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Abstract: In accordance with the development of cloud computing, the term Web APIs is becoming the backbone
of the Internet of Things. The publication of data models is extremely important to enhance the interoperability of
Web APIs providers and Web APIs consumers. Currently, data models of a protocol are created by experts, however,
humans might cause mistakes such as syntax errors, typographical errors, and inconsistencies of abbreviations. This
paper introduces an idea of the automated generation of data models by software( machine) as it can handle the draw-
backs of humans and it is much faster than humans. The biggest barrier of using the machine is that it lacks domain
knowledge to export terms and abbreviations from protocol descriptions in natural languages. To this end, Natural
Language Processing models are utilized. In this research, a case study of the ECHONET Lite protocol is introduced.
The results proved that machines can mimic experts in exporting terms and abbreviations while assures the syntactic
error-free and consistency of generated data models. Furthermore, the machine supports fast, reliable while enhances
reusability in exporting data models for multiple platforms.
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1. Introduction
WebAPIs[1],[2] have been utilized as the backbone of the

World Wide Web, cloud infrastructure, mobile applications, and
recently the Internet of Things (IoT). WebAPIs allow the en-
capsulation of IoT device resources as APIs and being invoked
through the network via standard Web protocols[3]. In order
to avoid confusion and improve the interoperability of the API
providers and API consumers, a data model that provides a stan-
dard format to document WebAPIs is essential.

Commonly, data models are proposing and creating by humans
with expert knowledge. However, it is a time-consuming task and
humans might make mistakes such as syntax errors, typographi-
cal errors, and inconsistencies of definitions. The automatic gen-
eration of data models by machines could handle the drawbacks
of humans. Nevertheless, the biggest barrier of using a machine
is that it is required the expert knowledge to generate definitions
of properties of a data model. In Table 1, an example of device
object definition from the ECHONET consortium*1 is described.
Based on the definition, a data model that describes device name
commercialAirconditionerIndoorUnit with a property name auto-
maticOperationModeStatus was created by the ECHONET con-
sortium in the latest release (Device Description(JSON)v1.1.1).

1 Japan Advanced Institute of Science and Technology, Nomi, Ishikawa
923–1211, Japan

2 University of Science Ho Chi Minh, Ho Chi Minh City 700-0000, Viet-
nam

a) cupham@jaist.ac.jp
b) lttung@jaist.ac.jp
c) ntienhuy@fit.hcmus.edu.vn
d) ytan@jaist.ac.jp
*1 https://echonet.jp/

Table 1: A Sample of ECHONET Device Objects Specification
Package-type commercial air conditioner (indoor unit)

(except those for facilities)
Contents of propertyProperty name EPC Value range (decimal notation) ...

... ... ... ...
This property indicates, when the air
conditioner is opening in the ”automatic”
operation mode, the function (”cooling”,
’heating”, ”dehumidification”, ”air circulation”
, or ”other”) that is currently being used.

...

Current function
(”automatic”

operation
mode)

0xAE

The following values shall be used:
Cooling: 0x42
Heating:0x43
Dehumidification: 0x44
Air circulation: 0x45
Other: 0x40

...

... ... ... ...

By utilizing the rule-based approach without human exper-
tise, the machine could generate a data model with (i) de-
vice name: packageTypeCommercialAirconditionerIndoorUni-
tExceptThoseForFacilities, and (ii) property name: currentFunc-
tionAutomaticOperationMode. Obviously, definitions created by
humans are clearer and also shorter which are essential to pro-
vide data models for providing Web APIs.

Recently, machine learning (ML) evolution has achieved
breakthroughs in several domains that included natural language
processing (NLP)[4]. Therefore, the utilization of NLP tech-
niques is expected to overcome the drawbacks of the machine-
based approach. This research introduces a solution to generate
data models from the ECHONET device objects[5] automatically
to reduce human efforts to support WebAPIs for the ECHONET
specification. The main contributions of this work include the
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following:
• Propose and implement an NLP solution mimicking humans

in generating data model definitions from descriptions. The
goal of the NLP solution is to eliminate unimportant words
from descriptions in order to create short and meaningful
terms and abbreviations from descriptions of ECHONET de-
vice objects.

• Propose and implement a solution to syntactically serial-
izes ECHONET device objects into JSON based data models
that are compliant with ECHONET Lite Web API*2 and FI-
WARE smart data models*3.

The rest of this paper is organized as follows. In Section 2, con-
cepts related to the ECHONET device objects and current effort
in supporting data models for the ECHONET device objects spec-
ification are briefly introduced. Section 3 highlights the overall
concept and main building blocks of the proposed solution. Sec-
tion 4 and Section 5 describes the building blocks of the proposed
solution in greater details. Moreover, the design, implementation,
and evaluation are also described. Finally, our work is summa-
rized in Section 3.

2. Related Work
2.1 ECHONET Device Objects
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Fig. 1: The Concept of ECHONET Device Objects

ECHONET device objects are a part of the ECHONET Lite[6],
a leading protocol for smart homes in Japan[7]. As illustrated in
Fig. 1, a device object represents a logical device that is classified
into seven groups and 117 classes of devices in the latest English
specification released in 2020 (Release M). Device objects offer
a standardized method to represent device resources and services
via a list of Property and constraints for each property. In [8],
the author proposed an idea of providing a JSON version of the
ECHONET device objects and the JSON schema that supports
the latest version of the device object is available at the HEMS
Interoperability Test Center homepage*4.

2.2 Data Models for ECHONET Device Objects
As in Fig. 2, data models could be supported at Device, Home

Gateway, and Management Platform layer. The ECHONET de-
vice objects specification in Section 2.1 support the data model
of the Device layer.

In [10], an ontology-based data model was introduced at the

*2 https://echonet.jp/web api/
*3 https://github.com/smart-data-models/data-models
*4 http://sh-center.org/files/156
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Fig. 2: ITU-T Y.2070 Functional Architecture for Home Energy
Management System [9]

Home Gateway layer. The proposed data model supports the
ECHONET device objects specification (release K) and ambient
assisted living platform[11]. However, the data model was syn-
tactically generated by the software and the naming conventions,
as well as abbreviation definitions, have been done manually by
humans.

Since data models and descriptions are extremely important
to support WebAPI[12], the developments of data models at the
Management Platform layer (in Fig. 2) are emerging. For exam-
ple, FIWARE[13] provides several JSON based smart data mod-
els for smart city infrastructure and the developments of new data
models for other ”smart” infrastructures are actively promoting.
The oneM2M ecosystem released ontology-based semantic data
model[14], and also smart device templates (syntactic). How-
ever, the support of ECHONET device objects specification has
not been introduced in those platforms.

In [15], a data model, namely JSON Device Description, was
created by the ECHONET Lite Web API Working Group. The to-
tal of 43/117 JSON schemes describe ECHONET device objects
specification, however, only 27 out of 43 schemes are valid where
the rests need to be revised and 4 of them require major rework-
ing. As it was created by humans, common mistakes of this data
model include: spell mistakes, syntactic mistakes (missing fields,
misplaced fields, incorrect use of quotation marks), incorrect de-
scriptions of data type. In a report, it took approximately 3 hours
for an experienced person to create JSON schemes for 6 sensor
objects with only 9 properties. It is such a time-consuming task
to create data models for the ECHONET device objects specifi-
cation manually.

3. Automated Generation of Data Models:
The Concept

The overall concept of the proposed solution, namely eModel-
Gen is illustrated as in Fig. 3. The input of the whole process is
the specification document (ECHONET device objects specifica-
tion). Fortunately, the JSON version of the specification is avail-
able as an open document so the process to digitalize the input
data is unnecessary. The structure of provided input document is
defined as followings:
• metadata indicates overall information of the documents

such as version information, release number, etc.
• A list of supported data type definitions.
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• A list of device objects. A device object provides (i) the
object code (EOJ), (ii) name of the object in English and
Japanese, and (iii) a list of properties supported by the ob-
ject.

• A property provides (i) the property code (EPC), (ii) name
of the property in English and Japanese, (iii) access rules
of the property, and (iv) data type of possible values of the
property.

Since the document is created to support developers to interact
with hardware devices, the object code and property code are ac-
ceptable. However, for the Web APIs development, the object
name and property name are fundamental. Therefore, a process to
extract semantics of the object name and property name descrip-
tions to create terms and abbreviations is inevitable. Currently,
this process is manually achieved by experts and the eModelGen
has a Semantic Analyser (in Section. 4) to mimic this process.

Even though the semantic abbreviations are the same for differ-
ent models to enhance the consistency and reusability, each data
model has different syntactic formats as well as data type defini-
tions. Therefore, for a target data model, a Syntactic Serializer
(in Section. 5) is required.

4. Semantic Analyser
In the development of this building block, we realize that a

concise representation of object and property names as abbrevia-
tions can reduce time and effort to create data models. It comes
from a ton of redundancy from unnecessary information in the
description string. In recent systems, a formation of property and
object names is carried out by humans and it is too difficult and
burdensome to deploy in the huge of samples in the practical en-
vironments. Therefore, it motivates and encourages us to build
an automatic system to extract short and meaningful abbrevia-
tions from the long descriptions of the specification. Based on
the requirement of this area, we prefer concise patterns to the
long ones. It means that the shorter the extracted phrases are, the
better results we get. In other sense, the representation needs to
maintain the semantic of these original descriptions.

To build the NLP model, features of sentences and words (from
description sentences) are extracted by Key-phrase Feature Ex-
traction in Section 4.1. Then, we apply our Description Extrac-
tion algorithm to obtain the critical components from the origi-
nal input in Section 4.2. Next, to prove the effectiveness of our
model, the result of our model as well as the comparison with

the manual samples are represented thoroughly in Section 4.3.
Besides, we also present some samples and discussion in Sec-
tion 4.3.4.

4.1 Key-phrase Feature Extraction
The most important task in the key-phrase extraction is map-

ping a sentence into a vector space. However, the representation
must reflect the meaning of the original input. A sentence of nat-
ural language is the interaction among words. Each word in a
sentence has its own meaning and connection with the others. Re-
cently, in most of NLP works, BERT[16] is one of the famous and
popular language models to extract the sentence features. Specif-
ically, BERT is the pre-trained model for language understanding
by stacking the multiple transformer[17] layers. The sequence of
this process is as following:
• Firstly, the input sentence is segmented into a sequence of

words and two special characters: [CLS ] and [SEP] to mark
the start and end of a sentence. Then, an embedding layer
learns how to present the token, segment, and position rep-
resentation of each character. By combining three compo-
nents, each word contains the semantic and positional infor-
mation with the others.

• Next, BERT takes advantage of deep bidirectional trans-
former layers to learn the interaction among words in a sen-
tence. By the huge feed-forward neural layers and attention
heads in the multi-head attention mechanism, it is considered
the relationship and meaning of words in the sequence. The
key strength of BERT is the first pre-trained language model
in NLP. Nonetheless, it is proved its robustness and effec-
tiveness in many NLP tasks including sentence similarities.
In recent years, there are more and more approaches using
BERT in the sentence embedding layers as a fundamental
component of systems. Therefore, we also take advantage of
BERT to integrate it into our model.

The detail of BERT for sentence feature extraction is presented
as in Fig. 4. In this model, the input is object and property de-
scriptions sentences and the output is the vector of special char-
acter [CLS ].
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Fig. 4: Sentence Feature Extraction Model

The [CLS ] vector indicates the start of sequence which is con-
sidered to have an ability to generate the rest of the sequence.
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Therefore, in most of NLP researches, the [CLS ] features are
used to represent the sentence.

4.2 Description Extraction
After obtaining the features of the description as vectors, we

need to determine the important scores for each word. In the NLP
area, a similarity of words and sentences is often evaluated in the
geometric measure in Euclidean space such as cosine similarity.
Therefore, in this model, we use Algorithm 1 to extract the mean-
ingful set of words through the cosine similarity measurement.

Algorithm 1: Description Extractor: Select Important
Words from Description d Under The Budget b

Input: description d, budget b
Result: List of words

1 vd := BERT(d);
2 while i < |d| do
3 vi := BERT(di);
4 si := sim(vi, vd);
5 end
6 W̄i := sorted({wi, si}

|d|
i=0) ;

7 c := ∅ ;
8 k := 0 ;
9 while (( f (c) < b) ∧ (k ≤ |d|)) do

10 c := c ∪ s̄k ;
11 k := k + 1 ;
12 end
13 out := reorder(c, pd) ;

First, we get the representation of descriptions via the key-
phrase feature extraction sub-module in Equation 1.

vd = BERT (d) ∈ RN (1)

Then, we get the relation score of vd and each word’s representa-
tion vi through Equation 2. These similarities are used to sort the
order of words in the priority of choice.

si = sim(vi, vd) =
vivd
||vi||||vd ||

=

∑N
n v

n
i v

n
d√∑N

n v
n
i

√∑N
n v

n
d

(2)

To get the important words, we prefer higher similarity words
to lower ones. However, we expand the selected set c through
the budget b with the cost function f (.). Since the standard cost
function has not been defined in this step, we propose a budget
ratio that corresponds to the percentage of selected words and the
original description as in Equation 3.

f (c) = 100
|c|
|d|

(3)

Finally, we assume that the order of selected word is similar to
its position in the original description, which is controlled by the
reorder(.) function.

4.3 Experiments
4.3.1 Dataset

Dataset for the experiment is extracted from the JSON Device
Description provided by the ECHONET consortium. From the
JSON Device Description, samples are extracted as followings:

• Device name:
– Input: The descriptions.en field of a JSON schema which

is a sentence to describe the object.
– Output: The deviceType field of the JSON schema which is

a abbreviation manually created by humans.
• Property name:
– Input: The property.descriptions.en field of a JSON schema

which is a sentence to describe the property.
– Output: The propertyName field of the JSON schema

which is a abbreviation manually created by humans.
The summary of the dataset is as in Table 2.

Table 2: The Detail of Dataset
Training Set Testing Set

Number of Samples 100 470
Avg Number of Word: Input 4.94 4.63
Avg Number of Word: Output 3.16 3.24
Budget Ratio 73.54 77.46

4.3.2 Evaluation Metrics
Firstly, deviations of (i) machine-generated outputs and (ii)

human-created outputs from original inputs are calculated. As
for the result, the smaller deviation score shows better perfor-
mance. The Edit Distance[18] and the Word Error Rate[19]
are selected as the first evaluation metric.
• Edit Distance (ED)-Levenshtein distance: A method to

quantify how dissimilar two strings are by counting the min-
imum number of operations required to transform one string
into the other. The ED works at the phoneme level of a char-
acter string with the transform function including substitu-
tion, deletion, and insertion.

• Word Error Rate (WER): This is a deviation of the Lev-
enshtein distance which deals with the word level instead of
the phoneme level.

Secondly, semantic preservation scores of (i) machine-
generated outputs and (ii) human-created outputs from original
inputs are calculated. As for the result, the greater score shows
better performance because one of the critical requirements of the
automated generation solution is to maintain the semantics of de-
scriptions through the extraction phase. The Cosine Similarity
that shows the distance in the geometric space of the input and
the output vectors by calculating angles between these vectors,
has been utilized for this metric.

Lastly, the correlation coefficient of (i) machine-generated out-
puts and (ii) human-created outputs from original inputs are cal-
culated. This coefficient implies the correlation with human judg-
ments in grammar and meaning preservation[20] of machine-
generated outputs. In Machine Translation, BLEU[21] calculates
the n-grams overlap of automatic and manual samples to evaluate
the similarity between the references (human-created samples)
and prediction (machine-generated samples). In this experiment,
BLEU is selected as the last evaluation metric.
4.3.3 Results

Experiment results are separated into 3 metrics includes (i) De-
viation Scores, (ii) Semantic Preservation Scores, and (iii) Ma-
chine Generation Correlation Coefficient as followings:

Deviation Scores: Differences at the character level as well as
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Fig. 5: Word Error Rate and Normalized Edit Distance Between
human-Created and Machine-Generated Samples Comparing to
Original Descriptions

the word level of machine-generated samples, and human-created
samples are visualized in Fig. 5. WER and normalized ED Scores
of human-created samples are constant values 0.47 and 0.45 (at
75% of the budget) respectively. At the same rate of 75% of
the budget as human-created samples, WER and normalized ED
scores of the machine-generated samples are 0.23 and 0.21 which
show fewer deviations, and hence achieve the better performance.
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Fig. 6: Cosine Similarity Between Human-Created and Machine-
Generated Samples Comparing to Original Descriptions

Semantic Preservation Scores: Scores that imply the level
of semantic preservation after shorting original descriptions to
generate device name and property name of machine-generated
approach and human-created approach are summarized in Fig. 5.
At the constant rate of 25% of the budget, human-created sam-
ples preserve 94% the meaning of original descriptions. Mean-
while, at the same budget ratio, machine-generated samples pre-
serve 97% of the original descriptions. The proposed NLP model
achieves the same score 94% as humans at approximately 60%
of the budget. Results show that machine-generated samples
can (i) preserve higher level of semantic at the same length of
human-created samples or (ii) preserve the same level of seman-
tic as humans with the shorter outputs.

Machine Generation Correlation Coefficient: The correla-
tion coefficient of machine-generated samples and human-created
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Fig. 7: Correlation Coefficient of Machine-Generated Samples
and Human-Created Samples using BLEU

samples that shows the degree of similarity between the imple-
mented NLP model and humans, is visualized in Fig. 7. Cur-
rently, the BLEU score at 0.35 is considered as human-like solu-
tions in Machine Translation[22]. At the rate 75% of the budget,
the BLEU score of the implemented model is 0.67. Even though
the implemented NLP model is an extractive approach for short
descriptions, the result shows that the implemented model can
totally imitate humans in exporting creating definitions for data
models.
4.3.4 Discussion

In this section, three typical cases include Good, Bad, and Fair
of machine-generated property names are discussed. A good case
is as followings:
• Input: vegetable compartment temperature setting
• Human-Created Result: vegetableTemperature
• Machine-Generated Result: vegetableCompartmentTemper-

ature
The property created by humans is shorter and understandable
however to describe a property of a refrigerator, the word com-
partment is important and should not be eliminated.

A bad case is as followings:
• Input: remaining stored electricity 2
• Human-Created Result: remainingCapacity2
• Machine-Generated Result: remainingStoredElectricity

The machine-generated property name is semantically better than
the human-created one. However, the number 2 is important to
identify the property. To handle other cases, an effort to create
rules for word choice is required.

A typical fair case is as followings:
• Input: illuminance level
• Human-Created Result: brightness
• Machine-Generated Result: illuminanceLevel

This is a fair case because the generation of synonyms is not yet
supported by the NLP model.

5. Syntactic Serializers
To enhance the reusability and the extensibility of the eMod-

elGen, the Semantic Analyzer and the Sentactic Serializers are
decoupled. By implementing the corresponding serializer, a tar-
get data model could be exported. In the scope of this paper, a
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data model for ECHONET Lite Web APIs (namely Device De-
scription), and a data model that supports ECHONET Lite in the
FIWARE (namely EL Smart Data Model) are introduced. Both
data models are based on JSON, however, XML, RDF, YANG,
and ontology-based models could be extended in the same man-
ner. The structure of JSON schemes of Device Description and
EL Smart Data Model are summarized in Fig. 8 and Fig. 9 re-
spectively. Both of the JSON schemes share the same deviceOb-

deviceType:deviceObjectName
eoj:
description:
title:
description:

properties
property1

epc:

#Object	code
#Description

#Title	of	the	data	model
#Description	of	the	data	model

#Propertycode

Data	typeschema:

description: #Description
writable: #boolean	value
observable:#boolean	value

propertyN
epc:#Propertycode

Data	typeschema:

description: #Description
writable: #boolean	value
observable:

...

#boolean	value

Fig. 8: JSON Schema of the Data Model for the ECHONET Lite
Web APIs (Device Description)

$schema:http://json-schema.org/schema#
$schemaVersion:
$id:
title:
description:
type:
allOf

$ref:

$ref:
properties

property1
type:

required: ["id", "type", "property1", ... ]

#Version	number
#ID	of	the	data	model
#Title	of	the	data	model

#Description	of	the	data	model
object

#Reference	1

#Reference	n

Data	type

id:

type:

#ID	of	the	entity

#Type	of	the	entity	
(deviceObjectName)

$ref:#Reference	2

metadata: #Metadata	
property2

type: Data	type
metadata: #Metadata	

propertyN
type: Data	type
metadata: #Metadata	

...

Fig. 9: JSON Schema of FIWARE Smart Data Models (EL Smart
Data Model)

jectName and propertyName which are outputted from Section 4.
The data type definition is the last piece of the puzzle.

The ECHONET device objects specification includes data type
definitions, however, those definitions are incompatible with the
JSON-Schema[23] definitions which are being used to provided
data formats for most of the current Web APIs. Since data type
formats of the JSON-Schema are also supported in the FIWARE
ecosystem and ECHONET Lite Web APIs, data type fields (in

Table 3: Data Type Mapping Rules from ECHONET Device Ob-
jects Specification into JSON-Schema

ECHONET Device
Objects Specification

FIWARE EL
Smart Data Model

Web APIs
Device Description

Naming
Conventions

Device Object Name EntityType deviceType
Property Name propertyName propertyName

Data Type

Definitions

Raw type String type
Number type
Numerical value type
Level type

Number type

State type (2 values) Boolean type
State type (>2 values) Array type
Object type
Bitmap type Object type

Date-time type Date-time type
Time type Time type

Fig. 8 and Fig. 9) are mapped from the ECHONET device objects
specification as in Table 3.

Because the target data models are in the form of JSON
schemes, JSON serializers are created using a Java library,
namely JSON.simple. As a result, the total number of 117 JSON
schemes of each data model has been generated within several
seconds and 100% of generated schemes have been passed the
JSON syntactic checker.

6. Concluding Remarks
In accordance with the developments of Web APIs for the IoT,

data models that allow both API providers and consumers to be
able to interoperate, are emerging. This paper proposed a solution
to pave the way to generate data models automatically using ma-
chines to assist and reduce human efforts. The proposed solution
provides (i) a semantic analyzer to imitate humans in creating
definitions by utilizing NLP techniques, and (ii) syntactic seri-
alizers to generate data models in a fast and reliable manner. By
decoupling those building blocks, the reusability and extensibility
in supporting data models for different platforms are assured.

The proposed semantic analyzer is able to mimic humans to
create property names and object names from the ECHONET de-
vice objects specification. Experimental results show that defini-
tions generated by the machine are better than humans in preserv-
ing the semantic of original descriptions while keeping it shorter.
Nevertheless, there are cases where only semantic is not enough,
and the verification as well as corrections by experts are needed
at the last step to release data models. Therefore, the NLP model
could be utilized as a recommendation system.

The proposed syntactic serializers have beat humans in syntac-
tic exporting because machines have the ability to work tirelessly
and speedily. In this paper, two JSON serializers have been im-
plemented to export data models for ECHONET Lite Web APIs
and FIWARE Smart Data Models. As a result, within several
seconds, 117 JSON schemes for each data model have been ex-
ported and 100% of the generated JSON schemes pass the syn-
tactic checker.

The extension of an ontology serializer is desired as future
work.
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