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Fine-grained quantum supremacy based on Orthogonal
Vectors, 3-SUM and All-Pairs Shortest Paths

早川龍1,a) 森前智行1,b) 玉置卓2,c)

概要：Fine-grained quantum supremacy is a study of proving (nearly) tight time lower bounds for classical sim-
ulations of quantum computation under “fine-grained complexity” assumptions. We show that under conjectures
on Orthogonal Vectors (OV), 3-SUM, All-Pairs Shortest Paths (APSP) and their variants, strong and weak clas-
sical simulations of quantum computation are impossible in certain exponential time with respect to the number
of qubits. Those conjectures are widely used in classical fine-grained complexity theory in which polynomial
time hardness is conjectured. All previous results of fine-grained quantum supremacy are based on ETH, SETH,
or their variants that are conjectures for SAT in which exponential time hardness is conjectured. We show that
there exist quantum circuits which cannot be classically simulated in certain exponential time with respect to the
number of qubits first by considering a Quantum Random Access Memory (QRAM) based quantum computing
model and next by considering a non-QRAM model quantum computation. Finally, we show that there exists a
hierarchy of fine-grained lower bounds for classical simulations of quantum computation based on k-OV, which is
the generalized version of OV.

1. Introduction

Quantum computation is believed to have advantages in its

computing time over classical computing and there are sev-

eral approaches to show these advantages. One way is to show

that a quantum algorithm can solve a problem faster than the

best known classical algorithm, such as Shor’s factoring algo-

rithm [1]. However, the best record could be renewed [2]. An-

other approach is based on query complexity, such as Grover’s

search algorithm [3]. In query complexity, the advantage can

be unconditionally proven but we do not know the real time of

computation.

The third approach, which has been actively studied recently,

is to consider sampling problems. Classically sampling output

probability distributions of quantum computation is called a

weak simulation. In contrast, exactly calculating output prob-

ability distributions of quantum computation is called a strong

simulation. A weak simulation within a multiplicative error is

defined as follows:
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Definition 1 We say that an output probability distribution

{pz}z∈{0,1}n of a quantum computer is classically sampled in time

T within a multiplicative error ϵ if there exists a T-time clas-

sical probabilistic algorithm that outputs z with probability qz

such that |pz − qz| ≤ ϵpz for all z ∈ {0, 1}n.

Meanwhile, a weak simulation within an additive error ϵ in to-

tal variation distance is defined by replacing |pz − qz| ≤ ϵ of

the above definition with
∑

z |pz − qz| ≤ ϵpz. In this paper, we

mainly focus on a weak simulation of multiplicative accuracy.

A strong simulation is defined as follows:

Definition 2 We say that an n-qubit quantum circuit C is

strongly simulated in time T within an error ϵ(n) if for every

z ∈ {0, 1}n, there exists a T-time classical algorithm that can

calculate an amplitude ⟨z|C|0n⟩ within an additive error ϵ(n).

In this paper, we take ϵ(n) to 2−n/2.

It is known that output probability distributions of several

sub-universal quantum computing models cannot be classi-

cally sampled in polynomial time within a multiplicative er-

ror ϵ < 1 unless the polynomial-time hierarchy (PH) col-

lapses to the third level or the second level [4], [5], [6],

[7], [8], [9], [10], [11], [12], [13], [14], [15]. Several sub-

universal models that exhibit such “quantum supremacy” have
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been found such as the depth-four model [4], the Boson Sam-

pling model [5], the IQP model [6], [7], the one-clean-qubit

model (DQC1 model) [8], [9], [10], [11], the random circuit

model [12], [13], [14], and the HC1Q model [15].

In the argument of the quantum supremacy based on the PH,

the non-collapse of the PH to its third level was first used with

the complexity class postBQP and postBPP [6]. If a classical

sampler can simulate a quantum computation which is univer-

sal under the post-selection within a multiplicative error, it can

be shown that postBQP⊆postBPP. Then the PH collapses to its

third level because postBQP=PP [16] and by the Toda’s theo-

rem [17],

PH ⊆ PPP = PpostBQP ⊆ PpostBPP ⊆ ∆3, (1)

where ∆3 is the third level of the PH. Later, quantum

supremacy results based on the second level of the PH was

shown in Ref. [10], [11]. There, coC=P or equally NQP [18] is

considered instead of postBQP. If NQP = coC=P ⊆ NP holds,

then

PH ⊆ BP · coC=P = BP · NP = AM, (2)

and the PH collapses to its second level. (Our results are based

on fine-grained assumptions of coC=P ⊆ NP, which will be ex-

plained later.)

All these quantum supremacy results, however, prohibit only

polynomial-time classical simulations: these models could be

classically simulated in exponential time. To show (nearly)

tight time lower bounds for classical simulations of quan-

tum computation, the study of more “fine-grained” quantum

supremacy has been started based on fine-grained (classi-

cal) complexity. In Refs. [19], [20], impossibilities of some

exponential-time strong simulations were shown based on the

exponential-time hypothesis (ETH) and the strong exponential-

time hypothesis (SETH) [21], [22], [23]. Refs. [24], [25]

showed that output probabilities of the IQP model, the QAOA

model [26], and the Boson Sampling model cannot be clas-

sically sampled in some exponential time within a multi-

plicative error ϵ < 1 under some SETH-like conjectures.

Ref. [27] showed similar results for the one-clean-qubit model

and the HC1Q model. Refs. [20], [27] also studied fine-grained

quantum supremacy of Clifford-T quantum computation, and

Ref. [27] studied Hadamard-classical quantum computation.

We summarize the previous results of fine-grained quantum

supremacy in table 1. In addition to those summarized in this

table, fine-grained quantum supremacy in the additive-error

precision is studied in Ref. [24], [28].

In (not fine-grained) complexity theory, it is often consid-

ered that whether a problem can be solved in polynomial time

or not. For example, the “P , NP conjecture” states that a NP-

complete problem, such as 3-SAT problem, cannot be solved

in deterministic polynomial time. In fine-grained complexity

theory, stronger assumptions are conjectured. For example, the

Exponential Time Hypothesis (ETH) states that 3-SAT prob-

lem cannot be solved in 2o(n) time and the Strong Exponential

Time Hypothesis (SETH) states that there exists k-SAT prob-

lem which cannot be solved in 2(1−δ)n time for any δ > 0, where

n is the number of variables.

In fine-grained complexity theory, not only conjectures in

exponential time but also conjectures for problems which can

be solved in polynomial time are explored. A fine-grained as-

sumption for polynomial time problem, which is known to be

solved in nm time for some integer m, is usually in the form

that this problem cannot be solved in nm−δ time for any δ > 0.

Hardness results based on such conjectures are sometimes re-

ferred to as “Hardness in P [29]” because such problems are in

P.

All previous results [19], [20], [24], [25], [27] on fine-

grained quantum supremacy are based on ETH, SETH, or their

variants in which exponential time hardness for SAT problems

is conjectured. Conjectures used for strong simulation results

are fine-grained assumptions of P ⊈ NP while conjectures used

for the weak simulation results are fine-grained assumptions of

coC=P ⊈ NP.

In this paper, we show fine-grained quantum supremacy

results (in terms of the qubit-scaling) based on Orthogo-

nal Vectors (OV) [30], 3-SUM [31], All-Pairs Shortest Paths

(APSP) [32] and their variants, in which polynomial time hard-

ness is conjectured. OV, 3-SUM and APSP are widely used in

classical fine-grained complexity theory as the basis of many

other conditional hardness results for problems within P as

summarized in Ref. [29].

Among those three conjectures, OV is known to be reduced

from SETH [30]. On the other hand, no reduction is known

from OV to SETH. This means that the results based on OV

are more stable than the results based on SETH in the sense

that the results based on OV remain valid even if SETH is re-

futed. The results based on 3-SUM conjecture and APSP con-

jecture are independent of SETH (up to currently known re-

ductions) and also remain valid even if SETH is refuted. This

is one advantage of considering other conjectures than SETH.

APSP is known to be equivalent to Negative Weight Triangle

(NWT) [32], and therefore we use the conjecture of NWT to

show fine-grained quantum supremacy instead of that of APSP.

For each conjecture, we first show fine-grained quantum

supremacy results in the case when the Quantum Random Ac-

cess Memory (QRAM) [33] is available. The QRAM is the
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表 1 A summary of previous results of fine-grained quantum supremacy and our results. N is the

number of qubits in the quantum computation (photons in Boson sampling). n is some function

of N s.t. N = poly(n). t is the number of T -gates. The conjectures of 1,2,3,4,5,6 and 9 are

exponential-time versions of NQP = coC=P ⊆ NP.
Lower bound Conjecture Notion of simulation Model of QC Reference

1. 2aN (for 0 ≤ a ≤ 1/2)
degree-3-polynomial Multiplicative error

IQP circuit
[24]

2. 2
aN
2 (for 0 ≤ a ≤ 1/2) QAOA circuit

3. 2(1−a)N (for any a > 0) permanent Multiplicative error Boson sampling [24]

4. 2(1−a)n (for any a > 0) general Boolean

Multiplicative error DQC1, HC1Q [27]5. 2(1−a)N (for any a > 0) log-depth Boolean

6. 2(1−a)N (for any a > 0) Reversible circuit

7. 2(1−a)N (for any a > 0) SETH Strong Simulation Universal [19]

8.
2o(t) (for any a > 0)

3-CNF (ETH) Strong Simulation
Clifford-T

[20], [27]

9. 3-CNF Multiplicative error [27]

10. 2
2−δ

3(c+1) N (for any δ > 0, some c > 0)
OV

Strong Simulation
Universal This paper

11. 2
2−δ

6(c+1) N (for any δ > 0, some c > 0) Multiplicative error

12. 2
2−δ

13+3η N (for any δ, η > 0)
3-SUM

Strong Simulation
Universal This paper

13. 2
2−δ

2(13+3η) N (for any δ, η > 0) Multiplicative error

14. 2
3−δ

4 N (for any δ > 0)
APSP(NWT)

Strong Simulation
Universal This paper

15. 2
3−δ

8 N (for any δ > 0) Multiplicative error

quantum version of the Random Access Memory (RAM) and

it can return a superposition of data in a single step as∑
i

ai|i⟩ ⊗ |0d⟩ QRAM−−−−−→
∑

i

ai|i⟩ ⊗ |D[i]⟩, (3)

where D[i] is the d-bit data stored in the memory of index

i. Next, we show fine-grained quantum supremacy results of

quantum circuits without the QRAM by constructing specific

unitary operations which correspond to the QRAM operations.

In both cases, we show that there exist quantum circuits

whose output probability distributions cannot be classically

sampled in certain exponential time in terms of the number of

qubits. In the case of the QRAM based quantum computation,

the size of the quantum circuits is linear with respect to the

number of qubits. Note that the usage of the QRAM is common

in many quantum algorithms with classical data sets [34], [35].

We, however, also consider the non-QRAM model as well,

because the QRAM model cannot be directly realized in real

experiments. In the case of the non-QRAM model, the size of

the quantum circuits is exponential with respect to the num-

ber of qubits. Then, this result can be seen as the comparison

between the quantum computation without the QRAM power

and the classical computation with the RAM power because

fine-grained complexity conjectures are usually defined with

the word RAM model, in which a d-bit word is assumed to

be accessible in O(1) time. The large size of the quantum cir-

cuit without the QRAM may seem as a drawback, however,

the requirement of large size circuits without the QRAM is

in common with many other quantum algorithms with classi-

cal data [34], which is inevitable in the currently known tech-

niques. A more efficient treatment of the classical data sets can

be said to be an important future problem.

Note that when we use ETH or SETH, we can construct effi-

cient quantum circuits without the QRAM, because the inputs

are some Boolean functions which can be encoded into quan-

tum circuits efficiently and there are no large data to be stored

in the QRAM.

Our results and previous results are summarized in TA-

BLE 1. The lower bound times of our results are worse than

that based on SETH-like conjectures although both are in expo-

nential time. However, our results are also meaningful because

the OV conjecture is more stable than SETH and the 3-SUM

conjecture and the APSP conjecture are thought to be indepen-

dent of SETH up to currently known reductions.

Finally, we show that there exists a hierarchy of fine-grained

lower bounds for classical simulations of quantum computa-

tion based on the k-OV conjecture, which is the generalized

version of the OV conjecture. By using the k-OV conjecture,

we can derive a hierarchy of fine-grained quantum supremacy

very naturally, which is another advantage of considering con-

jectures other than SETH.

2. Results

In this section, we introduce conjectures on OV, 3-SUM,

NWT and k-OV and show fine-grained quantum supremacy re-

sults.

2.1 Orthogonal Vectors
In this subsection, we show fine-grained quantum supremacy
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in terms of the qubit scaling based on Orthogonal Vectors and

its variant. Let us introduce the following two conjectures:

Conjecture 1 (Orthogonal Vectors [29]) For any δ > 0,

there is a c such that deciding whether s > 0 or s = 0 for given

vectors, u1, ..., un, v1, ..., vn ∈ {0, 1}d, with d = c log n cannot be

done in time n2−δ. Here

s ≡ |{(i, j) | ui · v j = 0}|. (4)

Conjecture 2 For any δ > 0, there is a c such that de-

ciding whether gap , 0 or gap = 0 for given vectors,

u1, ..., un, v1, ..., vn ∈ {0, 1}d and u′1, ..., u
′
n, v
′
1, ..., v

′
n ∈ {0, 1}d with

d = c log n cannot be done in non-deterministic time n2−δ.

Here,

gap ≡ |{(i, j, k, l) | ui · v j = 0 ∩ u′k · v′l , 0}| (5)

−|{(i, j, k, l) | ui · v j , 0 ∩ u′k · v′l = 0}|.

We use two different acceptance criteria, one is on #P func-

tions, which is usually considered in fine-grained complexity

theory, and the other is on gap functions. The argument of jus-

tification of conjecture 2 is given in the subsection 2.5. Note

that we formulate Conjecture 2 through two instances of Or-

thogonal Vectors. The reason for such a formulation is also

discussed in the subsection 2.5.

OV is reduced from SETH [30]. Let us introduce the follow-

ing conjecture:

Conjecture 3 (SETH [21], [22], [23]) Let A be any deter-

ministic T (n)-time algorithm such that the following holds:

given (a description of) a CNF, f : {0, 1}n → {0, 1}, with at

most cn clauses, A accepts if # f > 0 and rejects if # f = 0,

where

# f ≡
∑

x∈{0,1}n
f (x). (6)

Then, for any constant a > 0, there exists a constant c > 0 such

that T (n) > 2(1−a)n holds for infinitely many n.

Then the following lemma hold:

Lemma 1 ([30]) If Conjecture 3 is true, then Conjecture 1 is

true.

A proof of Lemma 1 is given in Ref. [30].

Thinking of the QRAM model quantum computation, we

can show the following two results based on the above two

conjectures:

Theorem 1 (Strong simulation with QRAM) Assume that

Conjecture 1 is true. Then, for any δ > 0, there is a c such that

there exists an N-qubit and O(N)-size quantum circuit with ac-

cess to the QRAM which cannot be strongly simulated within

an additive error 2−N in time T ≡ 2
(2−δ)(N−7)

3(c+1) .

Theorem 2 (Weak simulation with QRAM) Assume that

Conjecture 2 is true. Then, for any δ > 0, there is a c such that

there exists an N-qubit and O(N)-size quantum circuit with

access to the QRAM whose acceptance probability cannot be

classically sampled within a multiplicative error ϵ < 1 in time

T ≡ 2
(2−δ)(N−14)

6(c+1) .

By constructing a unitary operation corresponding to the

QRAM process, we can show the following two results based

on the above two conjectures:

Theorem 3 (Strong simulation) Assume that Conjecture 1

is true. Then, for any δ > 0, there is a c such that there exists

an N-qubit and O(N22
N

3(c+1) )-size quantum circuit which can-

not be strongly simulated within an additive error 2−N in time

T ≡ 2
(2−δ)(N−7)

3(c+1) .

Theorem 4 (Weak simulation) Assume that Conjecture 2 is

true. Then, for any δ > 0, there is a c such that there exists

an N-qubit and O(N22
N

6(c+1) )-size quantum circuit whose accep-

tance probability cannot be classically sampled within a mul-

tiplicative error ϵ < 1 in time T ≡ 2
(2−δ)(N−14)

6(c+1) .

2.2 3-SUM
In this subsection, we show fine-grained quantum supremacy

in terms of the qubit scaling based on 3-SUM and its variant.

Let us introduce the following two conjectures:

Conjecture 4 (3-SUM [29]) Given a set S ⊂
{−n3+η, ..., n3+η} of size n, deciding s > 0 or s = 0 can-

not be done in time n2−δ for any η, δ > 0. Here,

s ≡ |{(a, b, c) ∈ S × S × S | a + b + c = 0}|. (7)

Conjecture 5 Given two sets S , S ′ ⊂ {−n3+η, ..., n3+η} of size

n each, deciding gap , 0 or gap = 0 cannot be done in non-

deterministic time n2−δ for any η, δ > 0. Here,

gap (8)

≡ |{(a, b, c, a′, b′, c′) ∈ S 3 × S ′3 | a + b + c = 0 ∩ a′ + b′ + c′ , 0}|

− |{(a, b, c, a′, b′, c′) ∈ S 3 × S ′3 | a + b + c , 0 ∩ a′ + b′ + c′ = 0}|.

Thinking of the QRAM model quantum computation, we

can show the following results based on these two conjectures:
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Theorem 5 (Strong simulation with QRAM) Assume that

Conjecture 4 is true. Then for any η, δ > 0, there exists an N-

qubit and O(N)-size quantum circuit with access to the QRAM

which cannot be strongly simulated within an additive error

2−N in time T ≡ 2
(2−δ)(N−18)

13+3η .

Theorem 6 (Weak simulation with QRAM) Assume that

Conjecture 5 is true. Then for any η, δ > 0, there exists an N-

qubit and O(N)-size quantum circuit with access to the QRAM

whose acceptance probability cannot be classically sampled

within a multiplicative error ϵ < 1 in time T ≡ 2
(2−δ)(N−36)

2(13+3η) .

By constructing a specific unitary operation corresponding

to the QRAM operation, we can show the following results

based on the above two conjectures:

Theorem 7 (Strong simulation) Assume that Conjecture 4

is true. Then for any η, δ > 0, there exists an N-qubit and

O(N22
N

13+3η )-size quantum circuit which cannot be strongly sim-

ulated within an additive error 2−N in time T ≡ 2
(2−δ)(N−18)

13+3η .

Theorem 8 (Weak simulation) Assume that Conjecture 5 is

true. Then for any η, δ > 0, there exists an N-qubit and

O(N22
N

2(13+3η) )-size quantum circuit whose acceptance probabil-

ity cannot be classically sampled within a multiplicative error

ϵ < 1 in time T ≡ 2
(2−δ)(N−36)

2(13+3η) .

2.3 Negative Weight Triangle
In this subsection, we show fine-grained quantum supremacy

in terms of the qubit scaling based on Negative Weight Triangle

and its variant. Let us introduce the following two conjectures:

Conjecture 6 (Negative Weight Triangle [32]) Given an

edge-weighted n-vertex graph G = (V, E) with integer weights

from {−M, ...,M}, where M is a certain integer, deciding

whether s > 0 or s = 0 needs n3−δ time for any δ > 0. Here,

s ≡
∣∣∣{(i, j, k) ∈ V3|(i, j, k) is good}

∣∣∣, (9)

where we say (i, j, k) is good if it is a triangle and

W(ei, j) +W(e j,k) +W(ek,i) < 0, (10)

where ei, j is the edge between vertices i and j, and W(ei, j) is

the weight of it. Note that W(ei, j) = 0 means that the edge ei, j

has weight 0, which is different from no-edge.

Conjecture 7 Given two edge-weighted n-vertex graph G =

(V, E) and G′ = (V ′, E′) with integer weights from {−M, ...,M},
where M is a certain integer, deciding whether gap , 0 or

gap = 0 needs non-deterministic n3−δ time for any δ > 0. Here,

gap (11)

≡
∣∣∣{(i, j, k, a, b, c) ∈ V3 × V ′3|(i, j, k) is good ∩ (a, b, c) is not good}

∣∣∣
−
∣∣∣{(i, j, k, a, b, c) ∈ V3 × V ′3|(i, j, k) is not good ∩ (a, b, c) is good}

∣∣∣.
Thinking of the QRAM model quantum computation, we

can show the following two results based on the above two

conjectures:

Theorem 9 (Strong Simulation with QRAM) Assume that

Conjecture 6 is true. Then, for any δ > 0, there is an M such

that there exists an N-qubit andO(N)-size quantum circuit with

access to the QRAM which cannot be strongly simulated within

an additive error 2−N in time T ≡ 2
3−δ

4 (N−4 log(2M+1)−22).

Theorem 10 (Weak Simulation with QRAM) Assume that

Conjecture 7 is true. Then, for any δ > 0, there is an M such

that there exists an N-qubit andO(N)-size quantum circuit with

access to the QRAM whose acceptance probability cannot be

classically sampled within a multiplicative error ϵ < 1 in time

T ≡ 2
3−δ

8 (N−8 log (2M+1)−44).

By constructing a specific unitary operation corresponding

to the QRAM process, we can show the following two results

based on the above two conjectures:

Theorem 11 (Strong Simulation) Assume that Conjecture 6

is true. Then, for any δ > 0, there is an M such that there ex-

ists an N-qubit and O(N22
N
2 )-size quantum circuit which can-

not be strongly simulated within an additive error 2−N in time

T ≡ 2
3−δ

4 (N−4 log (2M+1)−22).

Theorem 12 (Weak Simulation) Assume that Conjecture 7

is true. Then, for any δ > 0, there is an M such that there exists

an N-qubit and O(N22
N
4 )-size quantum circuit whose accep-

tance probability cannot be classically sampled within a mul-

tiplicative error ϵ < 1 in time T ≡ 2
3−δ

8 (N−8 log (2M+1)−44).

2.4 Hierarchy of Fine-grained quantum supremacy
In this subsection, we show that there exists a hierarchy of

fine-grained lower bounds for classical simulations of quantum

computation. For this purpose, we consider the conjecture of

classical fine-grained complexity theory called k-Orthogonal

Vectors (k-OV) [40]. The k-OV problem and the k-OV conjec-

ture are defined as follows:

Definition 3 (k-OV problem) For an integer k ≥ 2, given

k sets (U1, ...,Uk) of n vectors from {0, 1}d(n) each, decide

whether there exist ui ∈ Ui for each i such that over Z,∑
l∈[d(n)]

u1[l] · · · uk[l] = 0. (12)
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Conjecture 8 (k-OV Conjecture [40]) For any δ > 0, there

exist d = c log n that any classical deterministic algorithm for

the k-OV problem requires nk−δ time.

We slightly change this problem into the Gap-k-OV problem

and define the Gap-k-OV Conjecture as follows:

Definition 4 (Gap-k-OV problem) For an integer k ≥ 2, the

Gap-k-OV problem is to determine, given k sets (U1, ...,Uk) of

n vectors from {0, 1}d(n) each and k sets (U′1, ...,U
′
k) of n vectors

from {0, 1}d(n) each, whether gap(U1, ...,Uk,U′1, ...,U
′
k) , 0 or

= 0, where

gap(U1, ...,Uk,U′1, ...,U
′
k)] (13)

≡
∣∣∣∣{(u1, ..., uk, u′1, ..., u

′
k)| s.t.

∑
l∈[d(n)]

u1[l] · · · uk[l] = 0

∩
∑

l∈[d(n)]

u′1[l] · · · u′k[l] , 0
}∣∣∣∣

−
∣∣∣∣{(u1, ..., uk, u′1, ..., u

′
k)| s.t.

∑
l∈[d(n)]

u1[l] · · · uk[l] , 0

∩
∑

l∈[d(n)]

u′1[l] · · · u′k[l] = 0
}∣∣∣∣.

Conjecture 9 (Gap-k-OV Conjecture) For any δ > 0, there

exist d = c log n that the Gap-k-OV problem requires non-

deterministic nk−δ time.

Those conjectures mean that there exists a time hierarchy

for the hardness of k-OV problem or the Gap-k-OV problem

because they can be solved in nk time by the brute-force algo-

rithm but requires nk−δ time for any δ > 0. The k-OV conjecture

can also be reduced from SETH.

Lemma 2 ([30]) If Conjecture 3 is true, then Conjecture 8 is

true.

Reduction from k-OV to SETH is not known and therefore,

the following theorems are more stable than the results based

on SETH as in the case of OV.

Thinking of the QRAM model quantum computation, we

can show the following results based on these two conjectures:

Theorem 13 (Hierarchy of Strong Simulation with
QRAM) Assume that Conjecture 8 is true, then for any δ > 0

and every integer k ≥ 2, there is a c > 0 such that there exists

an N-qubit and O(N)-size quantum circuit with access to a

QRAM, which cannot be strongly simulated within an additive

error 2−N in time T ≡ 2
(k−δ)(N−2k−3)

(k+1)(c+1) .

Theorem 14 (Hierarchy of Weak Simulation with
QRAM) Assume that Conjecture 9 is true, then for any

・
・
・

・
・
・

図 1 Hierarchy of fine-grained quantum supremacy. This figure means

that quantum circuit Ck (k = 2, 3, ...) is in a class of circuits which

can be simulated classically in 2
k(N−k−2)
(k+1)(c+1) time but not in a class which

can be simulated classically in 2
(k−δ)N−k−2)

(k+1)(c+1) time for any δ > 0.

δ > 0 and every integer k ≥ 2, there is a c > 0 such that

there exists an N-qubit and O(N)-size quantum circuit with

access to a QRAM, whose acceptance probability cannot be

classically sampled within a multiplicative error ϵ < 1 in time

T ≡ 2
(k−δ)(N−4k−6)

2(k+1)(c+1) .

By constructing a specific unitary operation corresponding

to the QRAM operation, we can show the following results

based on the above two conjectures:

Theorem 15 (Hierarchy of Strong Simulation) Assume

that Conjecture 8 is true, then for any δ > 0 and every inte-

ger k ≥ 2, there is a c > 0 such that there exists an N-qubit and

O(N22
N

(k+1)(c+1) )-size quantum circuit, which cannot be strongly

simulated within an additive error 2−N in time T ≡ 2
(k−δ)(N−2k−3)

(k+1)(c+1) .

Theorem 16 (Hierarchy of Weak Simulation) Assume that

Conjecture 9 is true, then for any δ > 0 and every integer

k ≥ 2, there is a c > 0 such that there exists an N-qubit and

O(N22
N

2(k+1)(c+1) )-size quantum circuit, whose acceptance prob-

ability cannot be classically sampled within a multiplicative

error ϵ < 1 in time T ≡ 2
(k−δ)(N−4k−6)

2(k+1)(c+1) .

Theorem 14 and 16 show that for each integer k ≥ 2, there ex-

ists a quantum circuit Ck which could be sampled classically in

2
k(N−2k−6)
(k+1)(c+1) time but cannot be simulated in 2

(k−δ)(N−2k−6)
(k+1)(c+1) time. This

time lower bound grows as k increase. Therefore, those results

show that there exists a hierarchy of fine-grained lower bounds

for classical simulations of quantum computation (See Fig. 1).

2.5 Justification of conjectures
In this subsection, we argue about an “justification” of Con-
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jecture 2, 5, 7 and 9 which are not standard form in the fine-

grained complexity theory and defined in this paper. Let us

take Conjecture 1 (OVC) and Conjecture 2 (Gap-N-OVC) for

example. Gap-N-OVC is different from OVC in the point that

Gap-N-OVC is defined through a variant of a gap function and

the hardness even in non-deterministic time is conjectured.

First, note that in the definition of Gap-N-OVC, gap is de-

fined through two instances of the OV problem as

gap ≡ |{(i, j, k, l) | ui · v j = 0 ∩ u′k · v′l , 0}| (14)

−|{(i, j, k, l) | ui · v j , 0 ∩ u′k · v′l = 0}|.

This is because if we define gap′ ≡ |{(i, j) | ui · v j = 0}| −
|{(i, j) | ui · v j , 0}|, the existence of an instance which satisfies

gap′ = 0 is unclear.

Then the important point is to consider whether a non-

deterministic algorithm can decide whether gap , 0 or = 0

faster than a deterministic algorithm. Up to currently known

algorithms, the only known way to decide gap , 0 or = 0

is to compute some #P functions (the number of acceptance

paths and the number of rejection paths) and then compute

the gap. In our case, this corresponds to the counting of

|{(i, j, k, l) | ui · v j = 0 ∩ u′k · v′l , 0}| and |{(i, j, k, l) | ui · v j ,

0 ∩ u′k · v′l = 0}|. The currently known deterministic algorithm

to compute #OV of Ref. [36] takes n2 time as n→ ∞ and there

is no known result that this can be substantially improved with

the power of non-determinism. Those are the reason why our

conjectures should be justified.

Similar arguments can be applied to Conjecture 5, 7 and 9.

2.6 Proofs of Theorems
In this paper, we omit the proofs of Theorems. The proofs

of Theorems are available at Ref. [43].
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