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Trusted centerによる量子計算の古典検証
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概要：The classical channel remote state preparation (ccRSP) is an important two-party primitive in

quantum cryptography. Alice (classical polynomial-time) and Bob (quantum polynomial-time) exchange

polynomial rounds of classical messages, and Bob finally gets random single-qubit states while Alice finally

gets classical descriptions of the states. In [T. Morimae, arXiv:2003.10712], an information-theoretically-

sound non-interactive protocol for the verification of quantum computing was proposed. The verifier

of the protocol is classical, but the trusted center is assumed that sends random single-qubit states to

the prover and their classical descriptions to the verifier. If the trusted center can be replaced with a

ccRSP protocol while keeping the information-theoretical soundness, an information-theoretically-sound

classical verification of quantum computing is possible, which solves the long-standing open problem. In

this paper, we show that it is not the case unless BQP is contained in MA. We also consider a general

verification protocol where the verifier or the trusted center first sends quantum states to the prover, and

then the prover and the verifier exchange a constant round of classical messages. We show that the first

quantum message transmission cannot be replaced with a ccRSP protocol while keeping the information-

theoretical soundness unless BQP is contained in AM. Furthermore, we also study the verification with

the computational soundness. We show that if a ccRSP protocol satisfies a certain condition even against

any quantum polynomial-time malicious prover, the replacement of the trusted center with the ccRSP

protocol realizes a computationally-sound classical verification of quantum computing. The condition is

weaker than the verifiability of the ccRSP. At this moment, however, there is no known ccRSP protocol

that satisfies the condition. If a simple construction of such a ccRSP protocol is found, the combina-

tion of it with the trusted center verification model provides another simpler and modular proof of the

Mahadev’s result. We finally show that the trusted center model and its variant with the ccRSP have

extractors for low-energy states. For details, see [T. Morimae and Y. Takeuchi, arXiv:2008.05033]

Classical verification of quantum computing with trusted center

1. Introduction

Whether quantum computing is classically verifiable

or not is one of the most important open problems in

quantum information science [1], [2], [3]. If the sound-

ness is the computational one, the Mahadev’s break-

through [4] solves the open problem affirmatively. Or,

if more than two provers, who are entangled but not al-

lowed to communicate with each other, are allowed, the

information-theoretical soundness is possible for a classi-
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cal verifier [5], [6], [7], [8], [9]. In this paper, we focus

on the single prover setup and the information-theoretical

soundness (except for Secs. 5 and 6). Furthermore, we re-

quire that the honest prover is quantum polynomial-time,

and therefore the well-known fact BQP ⊆ IP does not

solve the open problem.

In Ref. [10], an information-theoretically-sound non-

interactive protocol for the verification of quantum com-

puting was proposed. In this protocol, the verifier is classi-

cal, but the trusted center is assumed. The trusted center

first sends random BB84 states (i.e., |0⟩, |1⟩, |+⟩ ≡ |0⟩+|1⟩√
2

,

and |−⟩ ≡ |0⟩−|1⟩√
2

) to the prover, and their classical de-

scriptions to the verifier. The prover then sends a classical
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message to the verifier. The verifier finally does classical

polynomial-time computing to make the decision. (For

details, see Ref. [10]. In Sec. 2 of this paper, we explain

the protocol for the convenience of readers.)

The classical channel remote state preparation (ccRSP)

is an important primitive in quantum cryptography. It

is a two-party protocol between Alice and Bob where

Alice is classical polynomial-time, and Bob is quantum

polynomial-time. Alice and Bob exchange polynomial

rounds of classical messages, and Bob finally gets random

single-qubit states while Alice finally gets their classical

descriptions. The concept of the remote state prepara-

tion was first introduced in Ref. [11] in the context of

blind quantum computing. Ref. [12] studies the remote

state preparation in an abstract framework for blind quan-

tum computing. Computationally-secure ccRSP protocols

have been constructed under the standard assumption in

cryptography that the LWE is hard for quantum comput-

ing [13], [14], [15], [16].

If the trusted center of the protocol of Ref. [10]

can be replaced with a ccRSP protocol while keeping

the information-theoretical soundness, the information-

theoretically-sound classical verification of quantum com-

puting is possible, which solves the open problem affirma-

tively. In this paper, we show that it is not the case unless

BQP ⊆ MA. Because BQP ⊆ MA is not believed to hap-

pen, our result suggests that the trusted center cannot be

replaced with the ccRSP while keeping the information-

theoretical soundness. (Actually, what we obtain is a

slightly stronger result, BQP ⊆ MABQP, where MABQP

is MA with honest quantum polynomial-time Merlin. Be-

cause MABQP ⊆ MA, we obtain BQP ⊆ MA.)

The no-go result can be shown even for approximate

ccRSP protocols where the prover and the verifier succeed

with some probability psucc even if the prover is honest,

and what the prover gets is close to the ideal state.

Replacing the trusted center of Ref. [10] with the ccRSP

is a natural approach to solve the open problem, but our

result shows that it does not work. It does not mean

the impossibility of the (information-theoretically sound)

classical verification of quantum computing, because there

might be another approach, but at this moment we do not

know any promising approach. (For example, the combi-

nation of the FK protocol [17] with the ccRSP will not

work, because the malicious unbounded prover can learn

all trap information.) On the other hand, showing the im-

possibility of the (information-theoretically sound) clas-

sical verification of quantum computing is also difficult,

because it means the separation between BQP and BPP.

(If we define IPBQP as the set of decision problems that

are verified by an IP protocol with an honest quantum

polynomial-time prover, we have BPP ⊆ IPBQP ⊆ BQP.

Therefore, IPBQP ̸= BQP means BPP ̸= BQP.)

We also consider a general verification protocol where

the verifier or the trusted center first sends quantum

states to the prover, and then the prover and the veri-

fier exchange a constant round of classical messages. We

show that the first quantum message transmission can-

not be replaced with a ccRSP protocol unless BQP is

contained in AM. (More precisely, what we actually ob-

tain is BQP ⊆ IPBQP[const], where [const] means a

constant round, but it leads to BQP ⊆ AM because

IPBQP[const] ⊆ IP[const] ⊆ AM.)

The second proof technique can also be applied to

show that replacing the trusted center in the protocol of

Ref. [10] with the ccRSP is impossible unless BQP ⊆ AM,

but we can show a stronger result, namely, BQP ⊆ MA,

by using the specific structure of the protocol of Ref. [10].

We also study the verification with the computational

soundness. We show that if a ccRSP protocol satisfies a

certain condition even against any quantum polynomial-

time malicious prover, the replacement of the trusted cen-

ter of the protocol of Ref. [10] with the ccRSP protocol

realizes a computationally-sound classical verification of

quantum computing. The condition is weaker than the

verifiability of the ccRSP. It was believed that the verifia-

bility of a ccRSP is necessary if it is used as a subroutine of

a protocol of the verification of quantum computing, but

this result suggests that it is not necessarily the case. At

this moment, however, no ccRSP protocol is known that

satisfies the condition. If a ccRSP protocol that satisfies

the condition is constructed in a simple way, the combi-

nation of it with the protocol of Ref. [10] provides another

simpler and modular proof of the Mahadev’s result.

We also show that the trusted center model and its vari-

ant with the ccRSP have extractors for low-energy states.

A quantum proof of quantum knowledge was first intro-

duced in Refs. [18], [19], and a classical proof of quantum

knowledge was introduced in Ref. [20].

Finally, let us mention a recent related work. The pa-

per [21] showed three results on the ccRSP in the context

of blind quantum computing. First, they showed that the

ccRSP cannot be composable secure under the no-cloning

theorem. There is, however, a possibility that the BFK

protocol [22] combined with a ccRSP protocol is still com-

posable secure. Their second result is that it is not the
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case unless the no-signaling principle is violated. Finally,

they showed that the BFK protocol combined with the

Qfactory protocol [15] satisfies the game-based security.

This paper is organized as follows. In Sec. 2, we review

the verification protocol of Ref. [10]. In Sec. 3, we show

our first result, and then in Sec. 4, we show the second re-

sult on the general setup. We study the verification with

the computational soundness in Sec. 5. We finally show

the existance of extractors in Sec. 6. The computational

soundness is considered only in the last two sections. In

other sections, we implicitly assume that the malicious

prover is unbounded.

2. The verification protocol of Ref. [10]

In this section, we review the verification protocol of

Ref. [10]. The protocol is given in Fig. 1. It was shown in

Ref. [10] that the protocol can verify any BQP problem:

Theorem 1 For any promise problem A = (Ayes, Ano)

in BQP, Protocol 1 satisfies both of the following with

some c and s such that c− s ≥ 1
poly(|x|) :

• If x ∈ Ayes, the honest quantum polynomial-time

prover’s behavior makes the verifier accept with prob-

ability at least c.

• If x ∈ Ano, the verifier’s acceptance probability is at

most s for any (even unbounded) prover’s deviation.

3. Replacement of the trusted center

Let us consider Protocol 2, which is the same as Pro-

tocol 1 except that the trusted center is replaced with a

ccRSP protocol. As a ccRSP, we consider an approximate

one: if the prover behaves honestly, the verifier and the

prover succeed with probability psucc. If they are success-

ful, the verifier gets (h,m) ∈ {0, 1}N+1 and the prover gets

an N -qubit state σh,m with probability P (h,m), where

1

2

∥∥∥∑
h,m

P (h,m)σh,m − 1

2N+1

∑
h,m

N⊗
j=1

Hh|mj⟩⟨mj |Hh
∥∥∥
1
≤ ϵ

is satisfied for a certain small ϵ. Even if the prover be-

haves honestly, they fail with probability 1 − psucc. Fur-

thermore, we assume that psucc is samplable in classical

polynomial-time, which is a reasonable assumption be-

cause the description of the ccRSP protocol is known to

the verifier.

We show that such a modified protocol is not an

information-theoretically-sound verification protocol un-

less BQP ⊆ MABQP.

Before stating the result, let us define the class MABQP.

0. The input is an instance x ∈ A of a promise problem

A = (Ayes, Ano) in BQP, and a corresponding N -qubit local

Hamiltonian

H ≡
∑
i<j

pi,j

2

( I⊗N + si,jXi ⊗Xj

2
+

I⊗N + si,jZi ⊗ Zj

2

)
with N = poly(|x|) such that if x ∈ Ayes then the ground

energy is less than α, and if x ∈ Ano then the ground

energy is larger than β with β − α ≥ 1
poly(|x|) . Here,

I ≡ |0⟩⟨0| + |1⟩⟨1| is the two-dimensional identity opera-

tor, Xi is the Pauli X operator acting on the ith qubit, Zi

is the Pauli Z operator acting on the ith qubit, pi,j > 0,∑
i<j pi,j = 1, and si,j ∈ {+1,−1}.

1. The trusted center uniformly randomly chooses

(h,m1, ...,mN ) ∈ {0, 1}N+1. The trusted center sends⊗N
j=1(H

h|mj⟩) to the prover. The trusted center sends

(h,m) to the verifier, where m ≡ (m1, ...,mN ) ∈ {0, 1}N .

2. The prover does a POVM measurement {Πx,z}x,z on the

received state. When the prover is honest, the POVM cor-

responds to the teleportation of a low-energy state |E0⟩
of the local Hamiltonian H as if the states sent from

the trusted center are halves of Bell pairs. The prover

sends the measurement result, (x, z), to the verifier, where

x ≡ (x1, ..., xN ) ∈ {0, 1}N and z ≡ (z1, ..., zN ) ∈ {0, 1}N .

3. The verifier samples (i, j) with probability pi,j , and ac-

cepts if and only if (−1)m
′
i(−1)m

′
j = −si,j , where m′

i ≡
mi ⊕ (hzi + (1− h)xi).

図 1 The verification protocol of Ref. [10].

Definition 1 A promise problem A = (Ayes, Ano) is in

MABQP if and only if there exists a classical probabilistic

polynomial-time verifier such that

• If x ∈ Ayes, there exists a quantum polynomial-time

prover that sends a classical polynomial-length bit

string to the verifier such that the verifier accepts

with probability at least 2
3 .

• If x ∈ Ano, for any polynomial-length classical bit

string from the prover (who can be unbounded), the

verifier’s acceptance probability is at most 1
3 .

It is easy to show that MABQP ⊆ MA. Now let us show

our first result.

Theorem 2 Assume that Protocol 2 can verify any

BQP problem. It means that for any promise problem

A = (Ayes, Ano) in BQP, Protocol 2 satisfies both of the

following with some c and s such that c− s ≥ 1
poly(|x|) :

• If x ∈ Ayes, the honest quantum polynomial-time

prover’s behavior makes the verifier accept with prob-

ability at least c.

• If x ∈ Ano, the verifier’s acceptance probability is at

most s for any (even unbounded) prover’s deviation.

Then, BQP ⊆ MABQP.
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0. The same as the step 0 of Protocol 1.

1. The verifier and the prover run a ccRSP protocol. If

the prover behaves honestly, they succeed with prob-

ability psucc. If they are successful, the verifier gets

(h,m1, ...,mN ) ∈ {0, 1}N+1 and the prover gets an N -qubit

state σh,m with probability P (h,m). If they fail, the verifier

rejects.

2. The same as the step 2 of Protocol 1.

3. The same as the step 3 of Protocol 1.

図 2 The modified protocol.

4. More general setup

In this section, we study a more general setup and show

a similar no-go result. Let us consider the verification

protocol, Protocol 3. In the first step, the verifier (or

the trusted center) generates quantum states {ρi}i. We

assume that this quantum process is a simple one (for ex-

ample, ρi is an N -tensor product of random BB84 states),

because the verifier’s (or the trusted center’s) quantum

burden should be minimum. (If the verifier can do com-

plicated quantum computing, there is no point in dele-

gating quantum computing to the prover: the verifier can

do the quantum computation by itself. Furthermore, if a

trusted center that can do complicated quantum comput-

ing is available, the verifier has only to use it instead of

interacting with the untrusted prover.)

We show that the first quantum message transmission

(step 1) of Protocol 3 cannot be replaced with a ccRSP

protocol unless BQP ⊆ IPBQP[const], where IPBQP[const]

is the IP with a constant round and a honest quan-

tum polynomial-time prover. Because IPBQP[const] ⊆
IP[const] ⊆ AM, it means BQP ⊆ AM.

Let us consider Protocol 4 that is equivalent to Proto-

col 3 except that the first quantum step of Protocol 3 is

replaced with a ccRSP protocol. We consider a general

setup where the ccRSP protocol is an approximate one:

even if the prover is honest, they succeed with probability

psucc, and what the prover gets is a state ρ′i with proba-

bility p′i, where ρ
′
i is close to ρi and {p′i}i is close to {pi}i.

Furthermore, we assume that psucc is known, {p′i}i is sam-

plable in classical polynomial-time, and ρ′i can be gener-

ated in quantum polynomial-time. These assumptions are

reasonable, because the description of the ccRSP protocol

is known to the verifier, and {ρ′i}i and {p′i}i are close to

{ρi}i and {pi}i, respectively.

Theorem 3 Assume that Protocol 4 can verify any

BQP problem. It means that for any promise problem

A = (Ayes, Ano) in BQP, Protocol 4 satisfies both of the

following with some c and s such that c− s ≥ 1
poly(|x|) :

• If x ∈ Ayes, the honest quantum polynomial-time

prover’s behavior makes the verifier accept with prob-

ability at least c.

• If x ∈ Ano, the verifier’s acceptance probability is at

most s for any (even unbounded) prover’s deviation.

Then, BQP ⊆ IPBQP[const].

Remark. Again, the theorem requires only the correct-

ness for the ccRSP. Neither the blindness nor the verifia-

bility is required.

1. The verifier generates a state ρi with probability pi, and

sends it to the prover. Or, the trusted center generates

a state ρi with probability pi, sends it to the prover, and

sends its classical description [ρi] to the verifier.

2. The prover and the verifier exchange a constant round

of classical messages. The honest prover is quantum

polynomial-time, but the malicious prover is unbounded.

The verifier is classical probabilistic polynomial-time.

3. The verifier finally makes the decision.

図 3 The general protocol with quantum channel.

1. The prover and the verifier run a ccRSP protocol. If the

prover is honest, with probability psucc, the prover gets a

state ρ′i with probability p′i, and the verifier gets the classi-

cal description [ρ′i] of ρ
′
i. With probability 1 − psucc, they

fail, and the prover and the verifier get an error message.

If they fail, the verifier rejects.

2. The same as the step 2 of Protocol 3.

3. The same as the step 3 of Protocol 3.

図 4 The general protocol with ccRSP.

5. Computational soundness

We have seen that the replacement of the trusted center

in the protocol of Ref. [10] with the ccRSP does not re-

alize the information-theoretically-sound classical verifica-

tion of quantum computing. What happens if we consider

the computational soundness? In this section, we show

that if a ccRSP protocol satisfies a certain condition, the

protocol of Ref. [10] with the ccRSP is the classical ver-

ification of quantum computing (with the computational

soundness).

Theorem 4 Assume that a ccRSP protocol satisfies the

following: For any quantum polynomial-time malicious

prover’s deviation, the verifier gets (h,m) ∈ {0, 1}N+1

with probability

P (h,m) ≡ 1

2
Tr

[
(I⊗M

B1
⊗ |ϕh,m⟩⟨ϕh,m|B2

)ρB1,B2

(I⊗M
B1

⊗ |ϕh,m⟩⟨ϕh,m|B2)
]
,
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and the prover gets a state

σh,m ≡ 1

2P (h,m)
TrB2

[
(I⊗M

B1
⊗ |ϕh,m⟩⟨ϕh,m|B2

)ρB1,B2

(I⊗M
B1

⊗ |ϕh,m⟩⟨ϕh,m|B2
)
]

(up to a CPTP map on it), where B1 is a subsystem

of M qubits, B2 is a subsystem of N qubits, |ϕh,m⟩ ≡⊗N
j=1 H

h|mj⟩, ρB1,B2 is any (M + N)-qubit state (that

could be chosen by the prover), and TrB2
is the partial

trace over the subsystem B2. Then, if we replace the

trusted center of the protocol of Ref. [10] with the ccRSP

protocol, it is the classical verification of quantum com-

puting (with the computational soundness).

We have three remarks. First, note that when

ρB1,B2
=

( |00⟩+ |11⟩√
2

⟨00|+ ⟨11|√
2

)⊗N

,

P (h,m) = 1
2N+1 for any (h,m) and σh,m =⊗N

j=1 H
h|mj⟩⟨mj |Hh, which corresponds to the honest

prover case.

Second, the above condition is not satisfied against the

unbounded malicious prover, because the unbounded ma-

licious prover can get the classical description of σh,m and

therefore what the prover gets is not σh,m but, for exam-

ple, σh,m ⊗ |h,m⟩⟨h,m|.
Third, it was believed that the verifiability is neccesary

for a ccRSP protocol when it is used as a subroutine of the

verification of quantum computing: even if malicious Bob

deviates during the ccRSP protocol, it should be guar-

anteed that the correct state is generated in Bob’s place

(up to his operation on it). Theorem 4 suggests that it is

not necessarily the case: as long as it is guaranteed that

Bob does the correct measurement (i.e., the projection

|ϕh,m⟩⟨ϕh,m| ) on any state, the soundness of the verifica-

tion protocol holds. It is easy to see that the verifiability

is a special case of our condition: In our condition, ρB1,B2

is any, but the verifiability requires that ρB1,B2
is the N -

tensor product of the Bell pair. Our condition is therefore

weaker than the verifiability.

6. Extractors

In this section, we show that the trusted center verifica-

tion protocol of Ref. [10] and its variant with the ccRSP

studied in Sec. 5 have extractors for low-energy states.

Theorem 5 The protocol of Ref. [10] has a quantum

polynomial-time extractor that satisfies the following.

When a prover P ∗ makes the verifier accept an instance

x ∈ A with probability at least 1 − ϵ, the extractor that

oracle accesses to P ∗ outputs a state η whose expectation

energy Tr(ηH) on the local Hamiltonian H corresponding

to x is less than ϵ.

Theorem 6 Assume that a ccRSP protocol satisfies the

conditions of Theorem 4, and ρB1,B2 can be generated in

quantum polynomial-time. Then, the protocol of Ref. [10]

with the ccRSP has a quantum polynomial-time extractor

that satisfies the following. When a prover P ∗ makes the

verifier accept an instance x ∈ A with probability at least

1 − ϵ, the extractor that oracle accesses to P ∗ outputs

a state η whose expectation energy Tr(ηH) on the local

Hamiltonian H corresponding to x is less than ϵ.
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