F—EAX—Z - VRAFL 64 -9
(1988 3 15)

RF¥xraAXlT—2a3DEODANFSQLER DA R
ENAY R ZNINTTA EAREE

HHKET 58

F— I R—ZBMOFFa A F~2a vidFIHEA V7 72— A2 F— 9 R—AT = s Ry 54 LFIESE
EEPDTAVATLAOERIVETH S, AR TR FFa AT~ a viz@ L -SQLEM oME oL E
OV THRT 5, SQLTHEMLEMt ARTFHRELZ LOBBRLR T VB TELI LY TES, LaL,
AMNFEETRBATEL 20 RFELEEMOATH H, KEZAMIZH L TRARTEBV 2 WIS L EEL
RTVEANF LT h HBELERT 5, REMCKEEM 2 ARTREANT OHETHRET 5 HikEir—
BTERV, FFRarryi—va v IRLVBELAEELER - OBEOME"OBETHE V5, Zolidik
ERSNIBECEM 70y 2 OJEFEBEIZAV S, REAOBEIHMWIZLEM 7O v 2 258 % 5,

Generating Nested SQL Queries for Documentation

Mohamed El-Sharkawi Yahiko Kambayashi
Dept. of Computer Sci. and Communication Eng.

Kyushu University

Documenting database queries is necessary to realize database users’ aid systems, like user interfaces and
database workbench. In this paper, we consider the problem of generating forms of SQL queries suitable for
documentation. In SQL, a complex query can be written in an easy to understand form. It can be written in the
nested form, i.e. as simple query blocks connected together. In this paper, we discuss how to convert a given
query to a nested form suitable for documentation. The nested form, however, can represent only acyclic
queries. For cyclic queries, we generate a form called seminested form which more understandable than the
unnested form. There may be more than one way to write a tree or cyclic query in the nested or the seminested
form. To select among these alternatives the most suitable form for documentation, we use the notion of
“Strength of Joins”. This notion is used to arrange query blocks in the generated form. The stronger the join
between two relations, the closer their corresponding query blocks.

(1)

1- Introduction

Because of the advantages of the relational model
of databases (4], we find computerized applications
that use DBMSs based on that model. One of the
important phases to realize a computerized
application is the documentation phase. System
design and system operation have to be well
documented to help understanding, evaluating, and
modifying the system. Therefore, it is also necessary
to consider documenting database queries.
Documenting database queries is not only necessary
in such systems, but also to build users aid systems,
such as user interfaces [7] and database workbench
[8]. In this paper, we consider the problem of
documenting queries. We discuss the case when
queries are written in SQL (Structured Query
Language) [1,3]. SQL is, now, considered as a
standard relational query language. In SQL, it is
easy to write and understand complex queries. Using
the notion of nested queries, i.e. a set of simple
queries nested together, a complex query may be
written in understandable form (see Fig.1).
Sometimes, the query submitted to the system is not
suitable for documentation, hence, we transform the
given SQL query into another, semantically
equivalent, form which is suitable for
documentation. Our approach to generate SQL
queries for documentation is based on transforming
an unnested query into the nested form which is
suitable for documentation. If the given query is
nested we first transform it into its equivalent
unnested one, since the nested form given by a user
may not be the best for documentation purpose.
Transforming an SQL query from one form to
another was also presented in [10], to optimize
processing of nested SQL-like queries. A nested
query is transformed into an unnested one to exploit
the existing query optimizer, which is well suited for
optimizing unnested queries.

2- Basic Concepts
2-1 SQL Syntax

In this section we describe the syntax of SQL that
is relevant to our discussions. Full description of SQL
can be found in [1,3,5]. In SQL the basic query
consists of three clauses: SELECT, FROM, and
WHERE. These three clauses constitute a query
block. The SELECT clause enumerates output
attributes. FROM clause contains names of relations
involved in the query. SELECT and FROM clauses
are mandatory to write a query. WHERE clause,
however, is optional. It contains condition that must
be satisfied by the query. A condition may contain
one of the comparison operators =,%,<,=,>,Z. If
there is more than one condition to be satisfied, they
may be combined by logical operations AND, OR,
and NOT. Beside those comparison operators, there

are also set operators. In the WHERE clause
predicates, as relevant to our discussions, to be
satisfied may be one of the following:

(a) A simple predicate, has the form:

Attribute <Comparison operator> Constant value.
(b) A join predicate, has the form:

Attribute 1 <Comparison operator> Attribute 2.

(c) A nested predicate, has the form:
Attribute/Constant value <Comparison operator>
Query block.

To write a join query in SQL there are two forms, the
unnested and the nested form. In the unnested form
the query is written as a single query block in which
the FROM clause contains names of relations in the
query, and joins are represented as join predicates. In
the nested form, joins are represented as nested
predicates. The nested form simplifies writing
complex queries. A complex query may be written as
a set of nested query blocks using nested predicates.
Fig.1 (a), (b), and (c) show a query graph, its
corresponding query in the unnested and nested
forms, respectively. We define SQL forms as follows.

C Rl sELECT R1.C SELECT R1.C
FROM R1,R2,R3,R4 FROMR1
A WHERE R1.A = R2.A WHERERLA =
ANDR1.B=R3.B SELECT R2.A
B ANDR3.D=R4.D FROM R2
R3 ANDRLB =
R2 SELECT R3.B
D FROM R3
(b) WHERE R3.D=
(a) SELECT R4.D
FROM R4
R4 (c)

Fig.1 SQL query represented in unnested

: and nested forms
Definition 1: A query is in the unnested form when
all the joins are written as join predicates.
Definition 2: A query is in the pure nested form
when all the joins are written as nested predicates.
Definition 3: A query is in the seminested form
when some of the joins are written as join predicates
and others as nested predicates.
Throughout the paper we use nested form to mean
pure nested form.
2-2 Query Graphs

To formalize our discussions, we use query graphs
to express queries. We need the following definitions.
Definition 4: A query graph G=(N,E) is a labeled
undirected graph, where N is the set of nodes, and E
is the set of edges in the graph. Each node i in N
corresponds to a query block. One block contains one
or more relation. There is an edge between nodes i
and j iff a relation in the block represented by node i
is joined with another relation in the block
represented by node j. Each edge ejj is labeled with
the attribute that is joining blocks i and j. If there is

(2)

more than one attribute that join the two blocks,
there will be an edge corresponds to each attribute.
Let n be the number of nodes and k; be the degree of
node i (the number of edges connected to node i).
Among the N nodes one is distinguished as the root
of the graph. The root is considered as the node that
corresponds to the block from which the output is
obtained, this node will be called output node. If
there is more than one output node, one is selected as
the root.

We define three types of query graphs, chain, tree,
and cyclic query graphs [2]. A query bas the same
type of its corresponding query graph.

Definition 5: A connected graph is a tree graph if it
has n nodes and n-1 edges. That is the graph is
circuit-free. A node that is of degree 1, is called a leaf
node. When n is greater than 2, one node is selected
as a root. Other nodes are called inner nodes.
Definition 6: A query graph is a chain graph, if it is
a tree graph such that, there is only two nodes with
degree 1 and every other node satisfies k; = 2.

(Note that, one of the leaf is the root.)

Definition 7: A query graph is cyclic if it is not a tree
graph.

Definition 8: The distance between two nodes i, j,
dlijl, is defined as the number of edges in the path
that is connecting the two nodes.

(Note that, for a cyclic graph, it may exist two nodes

u, v, such that there are more than one dlu,v].)
Throughout the paper we assume that every graph is
connected.

Query graphs that are corresponding to chain, tree,
and cyclic queries are given in Fig. 2(a), (b), and (c)

respectively.
é ()

Fig.2 Query graphs for chain, tree,

(a)

and cyclic queries

3- Basic Conversion Procedures

In this section we will develop procedures for tree
queries which will be generalized in the following
section. We assume that there is only one block from
which the query output is obtained, generalization
will be given in Section 5.
3-1 Strength of Joins

Although the join structure of a query can be as a
tree or a cyclic graph, SQL representation requires
one dimensional representation. Thus it is necessary
to determine the order of query blocks. It is

reasonable that two blocks which are joined strongly
are adjacently placed. Thus, we need conditions of
strength of joins. For example, in a tree graph some
inner nodes may have degree greater than 2. Query
block corresponds to such a node i has a WHERE
clause with k;-1 ANDs, thus we need to decide which
join will be represented in the WHERE clause, which
in the first AND, and so on. Here, we present
selection criteria by which the order of joins is
determined. The most strongest join is written in the
WHERE clause, and the join with least strength is
written in the last AND. These criteria are based on
perceiving the database relations as representing
real-world entities and relationships between those
entities; we may think of a join between two relations
as a way to describe connections between real-world
components (i.e. entities and relationships). Some
joins may represent strong connections or even
collect information, about an entity, distributed
among several relations. All edges, then, are
assigned weights represent the join strength, the
minimum the strong. Criteria to decide strength of
joins are as follows:

(1) For some node i of degree k;, k; > 1, if there is one
and only one join such that the join attribute is the
key of that node i (a key of a node is a key of one of
the relations in the block represented by that node),
we consider that join as the strongest one. If all the
joins are keys of relations in the block represented
by the node, the one which is key of a relation from
which the output of the block is obtained is
considered as the strongest join. The rationale is, a
key of a relation is used to identify an entity or a
relationship in the world, thus joining two relations
by a key of one of them is considered as collecting
together information about that entity. This
information, due to requirements of database deign,
is distributed among several relations.

(2) If there is more than one join such that the joining
attributes are alternative keys of the node i and one
among them is in the output of the block, we consider
that one as the most important join. Since that key is
playing an important role, and if it is the query
output, the user is interested in information
concerning it.

(3) If there is no join attribute, among all the joins,
which is a key of the node i, and, however, one among
them is a key of another node, then that one is
represented as the strongest join. If there are more
than one, we select the one whose block is of
minimum degree.

(4) Consider a case where there is a node i need to be
joined with k; nodes and the node has strongest join
with i isj. In the subgraph rooted at j, there is some
node I such that dfj,l] is longer than all d[m,v], for
any node m in k;, and for any node v in the subgraph

(3

rooted at m. Here we have a tradeoff, if we write the
join between i and j first, the rest of joins between i
and any node in k; will be written so far from the
block of node i. In this case, we combine the two
nodes, i and j, into one and then write the query. Fig.
3 shows an example. The join between relations in
block B; and relations in block Bg, in Fig. 3(a), is

0\ B1

0 ™~ ~ BLB2

A B
. O
C
B3 D B3
B4
D
B5
B5

(a) (b)

Fig. 8 Case when the strongest join is in the
longest path

strongest than that between B; and B3. According to
previous criteria this join is selected to be
represented first. However, the path from the root
node to the leaf node that contains Bg is longer than
that containing B3. It may be better to combine nodes
B; and By together as in Fig.3(b). After combining
the two nodes, it is not needed to select among B3 and
By, since B3 is considered strong relative to the
original output node.

O

A A A

Fig. 4 Equivalent query graphs
(5) If no of the join attributes satisfies the above
criteria, then all joins are considered have the same
strength, we consider the subtree with minimum
weight as the most strongest one and represent it
before the others.

ox__ Bl 0

A A
B2
c B3
D B3
B4 BS

(a) (b)

Fig. 5 Two equivalent tree graphs

3-2 Equivalence Transformation of Query
Graphs
When p relations are joined by identical attribute
we can apply the equivalence transformation shown
in Fig. 4. We use such a transformation as a
preprocessing step to convert a graph into its
equivalent one that will be written in deep level of
nesting. For example, consider the query graph
given in Fig. 5(a), it may be converted into the graph
in Fig. 5(b). This situation can be stated as follows:
Given a query having some node i of degree k;.
Among the k; nodes there are m nodes such that all
the edges that connect the m nodes to node i have
same label, L. Then we can use the previously
mentioned transformation to convert the graph to
another equivalent one that will be written in a
deeper level of nesting than the original one. We
first calculate for each node j in m d[j,rl, where r is
the root node. If there is some node u such that d{u,r]
is less than any dfj,r], we construct a chain of m-1
nodes, the excluded node is node u. If, however, all
the nodes in m have same distance from the root, we
construct a chain of m nodes.
The following procedure, RG, does the job. We
assume that there is a procedure that accepts a
graph, two nodes mand n, and calculates d[m,n].
Procedure RG
Input : A query graph.
Output : A reconstructed form of the input query.
begin
if the graph has some node i having m, m = k;,
such that all the edges that connect the node i to
m nodes have same label then do
for each node uz in m do
calculate diu,r], where r is the root of the
graph;
end do
if for all the m nodes have same d[u,r] then do
construct a chain consisting of the m nodes;
append this chain to node i;
/* i will be of degree ki-m+1*/
end do
else
if among the m nodes there is some node u’
with minimum distance from the root then
do
construct a chain consisting of the m-1
nodes; /*the excluded node is u’*/
append this chain to node i;
/* i will be of degree k;-m+ 2%/
end do
end if
end if
end if
end

The node that will be the root of the chain of m nodes
is selected as follows:

(1) If the graph is cyclic, it is the node that
participate in the cycle.

(2) If the graph is tree, it is the node with the most
strong join.

3-3 Converting Tree Queries for Documentation

(4)

Before we give the procedure to convert an
unnested tree query into its equivalent nested one,
we give procedure to handle chain queries. A chain
query is a simple case of tree queries. In this case it is
not needed to apply the selection criteria, any node is
at most of degree two. In the chain graph, we
number the nodes from 1 to n, such that the root is
numbered 1 and the only leaf is numbered n. There is
an edge between nodes i and i+1, i=1,...,n-1.
Procedure CQ
Input: A chain query written in the unnested form
and its query graph. ,
Output: The same query written in the nested form.
begin

fori=1tondo

ifi=1 then
SELECT clause of i contains output
attributes;

else
SELECT clause of i contains the attributes
joining i with i-1;
end if
FROM clause of i contains name of relation R;;
if i # n then
‘WHERE clause of i contains the attributes
joining i with i+1;
else
i has no join predicate in the WHERE
clause;
end if
end for
end
Before rewriting a tree query in the nested form, we
have to reconstruct the tree according to the strength
of joins. For each node i has k; = 1, we sort the k;
nodes such that the leftmost to be the most strong
join and the rightmost be the least strongest one.
After reconstructing the tree we apply the following
procedure to rewrite the query. We need the
following definition.
Definition 9: For each node i which is connected to
C; nodes, we define among these C; nodes a node NtR;
(Nearest to Root) as that node with minimum
distance to the root. For some nodes NtR; = i.

Procedure TQ
Input: A tree query written in the unnested form
with its reconstructed graph.
Output: The same query written in the nested form
While traversing the tree in a preorder traversal,
write the query following the next algorithm.
begin
J=1
For each node i do
if i is the root then
SELECT clause of i contains output
attributes;
else
if NtR; # i then do
SELECT clause of i contains attribute
joining { with NtR;;
ki=ki-1;
end do
else SELECT clause of i contains
attribute joining i with the root;
end if

end if
FROM clause of i contains name of relation R;;
if iis not a leaf node then do .
WHERE clause of i has k;-1 ANDs;
‘WHERE clause of i contains the strongest
join among k;;
repeat
AND clause number j contains the join
of strength j+1;
until j=k;-1;
end do
else
node ¢ has no join predicate in the WHERE
clause
end if
end for
end

4- Conversion Procedure for General Cyclic
Queries

A cyclic graph consists of n nodes and m edges,
such that m = n. While the nested form of SQL is
very much understandable, it cannot represent cyclic
queries. The seminested form, however, can
represent cyclic queries, and is easier to understand
than the unnested form. In this form, all the joins
between relations are written in the nested form, but
either one of those whose edges constitute the cycle.
In the query graph, if all the edges are dotted, the
query will be written in the unnested form, and if all
the edges are solid, the query will be written in the
nested form. If some edges are dashed and the others
are solid the query will be written in the seminested
form. That is, relations connected by dotted lines are
merged into a block. Fig.6 (a), (b), and (¢) show an
example of a query written in unnested , nested, and
seminested forms, respectively. As in case of tree q

C R1 R2 R3 C R1 R2

o G Wit Sl o Wil

SELECT R;.Cy SELECT R;.Cy

O

FROM Ry,Rp,Rg FROM Ry

WHERER;.C; = Rp.C; ~ WHERER, Gy

AND R2.C3 - R3-C3 SELECT R2.02
FROM Ry
WHERE Ry C3 =

SELECT R3.C3
(2) FROM R3
¢t R1 R2 R3 (b)
AN c2 c3

O—00

SELECT Ry.Cy

FROM Ry

WHERER;.Co =
SELECT R2.Ca
FROM Rg,R3
WHERE Ry.C3=R;3.C3

()

Fig.6 A query written in the unnested,
nested, and seminested forms

(5)

ueries, we need to select which join among those
causing the cycle to be represented in the nested form
and which in the unnested form. We use same
criteria as in tree queries. When multiple attributes
join is allowed we may combine n-1 nodes in the cycle
into one node, and then the query becomes a tree one.
When n > 38, it is better to use the approach used
when multiple attributes join is not permitted, since
the number of nodes needed to be combined is large
making the query not easy to understand. ’
In this context, we need to define a spanning tree of a
cyclic graph.

Definition 10: Given a connected cyclic graph
Ge(Ve,Ee), where V¢ is the set of nodes and E; is the
set of edges. We define a spanning tree of that graph
as the connected tree T4(Vg,Eg) such that Vg=V, and
Es g Ec.

Definition 11: Given a connected weighted cyclic
graph, i.e. a graph such that each edge is assigned
certain weight. A spanning tree of the graph is called
minimum spanning tree, when summation of weights
in the tree is the minimum among all candidate
spanning trees.

Select O
From R1
Where R1A =
Select R2.A
From R2
Where R2.B =
Select R3.B
FromR3
AndR2.C=
Select R4.C
From R4
Where R4.D = B4
Select R5.D
From R5
Where R5.G = R1.G

Fig.7 A cyclic query written in the seminested form
It is known that there is an efficient procedure to
obtain a minimum spanning tree for a given graph.
Procedure CYQ
Input: A cyclic query written in the unnested form
and its query graph
Output: The same query written in the seminested
form
begin

If multiattributes join is allowed and the nodes in
the cycle = 3 thendo
Combine the output node with that one of the
strongest join into one new node;
Apply procedure TQ;
elsedo
Preprocessing step: In the graph determine
a minimum spanning tree that has all edges
are the strong joins and color all edges in the
tree red and the rest of edges blue.
For each node i do
if { is not connected by blue edge to any
node then
use procedure TQ to write its
corresponding query block;

else do
write the join corresponding to the blue
edge in the unnested form;
write the rest of joins associated with i
using procedure TQ;

end
end if
end
end if
end

For example of writing a cyeclic query in the
seminested form consider the query graph shown in
Fig.7. The solid edges represent the minimum
spanning tree. The dashed edges represent joins that
are written in the unnested form.

In the previous discussion, the cycles in the graph
are not related to each other. In some cases, however
not common, a user may write a complex query that
contains more than one cycle such that some of them
have a common component, i.e. a common node or a
common edge. Fig. 8 show examples of graphs with
common components. . There are four cases of cycles

D
o

i

(a) (b)
0

(a)

(DA

(c) (d)

Fig.8 Cycles with common components
with a common component:
case (1): two cycles with a common node which is the
output of the both cycles, Fig.8 (a).
case (2): two cycles with a common node which is not
the output of the both cycles, Fig.8 (b).
case (3): two cycles with a common edge which
contains the output node, Fig.8 (c).
case (4): two cycles with a common edge which does
not contain the output node, Fig.8 (d).
Next, we discuss how to handle each case.
Case (1): We calculate the weight of each cycle, and
write the query such that the cycle with minimum
weight is written in the WHERE clause of the block
that contains the output node. The second cycle is
written in the AND subclause. Note that, within
each cycle we apply procedure CYQ.
Case (2): Let us name the cycle that contains the
output node as the main cycle and the other cycle

(6)

that contains the common node as the secondary
cycle. We start writing the cycles by writing the
main cycle, and when we are in the position to write
the common node; we have the following two choices:
(a) Write the secondary cycle before completing the
main cycle.
(b) Write the secondary cycle after completing the
main cycle.
The first choice arises when the join between the
common node and one of the nodes in the secondary
cycle is strongest than that join between the common
node and a node in the main cycle. The second choice
arises when the only join required to complete
writing the main cycle is between the common node
and the output node; or the join between the common
node and a node in the main cycle is strongest than
that joins between the common node and any node of
the nodes in the secondary cycle.
Case (3): We combine the two nodes connected by the
common edge to have a graph as the one in case (1).
Case (4): We combine the two nodes connected by the
common edge to generate a graph similar to that one
in case (2).)
5- Queries with Multiple Output Relations

From the definition of SQL, it is not possible to

opl \ opl,0p2
B1 B1*
A B
D B
B2 B3 B3
[D E B5
op2 E
B6
B6
B4
(a) (b)

‘Fig. 9 A tree query graph with multiple output
nodes and its simplification

write a query that has the output is obtained from
more than one block in the nested form, if the query
is simple, it is easy to understand such a query
written in the unnested form. We give two
preprocessing procedures that convert a graph with
multiple output nodes into another one with only one
output node. The first procedure, TMO, handles tree
queries and the second, CMO, handles cyclic queries.
Before describing procedure TMO, we explain the
idea through an example.

Consider the query graph in Fig. 9(a), applying
procedure TMO produces the graph in Fig. 9(b). The
node B*; corresponds to joining relations in blocks
B3, By, B4.

Procedure TMO

Input: A tree query graph with multiple output
nodes.
Output: A corresponding graph with only one output
node.
begin
if multiple attributes join is allowed then
Combine output nodes into one node;
else
for each node i do;
if i is in the path between any two
output nodes then add i to JOIN;
end do
constitute a relation that
corresponds to the output node R, as
follows:
Ry = ©R;, i=1,...,m, where m is the
aumber of relations in JOIN;
/*reconstruct the graph with R, as
the root node*/

end if

end if

for each node j such that j was connected to
any one of the combined nodes do;
connect that node to the new node with
an edge having same label as before;
end do

end

In case of tree queries, we have only one way to
combine output relations together. In case of cyclic
queries, however, we may have two ways to combine
the output nodes if the path connecting the two
output nodes contains a node which is a member in a
cycle. We have the following criteria to select which
set of nodes to be combined together:

(1) Select the path that contains minimum number of
nodes need to be combined to have a graph with only
one output node. To select such path, we generate
from the graph another new graph. In which nodes
are the output nodes in the original graph. Each path
that connects any two output nodes i, j in the original
graph is represented by a labeled edge between nodes
i,j in the new graph. The label of an edge connecting
nodes u, v in the new graph is the distance between
these two nodes in the original graph. For the new
generated graph we find the minimum spanning
tree, which is the desired path that contains
minimum number of nodes need to be combined to
have a graph with only one output node. For
example, consider the graph given in Fig. 10(a)
which is a cyclic graph with multiple output nodes,
Fig.10(b), shows the new generated graph where
edges represented by solid lines is the minimum
spanning tree. Fig. 10(c) shows the original graph
with only one output node B*j, which is the
combination of nodes B1, Bg, B3, and B4. The
procedure doing this conversion is as follows:

Procedure CMO

Input: A cyclic graph with multiple output nodes.
Ol.:itput: An equivalent graph with only one output
node.

Condition: The output node in the output graph is
the merge of minimum number of nodes in the input
graph.

€7)

opl ™~

B2

B3

op2

op3
(a) (b)

opl,0p2,0p3,0p4

()

Fig. 10 A cyclic query graph with multiple

outpubtnodes

Method:
1- Build a new graph G(V’,E’) from the input
graph where, V’ is the set of output nodes in the
original graph. The set of edges E’ is constructed
as follows: for any two nodes i, j, if there is path,
in the original graph, connecting these two nodes,
it is represented by an edge between i, j in the
new graph. The label of this edge is the distance
between the two nodes i, j in the original graph.
Associated with each edge an array contains
ngdes in the original path represented by this
edge.
2- Find the minimum spanning tree of the new
graph.
3- Combine all the nodes in arrays associated
with edges in the minimum spanning tree into
one node, say B*;.
4- Build the output graph with node B*; as the
only output node. For any node u, in the original
graph, that is connected to any node in the
combined nodes, by an edge labeled I’. Connect
the node u with B*; via an edge with label .

end

(2) If the paths connecting output nodes have same

B1
opl

opl,op2 \ B1
B
AC B2
B2
B3

B5 Bé

(a) op2 (b)

Fig. 11 Case when multiple attribute join is possible

lengths. Apply the criteria of selecting the strongest
joins.

In the previous discussions, if any two blocks are
joined with more than one attribute, for each join
attribute there was an edge labeled with the
attribute name, connecting nodes correspond to
those blocks. This is done due to an implication in
SQL syntax. That is, in the nested form, the WHERE
clause of the outer block and the SELECT clause of
the inner block, contain at most one attribute. In
some new implementations of SQL this restriction is
released. Typical systems are SQL/RT of IBM and
UNIFY databases. Releasing that restriction
permits combining output nodes only not necessarily
intermediate nodes that are connecting them. Hence,
the graph in Fig. 9(a) is reconstructed as shown in
Fig. 11(a), where the block represented by node B*;
corresponds to the Cartesian product of relations in
blocks B; and By4. This is, also, very suitable when
there are more than two output nodes and to combine
them it is necessary to combine nodes in different
paths, Fig.11 (b) shows an example. In this case, we
have to combine nodes Bj, Bg, B3, B4, and B6 if
multiattributes join is not permitted, while we need
to combine nodes Bi, B4, and Bg if it is permitted.

6- Conclusion

In this paper, we suggested procedures to
generate SQL queries for documentation. For an
unnested acyclic query, we generate its
corresponding nested one which is suitable for
documentation. For cyclic queries, that cannot be
expressed by the nested form, an unnested cyclic
query is converted into another one that is suitable
for documentation.

References

{11 Astrahan,M,, et al., ACMTODS, Vol.1, No.2,
pp.97-137.

Bernstein,P., Chiu,W., JACM, Vol.28, No.1,
pp.25-40.

Chamberlin,D., et al., IBM J. Res. Dev.,
pp.560-575.

Codd,E.F., Comm. ACM, Vol.13, No.6, pp.377-
387.

Date,C.J., 3rd edition, Addison-Wesely, 81.

{2]
(31
[4]
(5]

[6] Goodman,N., Shmueli,0., ACMTODS, Vol.7,
No.4, pp.653-677.

[71 Kambayashi,Y., Proc. IFIP, pp.1055-1060,
Sept.1986.

[8] Kambayashi,Y., Proc. NCC, pp.547-553, July
1984.

[9] Kambayashi,Y., Yoshikawa,M., Yajima,S.,
Proc. ACM SIGMOD, June 1982, pp.151-160.

[10] Kim,W., ACMTODS, Vol.7, No.3, pp.443-469.

(8)

