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Abstract: Nowadays, vehicles are equipped with multiple Electronic Control Units (ECUs) each of which commu-
nicates with one another using a specification called Controller Area Network (CAN). CAN provides its own share
of benefits in modernizing automobiles, but it also brought along a security issue to the automotive industry. CAN
bus does not have any mechanism for encrypting or authenticating CAN payloads. As a countermeasure against these
drawbacks, we have experimented on identifying intrusions in the CAN bus using Long Short-Term Memory Networks
(LSTM). LSTM networks are trained with features extracted from reverse engineered packets. In a specific range of
time windows, we have extracted three parameters, the number of packets, the bit flip rate and the average time dif-
ference that are used to train LSTM. The trained LSTM is later then used to predict all the three features which will
be combined to a single anomaly signal using a root mean squared error. Depending on which side of the threshold
appears the anomaly signal value, we managed to identify anomalies in an acceptable performance rate, up to F1 score
of 98%. We have tested our methods with a variety of attacks on the CAN bus and demonstrated how effective our
detection methods is.
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1. Introduction

In the old days, automobiles used to be mechanical devices
with no networking capability and a few electronic devices. Later
in time, the number of Electronic Control Units (ECUs) inside
automobiles have increased to some extent. But still, there was
not any network that connects these ECUs. A wiring harness was
being used to connect each of these devices until CAN was intro-
duced by Bosch [2] as a multi-master, message broadcast system
that specifies a maximum signaling rate of 1 Mbps. As of the
CAN bus release, the number of ECUs in vehicles started to in-
crease due to the simplicity of inter-networking. Nowadays, auto-
mobiles have up to 100 ECUs Kuwahara et al. [20], each of which
communicates using the CAN, which is the de-facto standard of
most present-day vehicles.

CAN was introduced to the automotive industry for the sole
purpose of enhancing the driving experience. Before CAN was
invented, ECUs used to communicate with one another by a point
to point wiring system. After the introduction of the CAN bus
to vehicles, the wiring harness between ECUs has reduced to less
and simple wiring, which in return saves the overall cost and time.
Additionally, the specification calls for high immunity electrical
interference and the ability to self-diagnose and repair data errors.
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These features have led to CAN’s popularity in a variety of indus-
tries including building automation, medical, and manufacturing
Corrigan [5].

Even though CAN provides its share of advantages in modern-
izing the automotive industry, it also brought along a new secu-
rity hole in in-vehicle networks. CAN is vulnerable to various
types of attacks due to its security weakness Koscher et al. [19].
CAN uses a broadcast type of communication method, whenever
a message appears in the CAN bus it is accessible by all its con-
nected nodes. This nature of the CAN bus enabled attackers to
easily snoop on all communications or send packets to any other
node on the network, which later on can help the attackers to re-
verse engineer the packets. Whenever two competing nodes want
to use a CAN bus resource, the CAN bus handles the priority of
the nodes using a message arbitration ID. A node with a lower
arbitration ID will be given a higher priority to use the CAN bus
resources. This property of the CAN bus makes it extremely vul-
nerable to a Denial-of-Service Attack (DoS). An attacker can
continuously inject a packet with a lowest arbitration ID to the
CAN bus, and this causes all other packets to be rejected from
using the CAN bus. CAN bus also has no mechanism for en-
crypting or authenticating CAN packets.

By exploiting these security vulnerabilities of the CAN bus
many security researchers have been able to control critical vehi-
cle components. Miller and Valasek [23] illustrated on how they
can control critical car components by remotely injecting pack-
ets to the target vehicle’s CAN bus. Other security researchers
have also demonstrated on how to remotely attack Tesla motors
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of Tencent [26]. They discovered multiple security vulnerabilities
and successfully implemented remote, aka none physical contact,
control on Tesla Model S in both Parking and Driving Mode.

In order to avoid the security risks in the in-vehicle network, in
this paper, we experimented on identifying intrusions in the CAN
bus by using neural networks. And inspired by LSTM’s design to
overcome short term memory problems even in case of noisy, in-
compressible input sequences. That is achieved by an efficient,
gradient-based algorithm for an architecture enforcing constant
(thus, neither exploding nor vanishing) error flow through internal
states of special units. We have proposed an intrusion detection
system using LSTM (LSTM-IDS) with the following contribu-
tions:

(1) We proposed LSTM-IDS with a suitable architecture of lay-
ers that is capable of learning to identify intrusions. We further
studied how the architecture of layers have a big effect on the
prediction capability of the neural network. The conventional
method proposed by Taylor et al. [30] uses the bits in a packet
to identify anomalies but they didn’t take into consideration the
meaning of each bit in the packet. Our methodology further re-
verse engineers the packets to learn about the counter bits, if any,
of each bit in a packet and this helps in improving the intrusion
detection from an average F1 score of 33% to 98% for the first
car’s arbitration ID 0C000027.

(2) The conventional method has no way of telling if messages
are arriving at their intended time. Messages can be delayed due
to different types attacks, a DoS attack in our case which we han-
dled by also predicting the arrival time of the messages. If a mes-
sage is delayed due to DoS attack, the conventional method will
be bypassed.

(3) We fabricated different types of attacks to test if the trained
network is competent enough to be used as an intrusion detection
method. Our experimental results show that with the right com-
bination of parameters, LSTM is suited for intrusion detection
in in-vehicle networks. For some arbitration IDs, the proposed
method can detect most of the attacks by a precision and recall
values of up to 1.0.

(4) We also compared the detection performances for most ar-
bitration IDs in the can bus with the conventional method that
uses different attributes and network architecture to accomplish
the task. When the number of counter bits found in a packet
is higher, as in CAR B’s arbitration IDs, 114, 119 and 18E, the
detection F1 score doubles by up to 50% from the conventional
method. Moreover, we discussed how this LSTM-IDS can be im-
plemented on a real vehicle.

2. Related Work

The security vulnerabilities of a CAN bus can be improved by
two methods. The first method is to use intrusion prevention tech-
niques by tackling attacks before the packets arrive in the target
host. A CAN bus has no authentication field or any mechanism
to identify the source of a message. As the solution for these
drawbacks Mundhenk et al. [24] have proposed a way to use a
light message authentication for secure automotive networks. In
their research, the keys required for secure communication with
symmetric cryptography, such as the Advanced Encryption Stan-

dard (AES) or MACs, can be exchanged between ECUs. In Han
et al. [14], a different approach to introducing MACs into FlexRay
is presented. Groza and Murvay [11], Hazem and Fahmy [15],
Groza et al. [12] are also among the different approaches pre-
sented on authenticating the CAN bus messages. Besides that,
intrusions can also be prevented by encrypting CAN packets, Wu
et al. [34]. This method proposes a security protocol for the CAN
system based on AES-128 encryption and HMAC function. Woo
et al. [32], Halabi and Artail [13], Farag [7] are also some of the
researches that introduce the use of different encryption algo-
rithms for encrypting the CAN bus. Despite the fact that these
approaches can provide a way to enhance CAN security, the im-
plementation of these methods in a real vehicle would be of a
great risk due to the real-time communication requirements of in-
vehicle networks. For this research, we are mainly dealing with
detecting intrusions instead of enhancing the intrusion prevention
mechanisms.

The second approach for enhancing the security of the CAN
bus is to implement intrusion detection mechanism in the CAN
bus. This perspective can also be further split to signature based
and anomaly based intrusion detection Casillo et al. [3]. Signa-
ture based systems detect attacks using a pre-defined knowledge
base of attack signatures that is captured and created, and cur-
rent network traffic is monitored for these signatures. Ivan Stud-
nia [16] uses language theory to elaborate a set of attack signa-
tures derived from behavioural models of the automotive calcu-
lators in order to detect a malicious sequence of messages tran-
siting through the internal network. When a packet appears in
the CAN bus, together with other information, it contains tim-
ing information, data field, and arbitration ID. Researchers have
been illustrating on using timing information to identify intru-
sions in the CAN bus. Song et al. [28] used time intervals of
CAN messages for intrusion detection. Their method uses the
timing information of each ID by taking the fact that there is a
unique time interval for each arbitration ID because each ECU
connected to CAN bus sends messages regularly. When a new
message appears on the CAN bus, their (Intrusion Detection Sys-
tem) IDS checks the arbitration ID and computes the time interval
from the arrival time of the latest messages. According to their
method, an anomaly message’s time interval is shorter or longer
than the normal range. Taylor et al. [29] experimented on using
the frequency of messages to identify an anomalous sequence of
messages. Their anomaly detector works by calculating statistics
about ongoing network traffic and comparing them with histori-
cal values. They also trained a OCSVM detector with variables
collected from the flow of the traffic. OCSVM was able to de-
tect very short packet insertions with acceptable false alarm rates.
Kuwahara et al. [20] also used CAN message frequencies for in-
vehicle network intrusion detection. This approach analyzes the
normal behavior of CAN messages in terms of their message fre-
quency. They used two features, total counting feature and ID
counting feature, which count the number of messages and avail-
able IDs in some time windows.

In this category, intrusions can also be detected using anomaly
detection methods. Signature based approaches have the problem
of out dating fast due to the numerous attack signatures that are

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

created everyday. In this category there are methods that proposes
an anomaly detection method based on identifying the source
of CAN messages or a way that suggest the exploitation of the
physical layer feature of ECUs for intrusion detection. Kneib
and Huth [17] proposes a system for identifying the origin of
CAN messages using the physical characteristics of CAN signals.
Foruhandeh et al. [8] propose an anomaly detection that monitors
the CAN environment for secure updates of fingerprints to com-
pensate for environment changes, such as the temperature and the
supply voltage.

It’s clear to see that most of the aforementioned research heav-
ily focus on using timing information of CAN messages or the
signature of attacks to detect intrusions. Furthermore, those that
use the timing information techniques can only be implemented
to periodic CAN messages. All the aforementioned methods fail
to detect any anomaly sent with a non-periodic arbitration ID or
a compromised ECU which attackers are capable of manipulat-
ing its timing information. This problem can be tackled by using
information-theory based and machine learning based IDS meth-
ods. Wu et al. [33] have developed an entropy based IDS system.
It uses a sliding window comprised of a fixed number of mes-
sages. Even though this approach works best in detecting DoS
and spoofing attacks, IDs methods based on information entropy
are generally ineffective in detecting attacks that modify the data
field of CAN packets. And with the case of the two attack types,
attackers can bypass the IDS if they know the algorithm is being
used in a targeted vehicle.

Machine learning approaches have a better way of identifying
anomalies that modify the data field of CAN packets. A Machine
learning approach can be deployed to monitor how each bit in the
data portion of a payload is changing through time in addition
to the timing information. Nanduri and Sherry [25] and Taylor
et al. [30] have proposed a method that can solve this issue in air-
craft and vehicles respectively. Both of these methods focus on
identifying intrusion by training a neural network that is capable
of predicting the next packet data values, and its errors during
prediction are used as a signal for detecting anomalies in the se-
quence. Our work is an improvement to the intrusion detection
method research work by Taylor et al. [29] which takes the advan-
tage of both using the timing information and the bit prediction
method to further improve the prediction capability of a LSTM
network. Using the frequency of the message and the arrival time
of the message also helps us in interpreting the likely associations
between the messages in the chosen window in addition to the bit
flip rate predictions.

3. CAN Specification

CAN network is an International Standardization Organization
(ISO) defined serial communications bus originally developed for
the automotive industry to replace the complex wiring harness
with a two-wire bus. The specification calls for a high immunity
to electrical interference and the ability to self-diagnose and re-
pair data errors. These features have led to CAN’s popularity in a
variety of industries including building automation, medical, and
manufacturing.

A controller area network is ideally suited to the many high-

Fig. 1 CAN packet.

level industrial protocols embracing CAN and ISO-11898:2003
as their physical layer. Its cost, performance, and upgradeabil-
ity provide for tremendous flexibility in system design. In a
CAN network, many short messages like temperature or RPM
are broadcast to the entire network, which provides for data con-
sistency in every node of the system Corrigan [6].

The CAN communication protocol is a carrier-sense, multiple-
access protocol with collision detection and arbitration on mes-
sage priority (CSMA/CD+AMP). CSMA means that each node
on a bus must wait for a prescribed period of inactivity be-
fore attempting to send a message. CD+AMP means that col-
lisions are resolved through a bit-wise arbitration, based on a pre-
programmed priority of each message in the identifier field of a
message. The higher priority identifier always wins bus access.
That is, the last logic high in the identifier keeps on transmitting
because it is the highest priority. Since every node on a bus takes
part in writing every bit “as it is being written,” an arbitrating
node knows if it placed the logic-high bit on the bus.

In our detection method, we are mainly focusing on using the
arbitration ID and the data field of a CAN packet as it is de-
picted in Fig. 1. CAN has two standards, the first standard with
a 11-bit identifier, provides for signaling rates from 125 kbps to
1 Mbps. This standard was later amended with the “extended”
29-bit identifier. The standard 11-bit identifier field provides for
211, or 2,048 different message identifiers, whereas the extended
29-bit identifier provides for 229, or 537 million identifiers. Both
of the standards are almost similar, except for some control and
identifier fields. ECU’s bus access is event-driven and takes place
randomly. If two nodes try to occupy the bus simultaneously, ac-
cess is implemented with a nondestructive, bit-wise arbitration,
CAN ID in Fig. 1, the node winning arbitration just continues on
with the message without the message being destroyed or cor-
rupted by another node. The lower the binary message identifier
number, the higher its priority. An identifier consisting entirely of
zeros is the highest priority message on a network since it holds
the bus dominant the longest. And the data part in, Data Fig. 1,
contains information that is disseminated to the ECUs depending
on the driver’s actions. Our proposed method uses these two parts
of the packet and the time the packet appears in the CAN bus to
train LSTM-IDS that can identify anomaly messages.

4. Attack Model

Dumping a CAN packet from a vehicle would show us a list
of arbitration IDs and their respective data indexed by the time
stamp. Our LSTM is trained with these three variables and one
more variable, “number of messages.” “Number of messages” is
evaluated by counting the number of messages in a specific time
window. To test the effectiveness of our trained network, we have
simulated a variety of attacks on the CAN bus. Most of the attacks
we have created consider the fact that packets are either removed
or added deviating the sequence of the packets. We have fabri-
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cated four types of attacks that adversaries would try to inject to
the CAN bus. With these types of attacks, we have tested the pre-
diction accuracy of our trained network. These types of attacks
are listed below
Fuzzy Attack - The case wherein adversaries implement a

bunch of packets to be injected in the CAN bus for the pur-
pose of learning how different ECUs behave. To simulate
this specific type of attack we have created a program that
generates a packet with a size 8 bytes or less, depending on
the data length code (DLC) of each arbitration ID, and in-
serted in a random time location. In particular, our fuzzy
attack generator randomly selects a bit 1 or 0 to create one
packet with the size of a targeted arbitration ID’s DLC.

Insertion Attack - This attack is simulated by randomly select-
ing a packet from the list of packets dumped from each ve-
hicle to be inserted in a different time location. The time for
this attack messages is assigned by calculating the average
arrival time from two of the neighboring messages.

Drop Attack - The case wherein attackers drop some payloads
from a targeted ECU preventing the messages from being
processed or used by a receiving ECU. This attack is simu-
lated by removing two packets in a 1 second time window.
Hence causing an unexpected situation in the in-vehicle net-
works.

Impersonation Attack - An Impersonation attack is an attack
wherein adversaries drop some messages and send a fab-
ricated replacement message to get control of critical car
components. Our impersonation attack is same as insertion
attack except a message has to be dropped from the CAN
bus and it will be replaced by a randomly selected packet or
it can also be manipulated on the fly without dropping the
whole packet.

Denial of Service Attack (DoS) - An attack meant to force a
targeted ECU to continuously back off from using a CAN
resource, making it inaccessible from participating in the
network. DoS attacks can be accomplished in vehicles by
flooding a CAN with a message integrated with the lowest
arbitration ID. To simulate this attack we have delayed the
arrival time of messages by up to 5 ms.

5. Intrusion Detection Algorithm Using LSTM

To identify anomalies sent with a non-periodic arbitration ID
or a compromised ECU, the detection methodologies should track
how the data is changing through time. Data sequence learning
methods can be used to track data of payloads through time. A
simple strategy for general sequence learning is to use neural net-
works. By training a neural network about a sequence of mes-
sages, it will be able to predict forthcoming payloads using infor-
mation which has already appeared in the CAN bus.

We trained a neural network to predict subsequent CAN pay-
load data using previously seen data sequences. To train the net-
work we need to prepare training data, unfortunately, we couldn’t
find public data that can fit our network. Due to this, we had to
prepare our own benign and anomalous payload sequences.

The conventional method in Taylor et al. [30] can identify
anomalies even if adversaries mimic the timing information of

a compromised ECU. This is done by learning the flow of data to
see if there are packets out of a correct sequence. Even though,
this method can identify any fuzzy attack at 1.0 accuracy, it fails
to detect delayed messages because it only uses the data portion
of packets for anomaly detection. Messages can be delayed due
to an insertion attack or a Dos attack. Our method further in-
corporates the arrival time of packets to see if each message is
arriving in the CAN bus at the expected time. This helps us to
further improve the detection accuracy and identify DoS attacks
that can’t be detected by the conventional method.

5.1 Long Short-Term Memory Networks - LSTM
We selected the Recurrent Neural Network (RNN) for our re-

search because we wanted to see if RNNs are capable of con-
necting previous information to the present task, such as whether
using previous payloads might inform the understanding of the
present payload. But due to the long-term dependencies prob-
lem, RNNs are incapable of retaining information for a long time
Bengio et al. [1]. The basic problem is that gradients propagated
over many stages tend to either vanish(most of the time) or ex-
plode(rarely, but with such damage to the optimization). Recur-
rent networks involve the composition of the same function mul-
tiple times, once per time step. These compositions can result
in extremely nonlinear behavior Learning [21]. Long Short-Term
Memory Networks – usually just called “LSTMs” – are a spe-
cial kind of RNN, capable of learning long-term dependencies
Gers et al. [9]. The main contribution of LSTM is the capabil-
ity of using self-loops to produce paths where the gradient flow
for long durations. LSTM has multiplicative gates, which allows
LSTM memory cells to store and access information over long
periods of time, thereby mitigating the vanishing gradient prob-
lem, Graves [10]. For example, as long as the input gate remains
closed (i.e., has an activation near 0), the activation of the cell
will not be overwritten by the new inputs arriving in the network,
and can therefore be made available to the net much later in the
sequence, by opening the output gate. The preservation over time
of gradient information by LSTM is illustrated in Fig. 2. In the
figure, shading of the nodes indicates their sensitivity to the inputs
at time one; in this case the black nodes are maximally sensitive
and the white nodes are entirely insensitive. The state of the in-
put, forget, and output gates are displayed below, to the left and
above the hidden layer respectively. For simplicity, all gates are
either entirely open (‘O’) or closed (‘-’). The memory cell ‘re-
members’ the first input as long as the forget gate is open and the

Fig. 2 Preservation of gradient information by LSTM.
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Fig. 3 Diagram for LSTM at the time step t including all the gates.

input gate is closed. The sensitivity of the output layer can be
switched on and off by the output gate without affecting the cell.

Figure 3 provides an illustration of an LSTM memory block
with a single cell. The LSTM equations for calculating the corre-
sponding gate values in a single node of a forward pass are shown
in Eqs. (1)–(9). In Fig. 3, the subscripts ι, φ and ω refer respec-
tively to the input gate, forget gate and output gate of the block.
The subscript c refers to one of the C memory cells. The peep-
hole weights from cell c to the input, forget and output gates are
denoted ωcι, ωcφ and ωcω respectively. sc

t is the state of cell c

at time t (i.e., the activation of the linear cell unit). f is the ac-
tivation function of the gates, and g and h are respectively the
cell input and output activation functions. Let I be the number
of inputs, K be the number of outputs and H be the number of
cells in the hidden layer. Index h is used to refer to cell out-
puts from other blocks in the hidden layer, exactly as for standard
hidden units. G defines the total number of inputs to the hid-
den layer, including cells and gates, and use the index g to refer
to these inputs when a wish for distinguishing between the input
types is not needed. Following the Fig. 3 and the conventions we
explained above, the calculations for each of the gates is done
using Eqs. (1)–(9). These equations are given for a single mem-
ory block only. For multiple blocks the calculations are simply
repeated for each block, in any order.

Input gates

aι
t =

I∑
i=1

ωiιxi
t +

H∑
h=1

ωhιbh
t−1 +

C∑
c=1

ωcιsc
t−1 (1)

bι
t = f (aι

t) (2)

Forget Gates

aφ
t =

I∑
i=1

ωiφxi
t +

H∑
h=1

ωhφbh
t−1 +

C∑
c=1

ωcφsc
t−1 (3)

bφ
t = f (aφ

t) (4)

Cells

ac
t =

I∑
i=1

ωicxi
t +

H∑
h=1

ωhcbh
t−1 (5)

sc
t = bι

tg(ac
t) (6)

Output gates

aω
t =

I∑
i=1

ωiωxi
t +

H∑
h=1

ωhωbh
t−1 +

C∑
c=1

ωcωsc
t−1 (7)

bω
t = f (aω

t) (8)

Cell outputs

bc
t = bω

th(sc
t) (9)

Once, the network makes a forward pass updating the variables
listed in the equation, the network again makes a back propaga-
tion depending on the loss function. The partial derivatives made
to update the weights in the back propagation are omitted in this
paper. For details of the forward and back ward phases, readers
can refer to Ref. [10]. This research uses LSTM without peephole
weights, hence in the above equations all the weights that connect
the cells to any of the gates are set to zero.

5.2 Input Data Preprocessing
The purpose of our research is to identify an anomalous mes-

sage in short time before attackers cause much damage on a tar-
geted car. We implemented a way to identify anomalies in less
than one second from the time the anomalies start to appear in
the bus. We used 1 second so that we would be able to collect
enough data for processing. When the look back value of LSTM
is very short, LSTM did perform well due to all the different pat-
terns it has to learn Wang et al. [31] Kong et al. [18]. For this
reason, we have collected input and output values to our LSTM
network in every 60ms seconds for car A and 75ms seconds for
car B. We used different time ranges due to the behavior of each
car’s packets. The cars have a packet with two or more bits put
together with the rest of the bits that are used as a counter.

The values we used as inputs to the network and as outputs are
listed below.
• Number of Messages n - This variable counts the number

of messages that appear in the CAN bus in every 60ms for
car A and 75 ms for car B. Counting the number of messages
can give us an approximation of the number of messages that
should appear in a certain time window. If the number of
messages are way higher or lower than the predicted value,
this can significantly affect our anomaly signal to better de-
tect intrusions.

• Average Time Difference Tdi f f - In every range of millisec-
onds we collect messages associated with their respective ar-
bitration IDs. Each of these payloads has timing information
that shows the time the payloads appeared in the CAN bus.
To calculate the average time difference we collected a bunch
of messages with their particular timing information in the
specified time range, then we took the average time differ-
ence between each packet. This also helps us in tracking if a
packet with a specific arbitration ID is appearing in the CAN
bus at the intended time.

• Bit Flip Rate b0, b1, . . . , b63 - A CAN payload can be 64
bits long or less depending on the arbitration ID. To cal-
culate bit flip rate we employ an algorithm used by READ,
Marchetti and Stabili [22]. The bit flip rate is evaluated for
each bit of the payload, independently of its neighbors. Bit
flip rate algorithm, Algorithm 1, counts the number of bit
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Algorithm 1 Pseudo-code of bit flip rate calculation
1: function BitFlip-Rate(messageList,DLC)

2: payloadLen← len(messageList)

3: bitFlip← array(DLC)

4: previous← messgeList[0]

5: while item in (1...messageList) do

6: for ix in range(DLC) do

7: if item[ix] � previous[ix] then

8: bitFlip[ix] + +

9: previous← item

10: for ix = 0; ix < DLC; ix + + do

11: bitFlip[ix]← bitFlip[ix]/payloadLen

12: return bitFlip

Fig. 4 Bits identified as a counter in the test cars. Car A has up to three
counter bits with a counter bit flip rate of 0.25, 0.5 and 1.0, while car
B has only two counter bits, 0.5 and 0.1.

flips (from 0 to 1 and vice versa) occurrences among con-
secutive messages collected in the specified instant of time,
messageList. Then the bit flip rate is obtained by dividing
the number of bitFlip to payloadLen. The result from this
is an array of k elements each representing the bit flip rate
for a single bit of the data field for a given ID, where k rep-
resents the number of bits included in the payload as defined
by the value of the DLC field. The complete algorithm that
calculates the bit flip rate is shown in Algorithm 1.

We used 75 ms for car B for the reason that the bit flip rate
algorithm was not able to capture the transformation of the bits
that are used as a counter because car B has more number of bits,
up to three, used as a counter. Figure 4 shows the counter bits
available with each car. The input to the neural network will be
the values calculated in the specified time for a range of 1 second.

Fig. 5 The red strokes in both of the modes show the bits identified as
counter bits.

Using the inputs collected in 1 second, we predict the next values.
The advantage of using bit flip rate as an input feature to our

neural network is it helps us to convert the counter bits to con-
stant bit flip rate values saving the neural network from learning
the flipping of these specific bits. For instance, for car A’s arbi-
tration ID 0CF00327, Fig. 4 (a), it has 3 counter bits that count
from 000 to 111. In the case of using bits as an input feature, the
network has to learn how each of these bits are flipping from the
previous counter to the next one but if we use bit flip rate these
three bits will have a bit flip rate of 0.25, 0.5 and 1.0 for all the
time windows in the training.

Driving mode of the vehicles influence the bit flip rate of the
targeted arbitration IDs. But, this effect is only on the bits that are
not identified as counter. The counter bits on both driving modes
(Stationary, Driving) have not been affected. To prove this one,
we collected 10 more minutes of data from our second car, car B.
The first five minutes were collected while the car is stationary
and the other 5 minutes were collected while the car is moving
at a fluctuating speed. As it is shown in Fig. 5, the frames have
higher bit flip rates when the car is moving than when the car is
stationary. The red strokes show the bits identified as a counter.
These bits have stayed constant no matter what the driving mode
is.

During evaluation the driving mode (stopped/driving) was not
considered. In practical cases both modes are inseparable and we
need a system that can continuously look for anomalies indepen-
dent of the driving mode. But from the perspective of IDS effec-
tiveness, we can get better results when the car is in stationary
mode as there will be less bit flips in the packets.
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Fig. 6 IDS network architecture.

5.3 IDS Network Architecture
Our LSTM architecture is similar to the architectures used by

the conventional LSTM except some changes in input features,
network architecture and some parameter changes so as to fit with
our training data. The Keras model Chollet et al. [4] we imple-
mented is depicted in Fig. 6.

First we need to format our training data to a format that a
neural network can understand. All our input data is numerical
data, so we don’t need any vectorization. But the input data is
on a different scale. n is an integer that ranges from 0 to some
unbound value and Tdi f f also varies accordingly. To bring all the
input values to a comparable range, we used L1 normalization
that brings all the input values to a range between 1 and 0. Once
we brought all the 66 features to a comparable range, a single
tensor with a size of (t, 66) is created, t is the total sequence of
training data. Next, we converted this tensor to input and output
sequence. This is created by continuously iterating over the train-
ing data to convert it to overlapping input and output sequences.
Each iteration goes through 16 (steps) consecutive sequences and
predicts the subsequent data. A batch size of 64 is selected for
the training, i.e during each batch the shape of the training data
becomes (batch size(64), look back(16), n feature(66)). After we
setup our input and output sequence, we trained the preprocessed
data using the architecture shown in Fig. 6.

The architecture we selected for our IDS contains two non-
recurrent hidden layers and two LSTM layers. The training first
goes through a non-recurrent hidden layer with 128 units and later
passes through two LSTM layers each with the 128 units. All of
these three layers have a rectified linear unit (ReLU) activation
function. The LSTM layers have also a 0.2 dropout that is used to
overcome over-fitting during training. Later on, the output from
the last LSTM layer is fed to a single dense layer with 66 units.
The output from the last dense layer is a NumPy array with 66
units that has an output for each input feature.

After we generate our trained model, the IDS phase passes
through the steps shown in Fig. 7. First, we read the 1 second
data collected from the available sequence of CAN data, let it be
a dumped data as in offline detection or a live data being read
from the CAN bus. All of the intrusion detection experiments are
carried out in offline mode. Offline mode is one type of network
intrusion detection system by which the dumped data is processed
and passed through an IDS to decide if there has been any kind of

Fig. 7 Anomaly detection process.

manipulation in the collected packets. The 1 second data is first
preprocessed here again in the case of live intrusion detection to
convert the raw packet data to suitable input variables for the neu-
ral network. But, for this detection algorithm we implemented
most of the experiments in an offline mode. Hence, we have pre-
processed the sequence beforehand. The input to the neural net-
work has a shape of (16, 66), the first variable shows the number
of steps we used to predict the successive values and the second
value shows the number of features we created from the data. The
trained model then outputs a numpy array with a shape of (1, 66)
which are the prediction results for all the input variables. After-
wards, we calculate the root mean square error (RMSE), Eq. (10),
of the predicted results and the true value, y true, true value is the
actual value picked from the test data. We selected Root Mean
Square Error (RMSE) so as to penalize higher errors because the
mean square error gives a relatively higher weight to large errors
than errors with a smaller deviation from the actual value.

RMS E =

√√
1
n

n∑
i=1

(y truei − Outputi)2 (10)

During testing, we have selected a predefined threshold value,
depending on this value if the computed RMSE is above the pre-
defined threshold value for each ID, an anomaly flag is gener-
ated implying the driver to take appropriate actions. However if
the evaluated RMSE is within a normal range, we increment the
pointers of each input variable by one to read the next sequence
of data. This process starts when the engine of the testing car is
started and continues up until the engine of the vehicle is stopped.

5.4 Training and Test Set Description
To train our neural network we collected data from two vehi-

cles, car A and car B. From car A, we collected packets for more
than 130 hours with a total of 300 million packets. This car has 42
arbitration IDs with a total average of 680 messages in a second
and out of these messages about 400 packets of them are associ-
ated with four arbitration IDs, however the rest of the messages
are distributed among the other 36 arbitration IDs. We selected
the first 4 IDs because most of the frames, 400, from the 680 to-
tal frames in a second are associated with 4 arbitration IDs. We
classified the IDs based on the frequency. The four arbitration
IDs appear in the CAN bus at 100 times in a second which is big
enough to see a pattern for an LSTM prediction. Since our IDS
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Fig. 8 Bit flip rates of both cars. The grey color shows constant bits that
don’t flip throughout the whole training.

takes the advantage of bit flip rate, some of the selected IDs have
these bits and some of them don’t, Fig. 8.

During training no attack packets were introduced. We trained
the network with an attack free sequence of training and valida-
tion data. The purpose of validation data here is to see how the
network is reacting to previously unseen data. It serves no pur-
pose here except to help us babysit the network to make it free
of over-fitting or under-fitting problem. The attack packets are
only introduced in the testing phase. Attack packets were put into
the simulated environment after every second during testing. The
LSTM makes a prediction after a second by first preprocessing
the input data of 75ms for car A and 60 ms for car B. When we
split the test data into two, the true value of the benign sequence
stays as it is but for the simulated attacks the true value is changed
depending on the attack type. For instance, in the case of a drop
attack the true value is replaced with a subsequent frame and for a
fuzzy attack the true value is replaced with a randomly generated
packet.

For a practical intrusion detection mechanism, an anomaly
should be detected way before it causes damage in the targeted
host. So, we implemented our anomaly detector in a way that
can look up data for a range of 1 second to predict a single fu-
ture packet. But, we could not train the rest of the arbitration
except the first four because we couldn’t collect enough data that
will be used as an input for prediction and due to the fact that
LSTM performs better when the look back has a larger value
Wang et al. [31], Kong et al. [18]. The neural network is trained
to predict the bit flip rate in a range of 75ms seconds for car A.
Figure 8 (a) shows the bit flip rate value of all experimented arbi-

tration IDs in car A.
To further check the feasibility of our system, we also collected

small data from a different car, car B. Car B has a comparatively
higher number of messages, 2,575 packets per second, than car
A. For this car, we trained 18 LSTM networks out of 68 arbitra-
tion IDs for the same reason we explained above. We drove this
particular car for 30 minutes and collected 3.8 million packets.
Figure 8 (b) shows the bit flip rate value of all experimented ar-
bitration IDs in car B. We trained both of the vehicles with the
70%, 15%, 15% principle of training data, validation data and
testing data sizes. And the testing data is further split into two,
the first half for simulating the listed attacks and the other half is
left intact.

6. Experiment Results and Discussion

6.1 Experiment Set Up
The data we collected from both cars are captured by manually

connecting a Raspberry Pi 3 with PiCAN 3 device to each car. Pi-
CAN 3 board provides CAN-Bus capability for the Raspberry Pi.
It uses the Microchip MCP2515 CAN controller with MCP2551
CAN transceiver. For Car A, a total of 130 hours of driving data
has been gathered to a sum of more than 300 million packets. Out
of all these packets, 180 million of it falls in the category of the
four arbitration IDs which we trained for our model. In addition,
we used the same device to further prove our model in a second
car, car B. For car B, we drove it around for only 30 minutes
which counts to a total of 3.8 million packets.

6.2 Evaluation Metrics
We used recall, precision, and F1 score to show the perfor-

mance results of our proposed method. These metrics are com-
monly used in binary classification problems. We also used these
results to compare our proposed method with the conventional
LSTM-IDS method. Recall shows how good the trained network
is at identifying anomalies from a collection of our test data or
the ability to find all the relevant cases, anomalies in our case.
We used Eq. (11) to calculate the recall where TP stands “true
positive” to indicate the anomalies identified as relevant and FN
is for “false negative” to show the anomalies that were identified
as benign but anomaly packets.

Recall =
T P

T P + FN
(11)

And precision shows how much of the identified anomalies
were actually anomalies or how much of the identified anoma-
lies where correctly labeled. We used Eq. (12) to calculate the
precision. In the equation, false positive (FP) denotes the number
of normal records that are identified as an anomaly.

Precision =
T P

T P + FP
(12)

Additionally, we used F1 score to compare the proposed and
conventional classification methods. F1 score shows a measure
of a test’s accuracy. It considers both precision and recall of the
test to compute the score. Equation (13) shows the formula used
to evaluate the F1 score of our experiment.

F1score = 2 · Precision · Recall
Precision + Recall

(13)
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Table 1 Car A performance results for all attack types with an order of pre-
cision and recall in each row.

ArbID. Metrics Imp. Drop Ins. DoS Fuzzy

...0027
Precision 0.997 0.997 0.997 0.998 0.997
Recall 0.921 0.995 1.0 1.0 1.0

...0203
Precision 0.997 0.999 0.999 0.9992 0.999
Recall 0.461 1.0 0.480 1.0 1.0

...0327
Precision 0.997 0.997 0.997 0.998 0.998
Recall 0.991 1.0 1.0 1.0 1.0

...8327
Precision 0.995 0.990 0.992 0.991 0.996
Recall 0.760 0.406 0.4834 0.439 1.0

Table 2 Car B performance results for all attack types with an order of pre-
cision and recall in each row.

ArbID. Metrics Imp. Drop Ins. DoS Fuzzy

114
Precision 0.993 0.993 0.993 0.994 0.993
Recall 0.767 1.0 1.0 1.0 1.0

116
Precision 0.931 0.926 0.922 0.939 0.993
Recall 0.910 0.842 0.805 0.786 1.0

119
Precision 1.0 1.0 1.0 1.0 1.0
Recall 0.817 1.0 1.0 1.0 1.0

120
Precision 0.963 0.944 0.879 0.977 0.970
Recall 0.792 0.515 0.223 0.446 1.0

122
Precision 0.931 0.800 0.8975 0.818 0.943
Recall 0.818 0.242 0.530 0.198 1.0

124
Precision 0.952 0.913 0.928 0.897 0.957
Recall 0.901 0.477 0.591 0.283 1.0

130
Precision 0.956 0.429 0.945 0.333 0.971
Recall 0.667 0.023 0.523 0.015 1.0

131
Precision 0.918 0.545 0.913 0.583 0.929
Recall 0.847 0.092 0.806 0.107 1.0

180
Precision 0.905 0.906 0.806 0.571 0.917
Recall 0.857 0.865 0.376 0.120 1.0

18D
Precision 0.934 0.929 0.918 0.941 0.937
Recall 0.948 0.873 0.754 0.777 1.0

18E
Precision 1.0 1.0 1.0 1.0 1.0
Recall 0.777 0.738 1.0 1.0 1.0

18F
Precision 0.922 0.654 0.932 0.820 0.935
Recall 0.8233 0.131 0.9539 0.209 1.0

1AF
Precision 0.897 0.895 0.870 0.923 0.910
Recall 0.856 0.841 0.659 0.822 1.0

1B8
Precision 0.895 0.870 0.788 0.907 0.904
Recall 0.901 0.712 0.394 0.712 1.0

1C0
Precision 0.636 0.867 0.429 0.930 0.890
Recall 0.216 0.804 0.093 0.848 1.0

1C1
Precision 0.869 0.889 0.611 0.920 0.905
Recall 0.699 0.842 0.165 0.830 1.0

1D0
Precision 1.0 1.0 1.0 1.0 1.0
Recall 0.712 1.0 1.0 1.0 1.0

1D1
Precision 0.949 0.900 0.861 0.940 0.964
Recall 0.705 0.341 0.235 0.406 1.0

6.3 Experimental Results and Discussion
For each arbitration ID, we used different threshold values so

as to get the best performance and depending on the property of
the corresponding arbitration IDs it gets easier for the method to
identify the anomalies for the IDs with a larger number of counter
bits than the once which have no counter bits like in arbitration
ID ...0203, Table 1, which got no counter bit at all, Fig. 4 (a).

Table 1 and Table 2 show the performance results of our
method for each arbitration ID. In the tables, each row contains
performance values in an order of precision and recall for all the
tested arbitration IDs.

Car A’s comparison graphs in Fig. 9 (a)–Fig. 9 (d) shows how
much using our method outperforms the conventional method,
which only considers the raw packet bits. Using bit flip rate as
an input helps us to smooth out the various transitions the neural
network has to learn if we used a raw bit as an input. Moreover,

Fig. 9 Car A, comparison graphs between the proposed and the conven-
tional method for all attack types.

our LSTM’s input includes the average time difference and the
number of packets to help us get an improved detection accu-
racy. In the comparison figures, the detection performance of the
arbitration IDs with a higher number of counter bits is more ac-
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Fig. 10 Car B, F1 score Comparison results between the conventional
method and the proposed method.

curate than in the case of no counter bit. Figure 10 shows car B’s
F1 score of comparison between the conventional and proposed
methods. The conventional method didn’t detect any of the DoS
attacks, Fig. 9 and Fig. 10, because their method doesn’t consider
if messages are arriving at an expected time range. A DoS attack
is simulated by delaying packets to a range of 0.05 ms. Delaying
these messages doesn’t make any difference in the conventional
method but the number of messages and the average arrival time
variables of the proposed method are affected when messages are
delayed. The Proposed method can detect with a precision and
recall values as shown in Table 2. The conventional method has
no way of telling if a message is delayed due to different attacks,
a DoS attack in our case, because the conventional method only
considers the packet bits.

As it can be seen in Fig. 9, each arbitration ID has different F1

Fig. 11 Execution Time for both conventional and proposed methods.

scores for even the same type of attack. This is because some of
the IDs a have higher number of counter bits compared to the oth-
ers. The trained LSTM predicts better for the IDs with a higher
number of counter bits than the ones which have no counter bits.

Implementation of LSTM-IDS in the in-vehicle network would
require a fast processor that is capable of collecting bit flip rates
in n time window and make a prediction in as short a time as
possible. But, there is always a significant delay from the time
when the packets appear in the CAN bus to the time when these
packets are collected for analysis. Figure 11 shows the execution
time of our detection process. The values in the box plot show the
execution time of the model simulated in Ubuntu 18.04 OS, Intel
Xeon E5-1620 CPU and GM200 (GeForce GTX TITAN X) 3072
CUDA cores GPU that has a clock speed 33 MHz and a RAM
size of 16 GB. We implemented the LSTM-IDS in this computer
by using a Oliver Hartkopp [27] that contains CAN drivers and a
networking stack for Linux. We played the dumped file in the ter-
minal with the vcan0 interface and created a program that collects
the packets through the SocketCAN API and does the prediction.
As we can see it in the figure, our proposed method has some
delay due to the calculations overhead.

When our system enters the detection phase, one or two mes-
sages appear in the CAN bus that will be skipped unless we use a
buffering mechanism. For these messages to not be skipped while
we are testing a time window we implemented a buffering mech-
anism that can keep these messages in a buffer until the prediction
is completed. Even though this method leaves no packets behind,
it also destroys our goal of identifying intrusions in a short time
because if packets start to pile up in the buffer it would start to
take a longer time to identify the anomalies. Therefore, if the
system is going to be deployed in a real vehicle, we recommend
two ways. One is to only run a single proposed method’s IDS
and let the packets that appear during the processing delays be
skipped. The other is to run two of the proposed method’s IDS
concurrently with the second one starting a little late. While the
first IDS is checking for intrusions, the second IDS can start col-
lecting next testing sequences starting from the time when the
first IDS entered processing.

7. Conclusion

In this paper, we presented on how anomalies can be detected
using LSTM for in-vehicle networks. The detection method
works for targeted attacks meant for a specific ECU. LSTM net-
works are trained to predict forthcoming payloads and related at-
tributes by looking at information that has already appeared in the
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CAN bus at some instant in time. The predicted values are com-
pared with actual values, that are either sent by an intruder or the
benign ones and depending on how close our prediction is with
the actual payload, we managed to effectively identify anomalies
in an improved accuracy compared to the conventional LSTM-
IDS. To train the network we reverse engineered the messages
to identify the counter bits associated with each packet which
improved the overall detection method to up to 98%. Through
the overall evaluation, we proved that further including data from
timing and count of packet in a time window has a great ad-
vantage in detecting anomalies. Although the proposed method
can identify anomalies at a better accuracy than the conventional
method, it has poor performance for those arbitration IDs which
contain no counter bits.

In this paper, we had to implement an LSTM network for each
arbitration ID due to the different DLC lengths associated with
each arbitration ID. But for the case of our first car, CAR A, it
uses CAN 2.0B and all the messages have the same DLC size.
Therefore for our future work, we would implement a single
LSTM network or any other related neural network that takes all
the arbitration ID’s packets as an input to predict a forthcoming
packet. This would help us implement an overall IDS that doesn’t
leave out any packet behind.
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