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Abstract: Quantum classifiers provide sophisticated embeddings of input data in Hilbert space promising quantum
advantage. The advantage stems from quantum feature maps encoding the inputs into quantum states with variational
quantum circuits. A recent work shows how to map discrete features with fewer quantum bits using Quantum Ran-
dom Access Coding (QRAC), an important primitive to encode binary strings into quantum states. We propose a new
method to embed discrete features with trainable quantum circuits by combining QRAC and a recently proposed strat-
egy for training quantum feature map called quantum metric learning. We show that the proposed trainable embedding
requires not only as few qubits as QRAC but also overcomes the limitations of QRAC to classify inputs whose classes
are based on hard Boolean functions. We numerically demonstrate its use in variational quantum classifiers to achieve
better performances in classifying real-world datasets, and thus its possibility to leverage near-term quantum computers
for quantum machine learning.

1. Introduction
Quantum computers can execute algorithms based on the prin-

ciples of quantum mechanics and can provide quantum speedups
over classical computers in wide-range applications, including
machine learning [1]. There are many proposed quantum algo-
rithms for machine learning that are proven superior to their clas-
sical counterparts, such as, solving linear equations [2] and prin-
cipal component analysis [3], all of which require perfect quan-
tum computers. Recent noisy quantum devices [4] are built to-
wards the goal of realizing such perfect quantum computers with
the progress comparable to that of the Moore’s Law [5]. Never-
theless, although limited in the number and quality of their quan-
tum bits (or, qubits), the recent hardware progress has sparked
active studies in the search of quantum methods that are applica-
ble to near-term quantum devices [6], [7], [8].

Variational Quantum Classifiers (VQC) is a potential machine
learning method on near-term quantum devices for classifying
classical data. VQC is built from variational quantum circuits
whose parameters are tuned by coordinating the noisy quan-
tum devices and perfect classical computers. It finds a quantum
feature map embedding classical data into a high-dimensional
Hilbert space, and a measurement set to perform the classifica-
tion. The most popular type of VQCs fixes the quantum fea-
ture map for each classical data, and trains a measurement for
the classification. This is akin to quantization of the classical
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kernel methods, such as the polynomial support vector machine
(SVM) [9]. There have been various proposals of quantum fea-
ture maps embedding real-valued data with near-term quantum
devices [8], [10], [11], [12]. A recent work [13] shows how to
use QRAC in VQCs for mapping binary strings into the Hilbert
space. The resulting VQCs are shown to require fewer qubits
while retaining high classification accuracy.

QRAC encodes m classical bits with n qubits so that any 1-
out-of-m bits can be recovered with probability p > 1/2 [14]. It
is often denoted as (m, n, p)-QRAC). When p = 1, the Holevo
bound [15] implies that n ≥ m meaning no quantum advantage.
But when 1/2 < p < 1, QRAC can achieve provable quantum
advantage, e.g., in quantum communication [16], [17]. In par-
ticular, when p is enough to be bigger than 1/2, the number of
qubits of QRAC is shown exactly half of the bits for classical
encoding [18].

The advantage of QRACs stems from the facts that (i) the n-
qubit quantum states are spanned by the 2n-dimensional Hilbert
space whose real dimension is 22n − 1, and (ii) bits of length
up to 22n − 1 can be mapped into quantum states distributed in
the Hilbert space. The QRACs for mapping discrete features in
VQCs in [13] are mainly with the well-known construction of
(m, n, p)-QRACs for n = 1, 2. Main challenges in using QRACs
for quantum feature map are their limited known construction,
namely, no optimal QRAC is known for three or more qubits, and
the difficulties to map bitstrings to quantum states that guarantees
maximally separating embeddings. The latter one is serious be-
cause the fixed mapping by QRACs can result in an arrangement
of quantum states which is impossible to find its boundary deci-
sion without adding more resources such as latent qubits or copies
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of encoding states. This can mitigate the benefits of QRACs to
map discrete features with fewer qubits.

To solve the aforementioned challenges, we extend the use
of QRACs to embed discrete features with the new strategy of
quantum metric learning [19] to obtain trainable embeddings.
The trainable discrete feature embeddings can find well-separated
quantum states in the Hilbert space by taking into account the
property of QRACs to use a set of diverse quantum states for
encoding discrete features. By numerical experiments, we show
the limitations of QRACs on classifying inputs whose decision
depends on hard Boolean functions called parity, and show how
trainable embeddings can overcome them. We also provide ev-
idences the trainable embeddings can maintain the advantage of
QRACs to achieve high classification accuracy with fewer qubits
on various real-world datasets such as the breast cancer dataset
[20], the Titanic survival datasets [21], and the simplified version
of MNIST [22]. We believe the trainable embeddings provide
new insights on how to levarage near-term quantum devices for
machine learning.

2. Related Work
Dealing with discrete features, representing qualitative or cate-

gorical properties, is important because many real-world datasets
contain such features, such as, gender, race, age group, etc. We
propose a new framework to embed the discrete features in VQC
for quantum machine learning. Classical machine learning mod-
els such as decision trees [23] can deal directly with discrete
features, but models such as neural-network often rely on trans-
forming them into continuous features [24]. Standard transfor-
mations include entity embeddings [25] and distributed represen-
tations [26]. Most successful transformation often rely on com-
bination of transformation methods, e.g., word2vec [27] obtains
continuous representation of categorical features from the use of
one-hot encoding and neural networks.

Quantum-enhanced machine learning techniques such as
VQCs [8], [10] are quite similar to neural networks and their
framework are often developed by assuming appropriate repre-
sentation of datasets with real-valued and continuous features.
VQCs consists of a series of quantum operations acting on qubits
represented as a quantum circuit. The circuit can be divided into
two: the part for mapping classical data into quantum states, and
the part for measuring the quantum states to obtain the classi-
fication classes. The mapping part is usually fixed and there are
many potential methods that maybe difficult to realize with classi-
cal computers. Recently, [19] proposes trainable quantum feature
mapping (or, embedding) called quantum metric learning, akin to
the classical metric learning [28], so that the measurement part
can be simplified. The measurement part is usually a parameter-
ized circuits whose optimal parameters are computed with vari-
ational methods similar to those of neural networks. A recent
work [13] shows how to directly deal with discrete features in
VQCs by using QRACs that can reduce computational resources
of VQCs.

Originally formulated in the communication setting [29],
QRACs have been extensively used in the theory of quantum
computations, such as, quantum state learning [30]. Some

QRACs also offer cryptographic properties known as parity obliv-
iousness [31], which can be useful for private information re-
trieval. QRACs can encode n-bit binary strings using log n/2
qubits, which is half of the bits used in classical random access
codes (RACs) [18]. QRACs with one and two qubits were shown
in [14], [32], [33]. One qubit can encode at most three bits, and
two qubits at most fifteen bits, and so on. [13] shows how to use
them for healthcare datasets, but there are still many obstacles to
deal with complicated decision functions. Such QRACs may be
used as a layer in a quantum neural network (QNN) [34], [35].

There are variants of QRACs using shared entanglement and
classical randomness [36], that enable encoding any number of
bits into a single qubit. Like the QRACs and our proposed em-
bedding, those variants rely on finding a set of quantum states that
are as diverse as possible within the Hilbert space of the underly-
ing qubits.

3. Methods
Our method deals with embedding discrete features of inputs

into the Hilbert space and finding the boundary decision using
VQCs. We briefly describe the quantum circuits, VQCs and their
embeddings before showing the proposed method of Trainable
Embeddings (TEs).

3.1 Preliminaries
3.1.1 Quantum Circuit (QC)

QC is popular to model quantum computation. It consists of se-
quences of quantum gates that transform qubits from initial quan-
tum states (usually the all-zero state) into final quantum states
that can be measured to obtain the computational result (such
as, the classification). An n-qubit (pure) quantum state |ψ〉 is a
linear superposition of all possible n-bit classical states |i〉 for
i = 0, . . . , 2n − 1. Namely, |ψ〉 =

∑
i αi |i〉, where αi ∈ C is the

probability amplitude whose squared magnitude is the probabil-
ity of measuring |i〉, and thus

∑
i \alpha_i\

2 = 1. The n-qubit
quantum state is thus a complex vector lies in a 2n-dimensional
Hilbert space. Quantum gates are unitary operations that can be
represented by a series of 2n × 2n unitary matrices {Ui} rotating
2n-dimensional complex vectors. All unitary operators can be
realized with a small set of universal gates that consists of ar-
bitrary one-qubit rotation and two-qubit entangling gates, such
as the controlled-NOT and the ZZ-interaction gate. See [37] for
more details on QC. The near-term quantum computers are those
with dozens to hundreds of qubits, and can only run few quan-
tum gates. Therefore, all quantum machine learning leveraging
ner-term devices must be designed with shallow QCs in mind.
3.1.2 Variational Quantum Classifiers (VQC)

VQC is a classifier using variational quantum circuit that can
be trained from labelled inputs, S = {(xi, yi)}i for xi ∈ R

d and
yi ∈ {0, 1}. As in Fig. 1, it consists of two parts: the first im-
plementing feature map of input data, namely, x : Φ(x) ∈ Rk

for k ≥ d, and the second implementing measurement to deter-
mine the classification. Its principle is similar to support vec-
tor machine (SVM) [38] for finding the best hyperplane (w, b)
that classifies the embedded data by the linear boundary function
f (x) = wT Φ(x) + b.
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Fig. 1 A VQC that consists two subcircuits: UΦ(x) for mapping features and
W(θ) for boundary decision.

At VQC, the data x ∈ Rd is mapped to (pure) quantum state
by the feature map circuit UΦ(x) that realizes Φ(x). That is, con-
ditioned on the data x we apply the circuit UΦ(x) to the n-qubit
all-zero state |0n〉 to obtain the quantum state |Φ(x)〉. A short-
depth quantum circuit W(θ) is then applied to the quantum state,
where θ is the hyperparameter set of the quantum circuit that can
be learned from the training data. Finding the circuit W(θ) is
akin to finding the separating hyperplane (w, b) in the Soft-SVM,
with the promise of quantum advantage due to the difficulty for
classical procedures to realize the feature map Φ(x).

Learning the best θ can be obtained by minimizing the empir-
ical risk R(θ) with regards to the training data S = {(xi, yi)}. The
risk is then approximated with a continuous function, as detailed
in [8], to enable variational methods for tuning θ to minimize the
approximated cost function.

The binary classification with VQC now follows from first fix-
ing the feature maps on inputs and then training the VQC to learn
the best θ∗ to obtain (w(θ∗), b∗). The classification against un-
seen data x is then performed according to the classifier function
f (x) with (w(θ∗), b∗). Both training and classification need to be
repeated for multiple times (or, shots) due to the probabilistic na-
ture of quantum computation.
3.1.3 Quantum Neural Networks (QNN)

We use the QNN proposed by [34] for binary classification
with binary inputs x ∈ {0, 1}n. It is a special case of VQC in
Fig. 1. At QNN two quantum registers are used; the first to repre-
sent the n-bit input and the second for its label, and thus requires
at least n + 1 qubits (omitting the working qubits used in the mid-
dle of the computation). QNN is VQC with simple n-qubit feature
map Φ(x) to create the quantum state representing computational
basis |x〉 |0〉 = UΦ(x) |0〉⊗n |0〉. This can realized with the X gate at
the i-th qubit for xi = 1.

At QNN W(θ) is a sequence of two-qubit unitaries
U1(θ1),U2(θ2) . . . ,Ul(θl). The optimization target is to find
the set of parameters θ = {θ1, θ2, . . . , θl} that minimizes the
training loss of dataset D such as binary cross-entropy or
hinge loss. The evolution of the state vector due to W(θ) is
|ψ〉 = W(θ) |x, 0〉 =

∑
i (αi0 |i, 0〉 + αi1 |i, 1〉), where the classifica-

tion l is obtained by measuring the second register, i.e., l = 0 iff.∑
i0 |αi0|

2 ≥
∑

i1 |αi1|
2. [34] showed how to perform supervised

learning on QNN for any n-bit Boolean functions, and thus for
binary classification of discrete inputs. In particular, numerical
experiments showed that QNN could learn the parity function of
a subset of the input bits with samples much less than 2n even
under some noisy labels. However, [34] pointed out that the
learning became impossible as the subsets became larger. This
motivates our choice of the parity functions in Experiments.

3.1.4 Discrete Feature Encoding with QRAC
Discrete features can be trivially mapped into binary strings

and be used as inputs to VQCs. Here, we consider binary rep-
resentation. For example, a categorical feature with at most c
different categories can be represented with dlog ce bits and thus
requires the same amount of qubits at VQCs. In practice, if there
are k types of discrete features, and each of the features has ci

categories, then the number of bits representing all the features is
at most S =

∑k
i=1dlog2(ci)e.

[13] showed how to use QRAC to reduce the number of qubits
representing the categorical features. In particular, it is known
how to encode bitstrings of length 2 and 3 by (2, 1)-QRAC and
(3, 1)-QRAC (we omit the success probabilities p) by mapping
each bitstring into a one-qubit quantum state. The left figure in
Fig. 2 depicts the states of (3, 1)-QRACs that are placed at the
corners of a cube in the Bloch sphere. Due to this property of
evenly placing quantum states, QRAC ensures that each quantum
encoding of a string can be distinguished from other encodings.
This can be advantageous for classification with few qubits. By
using (m, n)-QRAC the number of qubits required for encoding S
bits is n × dS/me.

The discrete feature encoding by QRAC is easily combined
with continuous features. For discrete feature xd and continuous
feature xc, xd can be embedded using (m, n)-QRAC and xc using
some continuous feature map such as the ZZ feature map *1. We
can also apply QRAC in the convolutional manner that we call C-
QRAC (for Convolutional-QRAC). For example, with regard to
binary strings b = b1b2 . . . bt, instead of encoding it sequentially,
the convolutional manner can encode its overlapped substrings.
The convolutional preprocessing is effective for image datasets,
and therefore we believe so is the C-QRAC for MNIST datasets.

3.2 Trainable Embedding (TE)
There are several drawbacks of mapping the above features

with QRAC that fixes mapping of binary strings to quantum
states. First, there are only few concrete constructions of
QRACs [14], [32], [33]. Second, for some Boolean functions
such as the parity, the fixed mapping of QRAC may result in
mapping inputs to quantum states that are not “well-separated”
in the Hilbert space. This can easily be seen from mapping 8 bi-
nary strings x ∈ {0, 1}3 into one-qubit quantum states that lie in
3-dimensional Bloch sphere with QRAC as in the left subfigure of
Fig. 2; because the VC-dimension of the Boolean functions with
3 variables is at least 4, VQCs with QRAC can fail to find the
boundary decision in the Bloch sphere. Previous work [13], [19]
suggest adding more qubits or copies of QRACs, to avoid this
problem but it reduces the advantage of QRACs. We propose
trainable embedding to avoid the drawbacks.

Instead of fixing the encoded quantum spaces of the input bi-
nary strings using (m, n)-QRAC, we propose a method by apply-
ing a trainable circuit which is inspired by the quantum metric
learning [19]. The circuit is learned with an objective to obtain
maximally separating data classes in the Hilbert space. By adap-

*1 The details of the ZZ feature map can be found at https:
//qiskit.org/documentation/stubs/qiskit.circuit.

library.ZZFeatureMap.html
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Fig. 2 The embeddings of 3-bit discrete features into one-qubit quantum states drawn as colored dots on
Bloch spheres whose north and south poles correspond to the classical states ”0” and ”1”, respec-
tively. The embedding on the left Bloch sphere is by the (3, 1)-QRAC, while those on the middle
and the right Bloch spheres are by TEs without and with regularization (as in Eq. 1 with λ = 0.02),
respectively. The blue dots denote those with parity 1, and the red dots parity 0. It is clear that a
(3, 1)-QRAC is insufficient to solve the parity as there is no linear plane can separate the red from
the blue dots.

tively training feature embeddings to separate the data classes,
[19] showed that the best measurements to obtain the classifi-
cation can be realized with shallow quantum circuits and hence
suitable for near-term quantum devices.

The trainable circuits are represented as a set of unitary U(θb)
matrices where b is the binary string input and θb is the set
of parameters corresponding to b. Namely, (m, n)-QRAC is re-
placed with a trainable quantum circuit realizing U(θb). For ex-
ample, the (3, 1)-QRAC is replaced with trainable embedding us-
ing u3(θ, ϕ, 0) gates for each 3-bit binary string, where θ and ϕ

are trainable parameters*2. Therefore, there are 16 parameters to
be trained for each qubit encoding 3 bits. For convenience, we
denote (3, 1)-TE as the trainable embedding of 3 bits into 1 qubit.

However, the increasing number of parameters might possibly
lead to overfitting. The center subfigure of Fig. 2 shows the result
of (3, 1)-TE for the parity of the bits. As can be shown from the
left of the same figure, with QRAC the distance between any two
embedded states is guaranteed to be above some threshold. On
the other hand, the embedded states of the (3, 1)-TE are clustered
as shown in the middle of the same figure.

To guide the embedded states to become as diverse as those
with QRACs, and so that each of them is far for the rest, we
introduce a cost to penalize the entropy of the overall embed-
ding vectors. Let us assume {(θi, ϕi)} be the parameter for en-
coding 3-bits binary string i. The embedding for each i is there-
fore u3(θi, ϕi, 0) |0〉 = cos(θi/2) |0〉 + eϕi sin(θi/2) |1〉 which cor-
responds to the point ri = (sin θi cosϕi, sin θi sinϕi, cos θi) on the
3-dimensional Bloch sphere*3. From these embedding vectors
r1, r2, . . . , r8, we can compute their averages and covariance ma-
trix, as

*2 u3 gate is a standard one-qubit rotational gate in Qiskit[39]. The last
parameter of the u3 gate is fixed to zero because it does not affect the
transformation starting from the zero state.

*3 See, e.g., [37] for the correspondence of one-qubit (pure) states with
points on the Bloch sphere

µ =
1
n

∑
i

ri

Σ =
1
n2

∑
i, j

(ri − µ)(r j − µ)>,

where n is the number of the embedding. In (3, 1)-TE case, we
have n = 8 number of embedding. The determinant of the covari-
ance matrix can be used to scale the spread factor of the embed-
ding. By adding the negative of the determinant of the covariance
matrix, i.e., Lspread = − det(Σ) to the training loss to find optimal
embedding parameters, we minimize the following regularized
loss function:

Lall = L + λLspread. (1)

The effect of regularization is shown in the right subfigure of
Fig. 2. We can see a wider spread of distribution of embedded
quantum state by the regularization. A similar regularization by
determinant has also been used to induce diversity of state-action
vectors in reinforcement learning [40].

As a comparison to classical machine learning method, TE
would be similar to embedding feature that prevalently used with
discrete feature such as word embedding [27] to map a discrete
word token into a continuous vector space.

4. Experiments
We perform numerical experiments demonstrating the limita-

tion of discrete feature embedding with QRAC and the possibility
of trainable embedding to overcome this limitation. To this end,
the embeddings are tested on parity functions, which are known
as hard Boolean functions, and on real-world datasets: the Breast
Cancer dataset (BC), the Titanic Survival dataset (TS), and the
hand-written digits MNIST dataset. On parity functions, the ex-
periments showed that the TE achieved higher accuracies with
fewer qubits than straightforward and QRAC embeddings. We
also confirmed the advantage of TE for classifying the real-world
datasets. The experiments were run by Qiskit using its RyRz-
variational VQCs *4. We also confirmed the efficacy of the em-

*4 The details of the RyRz variational form can be found at
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beddings on TensorFlow Quantum [41] by experimenting with
QNN on the MNIST dataset.

4.1 VQC on Parity
The parity function is determined by the XOR of its individual

input bits (or equivalently, the sum of its input bits modulo 2).
For example, for 3-bit inputs the parity function is 1 if and only
if the input is in {001, 010, 100, 111}, as colored in blue in Fig. 2.
We tested the embeddings on parity of bits whose lengths are 3, 6
and 9. As can be seen from the left subfigure in Fig. 2, with the
QRAC embedding the 3-bit parity is not linearly separable. This
is the main motivation to use the parity function as a test case for
the embeddings.

We compared the efficacy of VQC with the embeddings by cal-
culating the correctly classified ratio (or precision). All VQCs
were optimized using SPSA [42] for 200 epochs. The embed-
dings were as below:
• Naive: a qubit is used to represent a bit.
• n×QRAC: n copies of (3, 1)-QRAC encoding is used to rep-

resent the binary string. n > 1 is suggested to increase the
chance finding a decision boundary in the Hilbert space [13].

• TE: The (3, 1)-TE is used to encode the binary string.
Table 1 shows the classified ratios of the VQCs with the em-

beddings. We can observe that TE achieved better precisions
on the 6-bit and 9-bit parity despite using the fewest number of
qubits. On the 3-bit parity, its precision was only slightly less
than Naive and 3 copies of QRACs, but notice that both Naive
and QRACs could not reduce the qubits.

The parity of 6-bit and 9-bit showed interesting cases because
TE with only 2 and 3 qubits, respectively, could beat Naive and
QRACs that essentially store all information of the bits (by the
same number of qubits). In particular, the copies of QRACs seem
to only slightly increase the precision. We can further confirm
the limitation of QRACs and the advantage of TE from Fig. 3
that shows the training losses of the VQCs. TEs clearly outper-
formed other embeddings, while the losses of 3 copies of QRACs
were only as good as Naive, which is expected. This is because
in that case one can extract all values of bits from the qubits.

4.2 VQC on Breast Cancer dataset (BC)
The BC dataset contains 286 samples, each of which consists

of 9 discrete features, along with a cancer recurrence as a tar-
get variable (201 samples of no-recurrence, 85 samples of recur-
rence). We selected 4 most important features determined by a
random forest algorithm [43], which are tumor-size, breast-quad,
deg-malig, and age. The features have 11, 6, 3, and 6 different
categorical values respectively.

Due to imbalance in the labels of the dataset, we doubled the
positively-labeled data in the training set to encourage true pos-
itive predictions, and evaluated F1 score in addition to accuracy
(precision). We tested the VQCs with the RyRz variational form,
all of which were optmized using SPSA for 200 epochs, using the
four different embeddings as follows.
• ZZ: the baseline mapping for real-valued features as used

https://qiskit.org/documentation/stubs/qiskit.aqua.

components.variational_forms.RYRZ.html

Table 1 Classified ratios of VQCs with various discrete-feature embeddings
on parity functions.

3-bit parity (8 strings)
Method #qubits Classified ratio
Naive 3 1.000
1×QRAC 1 0.500
2×QRAC 2 0.750
3×QRAC 3 1.000
TE 1 0.913

6-bit parity (64 strings)
Naive 6 0.671
1×QRAC 2 0.563
2×QRAC 4 0.531
3×QRAC 6 0.547
TE 2 0.934

9-bit parity (512 strings)
Naive 9 0.570
1×QRAC 3 0.506
2×QRAC 6 0.520
3×QRAC 9 0.529
TE 3 0.674

Table 2 Accuracies and F1 scores of 4-fold cross validated VQCs on the
BC dataset, with four different discrete feature mappings. All map-
pings require four qubits.

Method Train acc./F1 Test acc./F1
ZZ 0.606/0.475 0.549/0.419
QRAC 0.707/0.541 0.682/0.483
TE 0.722/0.534 0.681/0.452
Reg.TE 0.714/0.534 0.702/0.511

in [8]. Each feature is simply encoded into an ordinal value,
and then embedded using the ZZ feature map (ZZ).

• QRAC: the mapping used in [13]. Each feature is encoded
into an ordinal value, and then converted into a bit string.
The concatenated bit string is encoded with (3, 1)-QRACs.

• TE: similar to QRAC up to the concatenated bit string.
(3, 1)-TE is used to embed the concatenated string. Reg.TE
denotes the a regularized model as in Eq. 1 with λ = 0.02 to
prevent overfitting.

The experimental results shown in Table 2 suggest that feature
maps with QRAC and TEs significantly outperformed ZZ feature
map (ZZ), with TEs had better accuracies than QRAC. Without
regularization, however, TE showed slight overfitting to the train-
ing data. TE with regularaization (Reg.TE) avoided the overfit-
ting.

4.3 VQC on Titanic Survival dataset (TS)
The TS dataset consists of 11 features, including both discrete

and continuous ones. The target variable is the survival of the
passengers. This dataset is split into training nd test sets whose
size are 891 and 418 samples respectively.

We selected 4 most important features as ranked again by
the random forest algorithm. The features are sex, age, pclass,
fare which are mixtures of continuous and discrete ones. We
performed two types of experiments: VQCs with embedding
both continuous (with rescaling) and discrete features, as well
as VQCs with discrete features (after by ordinal representation of
the continuous ones).

As for the mapping of the discrete features in both experi-
ments, we implemented four distinct feature mappings as in the
BC dataset, where the two rescaled continuous features in the first
experiment were embedded with the ZZ feature map. The RyRz-
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Fig. 3 Plots of training losses (binary cross entropy) for learning parity of 3, 6, and 9 bits for each embed-
ding. Note that the number of epoch in the x-axis is doubled because each epoch of SPSA consists
of two stages.

Table 3 Accuracies and F1 scores of 4-fold cross-validated VQCs on the TS
dataset embedding two ordinal features and two rescaled continu-
ous features (top four rows), and those embedding ordinal-encoded
features (bottom four rows).For both experiments, the top ZZ meth-
ods used 4 qubits, while QRACs and TEs used 3 qubits.

Method Train acc./F1 Test acc./F1
ZZ(dis.+cont.) 0.729/0.636 0.706/0.610
QRAC(dis.)+ZZ(cont.) 0.777/0.699 0.767/0.687
TE(dis.)+ZZ(cont.) 0.749/0.711 0.739/0.706
Reg.TE(dis.)+ZZ(cont.) 0.764/0.723 0.756/0.713
ZZ(dis.) 0.740/0.643 0.711/0.601
QRAC(dis.) 0.785/0.721 0.772/0.707
TE(dis.) 0.771/0.704 0.761/0.692
Reg.TE(dis.) 0.788/0.714 0.776/0.702

variational form of the VQCs were of depth 4 and were optimized
using SPSA for 300 epochs in all experiments.

Table 3 shows the results of the two experiments. The re-
sults indicate that encoding continuous features as ordinal values
slightly improves the overall performances of the models. How-
ever, F1 scores for the mixed TE(dis.) + ZZ(cont.) models were
higher than the discrete-only TE(dis.) counterparts. The results
also confirm that QRAC and TE were better than the baseline ZZ
feature maps, and TE with regularization fairly to be on a par with
QRAC.

4.4 QNN on hand-written digit MNIST
MNIST is one of the most well-known datasets that consists

of black-white hand-written digit images of size 28 × 28. Such
instances of images can be fed easily into classical machine learn-
ing. However, due to the limited number of qubits of near-term
quantum devices, the size of those images must be reduced by
some preprocessing in order to be usable in quantum machine
learning. We followed the preprocessing shown at the tutorial
of TensorFlow Quantum*5, which is similar to the preprocessing
in [34] . Only images of digits 3 and 6 were selected while those
labelled both 3 and 6 were omitted. The selected images were
resized down to 4 × 4, and their pixels were rounded to 0s and 1s
to obtain binary string representations. The classification task is
binary decision (i.e., either 3 or 6). We compared various embed-
dings of the images as the following.
• Naive 16px: a qubit for a pixel/bit of the 4 × 4 pixels. This

*5 As detailed in https://www.tensorflow.org/quantum/

tutorials/mnist

Table 4 Experimental results of QNNs on MNIST dataset. Training and
testing accuracies of various discrete feature embeddings with
fewer qubits than Naive embeddings of [34] are shown.

Method #qubits Train acc. Test acc.
Naive 8px 8 0.872 0.891
QRAC 6 0.883 0.898
TE 6 0.903 0.912
Naive 16px 16 0.902 0.908
Conv QRAC 16 0.896 0.898
Conv TE 16 0.911 0.914
Conv (4, 1)-TE 9 0.911 0.917

was also used in [34].
• Naive 8px: a qubit for a pixel of those at the second and third

rows of the 4×4 pixels. The purpose of this method is to ob-
serve the performance loss/gain if we reduce the number of
qubits by ignoring parts of the inputs.

• QRAC/TE: the flatten 4 × 4 pixels, and thus 16 bits were
embedded with (3, 1)-QRAC or (3, 1)-TE. Thus, in total 6
qubits were used.

• Conv QRAC/TE: convolutional embedding of the 4×4 pix-
els. C-QRAC and C-TE were used for every 3 consecutive
pixels of each row and column with stride 1. Formally, sup-
pose that b is the 4×4 input image. Every 3 pixels at i-th row:
bi jbi( j+1)bi( j+2) for 1 ≤ i ≤ 4 and 1 ≤ j ≤ 2, and 3 pixels at
j-th column: bi jb(i+1) jb(i+2) j for 1 ≤ i ≤ 2 and 1 ≤ j ≤ 4 were
encoded with (3, 1)-QRAC or (3, 1)-TE, resp. Therefore, as
in Naive 16px, in total 16 qubits were used.

• Conv (4,1)-TE: convolutional embedding on the 4 × 4 im-
age with kernel size 2 × 2 and stride 1. Each 2 × 2 block
was embedded using (4, 1)-TE. Formally, suppose that b is
the 4 × 4 input image, we embedded every 2 × 2 pixels
bi jbi( j+1)b(i+1)( j)b(i+1)( j+1) for 1 ≤ i, j ≤ 3 with (4, 1)-TE. In
total, 9 qubits were used for the embedding. Note that (4, 1)-
QRAC is impossible [44].

For every QNN with a particular embedding, we employed the
same structure of circuit W(θ) that consisted of mainly two lay-
ers, the first layer consisted of Ising XX gates controlling from
every input qubits toward the output qubit. The second layer con-
sisted of Ising ZZ gates controlling from every input qubits as
the first layer*6. The binary cross entropy was used for training

*6 The Ising XX and ZZ gates are also used in https://www.
tensorflow.org/quantum/tutorials/mnist
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loss. We performed 5 different runs for each embedding method
using Adam [45] as an optimizer for 10 epochs and reported their
average accuracy. The experimental results are as in the Table 4.

As can be seen from the table, by using QRAC or TE we can
embed the images with fewer qubits. Moreover, the accuracies of
the embedding were better compared to the Naive method with 8
qubits, and were comparable to that with 16 qubits. In particular,
we can see that Convolutional TEs performed better than others,
even for Convolutonal (4, 1)-TE with only 9 qubits. The draw-
back of the Convolutional TE is the significant increase of the
parameters for the embeddings, but not all combination of 4-bit
binary strings appear; hence, some parameters can be ignored.

5. Conclusion
We propose trainable discrete feature embeddings by combin-

ing QRAC with the quantum metric learning. Our trainable em-
beddings show a remarkable advantage on the parity over embed-
ding with QRACs [13] which needs additional qubits to overcome
the linear separability limitation due to their fixed encoding. Fur-
thermore, trainable embeddings also provide good classification
performance with fewer qubits on various real-world datasets as
demonstrated numerically through the framework of VQCs and
QNNs. Another advantage of trainable embeddings is that it is
not limited by the existence of QRACs, i.e., we show that (4, 1)-
TE is possible to train and be used for classification achieving bet-
ter or comparable accuracies with fewer qubits despite the non-
existence of (4, 1)-QRAC [44]. For this reason, we believe our
trainable embedding is flexible and can provide satisfying results
in various tasks of quantum machine learning.

Lastly, there are clearly many directions for future work, in-
cluding to develop trainable embedding with more qubits, to find
good heuristics for the initialization as it heavily affects the final
result of embeddings, and to design generalized (m, n)-TEs with
regularization that provides theoretical guarantees.
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