in the case of no response. In Fig. 9 (b), the response time
is 5,000 ms for all requests which mimics the crashed fault. In
Fig. 9 (c), the packet size of the normal device, and a device with
missing data fault is visualized. Obviously, the packet size of the
faulty device is smaller than the normal device. In Fig. 9 (d), the
response time equals to Added Delay Time (1,300 ms) + Nor-
mal Response Time. In Fig. 9 (e), the response timeout is re-
ported with a rate to mimic the omission fault. Several faults can
also be combined in one single device as in Fig. 9 (f).

3.3 Network Simulator Deployment Options
Network traffic could be categorized into
• Machine Generated Traffic (MGT): the traffic generated

only by the device interactions such as periodic data report
communication from sensors , or periodic data request from
HGW for network status monitoring, and so on.

• Human Generated Traffic (HGT): the traffic generated by
the interfering of humans with devices such as turning on/
off a device, activating the human detection sensor, and so
on.

The MGT simulation is simply achieved by (i) defining devices
in terms of name, number, and configuration, (ii) configuring the

c© 2020 Information Processing Society of Japan
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Fig. 10 Home network simulation deployment.

HGW by specifying operation scenarios, (iii) deploying devices,
and (iv) setting a traffic monitor to collect the traffic. Thus, the
MGT simulation could be done by deploying the DE and the
HGW as in Fig. 10 (a).

Essentially, in the MGT simulation, the traffic is generated by
the interaction between the HGW and emulated devices, then the
network traffic is collected as packets by the Network Traffic Cap-

ture (NTC). Since a device will send a packet to notify its status
changed event to the network, the HGT simulation could be im-
plemented by extending the Human Activity Simulation to oper-
ate devices and generate the traffic according to activities as in
Fig. 10. As this research aims to provide OAM services, only the
MGT is enough to fulfill data generation requirements. However,
the proposed simulator also supports HGT by providing APIs for
a human activity simulation to interact with emulated devices via
the file system as in Fig. 10 (b).

4. Network Traffic Dataset Generation

Raw traffic which is in the form of network packets is usable for
network forensic investigation, however it is not possible to use
the raw traffic as input to build the ML based solutions. There-
fore, a method to process and label captured packets will be in-
troduced in this section.

Flow-based approaches for anomaly detection and traffic clas-
sification show the potential to achieve low time and mem-
ory overhead [32], [33]. Generally, a unidirectional flow (uni-
Flow) [34] is identified by source IP address, source port, des-

tination IP address, destination port, protocol, and all packets
which share these same properties are aggregated into one flow
within a time window. Unlike the unidirectional flow that rep-
resents packets flowing in one direction only, a bidirectional (Bi-
flow) [35] represents packets flowing two directions between end-
points on a network. The Biflow more accurately describes be-
haviors and gives more insight information of a network sys-
tem [35], [36].

A network traffic flow generator, namely NetFlowMeter [37],
[38], has been widely applied to generate bidirectional flows
of network traffic datasets such as a dataset for android mal-
ware [39], a dataset for DDoS attack detection [40], a dataset for
intrusion detection [41], and so on. However, the situation is dif-
ferent in the IoT Area Network where devices are usually low-
power devices with the wake-up mechanism. Moreover, the con-
nection direction of the NetFlowMeter is decided by a timely or-

Fig. 11 Network traffic flow calculator.

Table 4 Basic attributes of a Biflow with an example.

Attribute Short name Data Type Example
Timestamp Timestamp Time 2019-10-30 21:12:23.289
Source IP Address srcIP String 192.168.2.254
Source Port srcPort Integer 3610
Destination IP Address dstIP String 192.168.2.103
Destination Port dstPort Integer 3610
Sent Packet Count txPackets Integer 2
Sent Bytes txBytes Integer 68
Received Packet Count rxPackets Integer 2
Received Bytes rxBytes Integer 88
Sent Data txData Hexa String String in hexa format
Received Data rxData Hexa String String in hexa format
Flow Type FlowType Boolean Unicast
Duration Duration Float 348.3 ms

der only, but in the IoT Area Network, it is required to have the
direction decided by the initiator (the HGW). Additionally, the
NetFlowMeter does not support the usage of the multicast ad-
dress which is essential in the IoT Area Network.

The overview of the proposed network flow calculator, namely
flowCal, for the IoT Area Network is illustrated as in Fig. 11.

The flowCal takes the network traffic in the form of captured
packets as the input and extracts unidirectional flows. Then, bidi-
rectional flows are aggregated from extracted unidirectional flows
and the IP address of initiator to determine the direction of bidi-
rectional flows. Since a session is usually initiated by the HGW
and the direction of bidirectional flows are assigned by the ini-
tiator, the IP address of initiator is the IP address of the HGW.
Furthermore, besides sending unicast requests to target devices
in order to collect device sources, the HGW sends multicast re-
quests in order to detect newly joined devices or expired devices.
Therefore, there are two types of flow: the multicast flow and the
unicast flow.

Basic attributes of a bidirectional flow that is exported us-
ing the flowCal as in Table 4. The quadruple of Source IP

address, Source Port, Destination IP address, Destination Port

could be utilized to label the flow based on the description of em-
ulated devices. For example, an emulated device with IP address
192.168.2.95 and port 3600 is a Timing Fault Device could be
used to label bidirectional flows contain this IP address as Timing

Fault flows.
The Timestamp is the time when the first packet has been sent,

and the Duration is the delta time to complete the session (delta
time between the time of the first sent packet and the time of
the last received packet). Other attributes that are derivable from
basic attributes such as Minimum, Mean, and Maximum packet

size in forward and backward direction could be calculated and
included in the output.

c© 2020 Information Processing Society of Japan
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Table 5 Device configuration of the home network simulator.
Device
Object Total

Normal
Devices Faulty Device

Response
Fault

Timing
Fault

Omission
Fault

Timing&
Omission

Fault

All Fault
Combined

AirConditioner 12 6 1 1 2 1 1
AirSpeedSensor 1 1 0 0 0 0 0

DoorLock 2 1 0 1 0 0 0
ElectricCurtain 8 4 1 1 1 1 0
ElectricWindow 16 8 1 2 1 3 1

FireSensor 2 1 0 0 1 0 0
HotWaterPot 2 1 0 0 0 1 0

HumanDetectionSensor 50 25 2 9 4 6 4
HumiditySensor 24 12 1 3 3 3 2

IlluminanceSensor 23 11 1 3 3 3 2
InterCom 2 1 0 0 1 0 0
Lighting 38 19 2 4 4 5 4

OpenCloseSensor 22 11 2 1 2 4 2
Radio 2 1 0 0 0 1 0

Refrigerator 2 1 0 0 1 0 0
RiceCooker 2 1 0 0 0 0 1

Stove 2 1 1 0 0 0 0
TemperatureSensor 24 12 1 3 3 3 2

TV 4 2 0 1 1 0 0
WaterFlowRateSensor 8 4 0 2 2 0 0

Total 246 123 13 31 29 31 19

5. Application: Network Traffic Classification

To verify the feasibility and usability of the proposed simu-
lator, a ML-based application is introduced in this section. The
application is to classify network traffic which is trained using the
dataset generated from the proposed simulator.

5.1 Device Emulator Configuration
The summaries of devices of the emulator are in Table 5.
In this experiment, a total of 246 device objects are emulated

by 138 ECHONET Lite nodes and those devices are reflecting
real operating ECHONET Lite devices (device properties and ini-
tial data are loaded by values taken from real devices) from a
testbed called the iHouse [42]. Besides mapping real physical de-
vices into emulated devices, faulty devices are also emulated with
the ratio of normal device and faulty device 1:1 (50%:50%).

5.2 Network Simulator Configuration
The last part of the simulator is the simulation of services (that

utilize the emulated device) via the configuration of the HGW.
In this experiment, the HGW is configured for a context-aware
application [43] as follows:
• The HGW sends a Node Finding Message to the multicast

address of the network during start-up time and re-sends ev-
ery 2 minutes to detect newly joined devices and left-the-
network devices

• The HGW sends requests to get managed device information
(2 requests: a request to get the Profile Object and a request
to get the Device Object) at an interval of every 10 seconds.

In this experiment, the HN simulator is deployed by utilizing the
infrastructures of Hokuriku StarBED *3 in 22 hours and about
12,674,778 exchanged packets of the MGT are captured by the
HN simulator.

5.3 Dataset Generation
The bidirectional flows are exported from the captured raw

packets and the network simulator configuration using the pro-
posed flowCal as follow:
• Number of Multicast Flow = 30 (Flow/Hour) * 138 (Nodes)

*3 http://starbed.nict.go.jp/

Fig. 12 Data feature extraction overview.

* 22 (Hours) = 91,080 (flow)
• Number of Unicast Flow = 360 (Flow/Hour) * 138 (Nodes)

* 22 (Hours) = 1,092,960 (flow)
According to the device emulator configuration, the total number
of 1,184,040 flows are labeled into 6 categories: Normal Flow,
Response Fault Flow, Timing Fault Flow, Omission Fault Flow,
Timing and Omission Fault Flow, and All Fault Combined Flow

to form a network dataset.

5.4 Machine Learning Based Model Construction
5.4.1 Feature Extraction

The aggregated bidirectional flows from the dataset are reflect-
ing device behaviors. Since we can assume that the flows are in-
dependent for each repeated period, a cluster of flows, which are
collected during a repeated period, is used as a data unit to train
the model and also to predict the device behavior even though
in the real deployment. In this dataset, the HGW periodically
multicasts the Node Finding Message at the rate of 2 minutes.
Therefore, all extracted 13 flows (1 unicast and 12 multicast) be-
tween two multicast requests could be clustered into a vector that
reflects the device behavior. Furthermore, in a real deployment,
it takes a time of 2 minutes to collect flows from the target device
in order to make the judgment.

A flow contains 13 attributes as in Table 4, and features that
characterize devices are extracted from these attributes. Since
Timestamp, Source IP address, Source port, Destination IP ad-

dress, and Destination port are trivial attributes, the remaining 8
attributes are usable as device features and combined as an input
vector which represents for the device. Because the input vector
represents a device identified by the IP address, it can be labeled
using dataset descriptions. The conceptual diagram which In-
put and Output of the feature extraction process is illustrated in
Fig. 12.

In this paper, the Principal Component Analysis (PCA) [44]
is applied to reduce high-dimension vectors (13 (flow) * 8 (at-
tributes/flow)= 104 dimensions) into “visualizable” 2-dimension
vectors in order to understand the data distribution.

Since it is impossible to visualize 98,670 samples, a random
set of samples (0.2%) is selected and visualized as in Fig. 13. At
first glance, data points of devices that have the timing fault are
separated from the points of normal devices. The distances of the
timing fault samples respect to its delayed time. The data points

c© 2020 Information Processing Society of Japan
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Fig. 13 Data distribution with PCA.

of devices have the omission fault are mixed up with normal de-
vices.
5.4.2 Experiment

In this section, the performance of ML methods that are built
using the dataset is investigated. Each ML method has own pur-
pose to solve specific problems. The selected methods include:
• Decision Tree (DT) [45] which is widely used to demon-

strate the rule-based approach [46].
• Support Vector Machine (SVM) [47] which is the best lin-

ear classifier approach [48].
• Artificial Neural Network (ANN) [49] which is a general

non-linear classifier that achieves huge success in many real-
world problems [50].

All experiments are conducted using the computer infrastructure
of the Hokuriku starBED. The configuration information of the
computer which was used to train and test ML models during the
experiment is as follows:
• Model: Cisco UCS C200 M2 (Group L)
• CPU: Intel (R) Xeon (R) CPU X5670 (2.93 GHz/6 Cores)
• Number of CPU: 2
• Memory: 8 GB Registered DIMM × 6 = 48 GB
• HDD: 500 GB × 2
• Operating System: Ubuntu 16.04.6 LTS
• Python version 3.6

5.4.3 Results
The average accuracy of predicting six classes of traffic: Nor-

mal, Response Fault, Timing Fault, Omission Fault, Combined of

Timing and Omission Fault, and All Fault Combined after run-
ning ten times with Z-core data normalization [51] is:
• Artificial Neural Network: 96.72%
• Decision Tree: 93.33%
• Support Vector Machine: 89.64%
Performances of three investigated methods are summarized in

Table 6, Table 7, and Table 8. All three models achieved high
accuracy in classifying normal devices and devices with response

fault from the rest of faulty devices. However, the accuracies
of detecting omission fault and omission-related fault device are
low. The artificial neural network achieves the best performance
with data normalization.

The ANN made the wrong prediction for omission fault as it
is similar to a fault that combines both the omission fault and the
timing fault.

The SVM and DT made the wrong prediction for omission-

Table 6 Artificial neural network normalized confusion matrix.

GroundTruth Normal Reponse Fault Timing fault Omission Fault
Timing &

Omission Fault
All Fault

Combined
Normal 99.87 0.02 0 0.08 0 0.03
Reponse Fault 0.28 99.72 0 0 0 0
Timing Fault 0.22 0 95.09 0 3.67 1.02
Omission Fault 1.27 0.33 0.19 90.51 6.2 1.5
Timing &
Omission Fault 0.29 0.04 1.29 1.42 92.36 4.59

All fault
Combined 0 0.08 0.08 4.67 2.03 93.15

Table 7 Decision tree normalized confusion matrix

Groundtruth Normal Reponse Fault Timing Fault Omission Fault
Timing &

Omission Fault
All Fault

Combined
Normal 98.34 0.12 0.02 1.52 0 0
Reponse Fault 0.47 98.97 0 0.56 0 0
Timing fault 0.71 0 89.69 3.14 6.46 0
Omission Fault 11.42 0.38 0.28 85.29 1.6 1.03
Timing &
Omission Fault 0 0 2.34 3.17 87.43 7.06

All Fault
Combined 0 0 0.23 5.03 10.82 83.92

Table 8 Support vector machine normalized confusion matrix.

Groundtruth Normal Reponse Fault Timing fault Omission Fault
Timing &

Omission Fault
All Fault

Combined
Normal 97.04 0.54 0.31 2.06 0.05 0
Reponse Fault 3 96.9 0 0.1 0 0
Timing fault 0 0 91.8 0.55 6.6 1.05
Omission Fault 11.46 3.48 6.43 71.58 3.57 3.48
Timing &
Omission Fault 1.21 1.96 6.47 4.38 80.67 5.3

All Fault
Combined 0.3 0 1.65 12.01 4.88 81.16

related faults because they are not linear distributions.
5.4.4 Discussion

All investigated ML methods achieves (i) good performances
in classifying Normal and Response Fault, (ii) bad performances
in classifying Omission Fault and omission related faults (Timing
& Omission Fault, All Fault Combined), and (iii) average perfor-
mances in classifying Timing Fault. Results show the high perfor-
mance of the linear distribution of samples and the low accuracy
of the non-linear distribution of samples.

Since the more flows collected, the better judgment of device
behaviors, we can cluster flows of a device for a day or a week
for the training dataset. However, in the real-world deployment,
to make a prediction using the model trained with the previous
data, it is required to collect the same numbers of flow in the real-
world deployment, and it creates a huge delay time in collecting
data for the adjustment. This section discusses how to choose
numbers of observations and numbers of features from an obser-
vation that fully reflects device behaviors in an appropriate time
window.

In this experiment, a sample that represents a device is a 104-
dimension vector. The sample is calculated every 2 minutes
where (i) one multicast flow and 12 unicast flows are combined
and (ii) eight features of flow are extracted from a flow. By com-
bining the traffic of every 2 minutes, it achieves a shorter time
to classify the targeted traffic in a real deployment. However,
the information collected during the 2-minute interval may not
be enough to represent a device. Therefore, there is a trade-off
between the high accuracy and the high overhead.

6. Conclusion

This research proposed a smart home network simulator to
generate the IoT Area Network traffic so as to pave the way for
integrating AI-based solutions for home network management.
Since the ECHONET Lite protocol fulfills all the requirements
of the IoT Area Network, the ECHONET Lite is the target pro-
tocol of the simulator. The proposed simulator is able to simu-
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late various types of services by extending the southbound inter-
faces on the top of an ECHONET Lite abstraction layer. More-
over, the simulator supports mechanism to simulate commercial
ECHONET Lite devices and faulty devices as well. Four types
of faults: crash fault, omission fault, timing fault, and response
fault are simulated. By utilizing the docker platform, the device
emulator achieved the automatic and scalable deployment. The
memory usage 100 MB and CPU usage (0.15%) for a node are
suitable to deploy on a large scale.

The evaluation of the network traffic generated by deploying
the proposed simulator has been done. The network traffic in
the dataset (in the form of captured raw packets) is aggregated
into bidirectional flows that reflect the device-gateway interac-
tions by the proposed network flow calculator, namely Flowcal.
The Flowcal is customizing for the IoT Area Network that sup-
ports the appointment of flow direction initiator and multicast
flows. Three ML methods: decision tree (DT), support vector
machine (SVM), and artificial neural network (ANN) have been
investigated. The ANN achieves the best performance (average
accuracy 96.72%) in predicting device faults based on network
traffic. Results proved the feasibility and usability of the dataset
generated from the proposed simulator in building ML based so-
lutions.

To use AI integrated solution for network management, a
high-performance computer to deploy the application is required.
Since it is not realistic to have a high power computer in the home
network, the integration with the high reliability, availability, and
scalability platform that supports a big data analytics framework
such as PNDA *4 is desired as future work. The mechanism to re-
train the model with the online data collection is also extensible
as future work.
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