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Abstract: Robustness against failure and attack is one of the essential properties of large-scale dynamical system
such as power grids, transportation system, communication systems, and computer networks. Despite its popularity
and intuitiveness, a major drawback of descriptive robustness metrics such as the size of the largest connected compo-
nent and the network diameter is computational complexity. Spectral measures such as the spectral radius, the natural
connectivity, and the algebraic connectivity are much easier to obtain than descriptive metrics, but the predictability of
those measures against different levels and types of failures has not been well understood. In this paper, we therefore
investigate how effectively spectral measures can estimate the robustness of a network against random and adversary
node removal. Our finding includes that, among five types of spectral measures, the effective resistance is most suit-
able for predicting the largest cluster component size under low node removal ratio, and that the predictability of the
effective resistance is stable among different types of networks.

Keywords: network robustness, spectral measures, largest cluster component, random node removal, adversary node
removal, scale-free network

1. Introduction

Robustness against failure and attack is one of the essential
properties of large-scale dynamical system such as power grids,
transportation system, communication systems, and computer
networks [2]. The robustness of the network is a property that
describes how much the entire network is functioning under cir-
cumstances where a part of the network has been removed by
failure or attack [3]. In the literature, for constructing a robust
system against failure and attack, many types of research have
been performed to understand the robustness and also to im-
prove the robustness by, for example, node/link protection and
rewiring [4], [5].

Since the robustness is a multifaceted property of a network,
several different metrics for network robustness — those from ge-
ometrical viewpoints (e.g., the size of the largest connected com-
ponent, the average path length, and the efficiency) [3], [6], [7],
[8], [9], [10] as well as spectral viewpoints (e.g., spectral radius,
natural connectivity, and algebraic connectivity) [11], [12], [13],
[14] — have been proposed in the literature.

Intuitive metrics for network robustness are geometrical ones;
for instance, the size of the properly working subnetwork after
failure or attack (e.g., the size of the largest connected compo-
nent (i.e., the largest cluster [3])) and the diameter of the properly

1 Department of Informatics, Graduate School of Science and Technology,
Kwansei Gakuin University, Sanda, Hyogo 669–1337, Japan

2 Department of Electronics Engineering and Computer Science, Faculty
of Engineering, Fukuoka University, Fukuoka 814–0180, Japan

a) kazuyuki@kwansei.ac.jp
b) yuichi@kwansei.ac.jp
c) r-nakamura@fukuoka-u.ac.jp
d) ohsaki@kwansei.ac.jp

working subnetwork (e.g., the average path length [3], [9]). Gen-
erally, to measure one of those geometrical metrics, it is necessary
to perform many simulations since failures are generally random
processes. Through simulations, the robustness of a network can
be estimated by, for example, measuring the largest cluster com-
ponent size in synthetically degenerated networks.

Several spectral measures such as the spectral radius, the
natural connectivity, and the algebraic connectivity quantify
robustness-related properties of a graph such as the radius, con-
nectivity, and redundancy. For instance, the spectral radius indi-
cates the diffusion speed of information (e.g., virus and rumor)
throughout the network, and the algebraic connectivity indicates
the difficulty of network fragmentation [11], [14]. These spectral
measures are obtained from the eigenvalues of the adjacency ma-
trix or the Laplacian matrix given by the adjacency matrix and
the degree matrix of a graph.

Robustness metrics can be classified into two categories: de-
scriptive and predictive. Descriptive metrics measure how the
network is functioning properly after failure or attack whereas
predictive metrics estimate how the network is likely to function
properly against forthcoming failure or attack.

Despite its popularity and intuitiveness, a major drawback of
descriptive robustness metrics such as the size of the largest con-
nected component and the diameter is the computational com-
plexity; to evaluate the robustness of a network with a descrip-
tive metric, the metric has to be measured after the occurrence of
failure or attack, which generally requires, for instance, a large
number of simulations.

Spectral measures such as the spectral radius, the natural con-
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nectivity, and the algebraic connectivity are much easier to obtain
than descriptive metrics, but the predictability of those measures
against different levels of failure or attack has not been well un-
derstood.

If we can predict the robustness of a network only from spec-
tral measures without relying on measuring a descriptive metric,
a more sophisticated understanding, designing, and redesigning
of a network could be realized.

In this paper, we therefore investigate how effectively spectral
measures can estimate the robustness of a network against ran-
dom and adversary node removal. More specifically, we address
the following research questions.
Q1. Among five spectral measures (the spectral radius, the spec-

tral gap, the natural connectivity, the algebraic connectivity,
and the effective resistance), which spectral measure does
predict the geometrical metric (i.e., the size of the largest
connected component) after random node removal most ac-
curately?
It has been pointed out that several spectral measures (e.g.,
the natural connectivity and the algebraic connectivity) are
related to the robustness against node and link removals [12],
[14]. However, it is not sufficiently clarified whether spectral
measures can be used as a substitute index for the size of the
largest connected component and descriptive metrics.

Q2. How is the predictability of those spectral measures affected
by the network (i.e., the topology, the network size, and the
density)?
Depending on a system evaluated for robustness in question,
the network topology, the number of nodes, and the number
of links are diverse. As it is widely known that scale-free net-
works and denser networks are robust against random node
removal [3], the robustness should depend on the features of
networks.

Q3. Similarly, how is the predictability of those spectral mea-
sures affected by the degree of random node removal (e.g.,
under 1%, 5%, and 10% node loss)?
In our previous works, we have revealed that non-scale-free
networks are robust when the node removal ratio is low,
whereas scale-free networks are robust when the node re-
moval ratio is high [8]. Also depending on the node removal
ratio, the superiority of a network in terms of robustness is
different. Therefore, similarly to Q2, it is necessary to clarify
what extent the predictability of the spectral metric depends
on the node removal ratio.

Q4. How are our observations regarding the above questions Q1–
Q3 affected if nodes are removed adversary rather than ran-
domly?
It is equivalently important to understand the robustness of
a network not only against random node removal, which is
generally caused by the failure of devices, but also against
adversary node removal, which is caused by malicious at-
tack. In the literature, it has been known that the robustness
of a network against random node removal and adversary
node removal significantly differs [3], [15], [16]. Therefore,
answers to research questions Q1–Q3 might be quite differ-
ent if the node removal pattern is changed.

To answer the above research questions, we investigate the pre-
dictability of the network robustness against random and adver-
sary node removal from five spectral measures (the spectral ra-
dius, the spectral gap, the natural connectivity, the algebraic con-
nectivity, and the effective resistance) through experiments.

Specifically, we generate a number of networks with different
network sizes and densities using multiple synthetic network gen-
eration models, and measure the correlation between every spec-
tral measure for a given network and its largest cluster component
size after random and adversary node removal.

This paper is organized as follows. First, Section 2 summarizes
previous works on the robustness of networks. Section 3 briefly
explains the spectral measures used in this paper. Section 4 ex-
plains our experimental methodology. Section 5 presents exper-
iment results and discusses the predictability of the network ro-
bustness from spectral measures. Section 6 investigates how the
predictability of the network robustness is affected by the type
of node removal. Finally, Section 7 provides a summary of this
paper and addresses future works.

2. Related Works

In the literature, the robustness of a graph (or equivalently, a
network) has been extensively studied in several research areas
such as graph theory, network theory [17], network science [3],
[9], [10], and network operations and management [7], [18].

In graph theory, classical measures called vertex connectiv-

ity, which is defined as the minimal vertex cut that separates a
connected graph into multiple connected components, and edge-

connectivity, which is defined as the smallest edge cut resulting
in multiple connected components, have been extensively studied
(see, for example, [17] and references therein). Graph connec-
tivity is not identical to network robustness, but both are closely
related.

In network science, the scale-free property of a complex net-
work, which is generally characterized by the power-law distribu-
tion of node degrees, has been studied by many researchers [3],
[9], [10]. One of major interesting findings in network science is
that, in terms of the largest cluster component size and the diame-
ter, scale-free networks are robust against random node removals
whereas scale-free networks are fragile against adversary node
removal. However, contrary to the common understanding, the
authors of Ref. [19] reported that when the node removal ratio is
not so high, non-scale-free networks are more robust against ran-
dom node removal than scale-free networks in terms of the largest
cluster component size.

On the other hand, the recent advancement in spectral graph
theory enables spectral analysis of network robustness based
on the distribution of eigenvalues of an adjacency matrix or a
Laplacian matrix, each of which is constructed from the topol-
ogy of a network [11], [12], [13], [14]. A variety of spectral mea-
sures for quantifying the network robustness such as the spec-
tral radius [11], the natural connectivity [14] and the algebraic
connectivity [12], have been proposed. In Ref. [12], the authors
investigated the relationship between the node/link connectivity
and the algebraic connectivity in various networks with differ-
ent structures and scales. As a result, the authors show that the
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algebraic connectivity increases as the node/link connectivity in-
creases. Since the node/link connectivity correlates with the al-
gebraic connectivity, it is expected that the algebraic connectiv-
ity could be regarded as an index for measuring the network ro-
bustness. On the other hand, in Ref. [14], the network robust-
ness against edge removal is examined using the natural con-
nectivity. Consequently, the authors show that as the number of
link removals increases, the algebraic connectivity becomes zero
when the network is disconnected. In contrast, it is shown that
as the number of link removal increases, the natural connectivity
smoothly decreases. This indicates that the natural connectivity
might be suitable as an index for the network robustness against
node/link removal.

To the best of our knowledge, the relationship between the
graph metrics of a network and its robustness has been partly un-
derstood. In Ref. [20], Spearman’s rank correlation coefficient
between among every graph metric and flow robustness (e.g., the
ratio of the number of reliable flows to the total number of flows
in the network [21]) has been investigated. The authors show that
the path diversity metric, the node-betweenness centrality and the
effective resistance are suitable for quantifying the network ro-
bustness. However, the predictability of the network robustness
from spectral metrics has not been clarified since their simulation
experiments only use small graphs with 20 nodes.

Spectral-measure-based network redesign (e.g., rewiring links
in a network so that a spectral measure for robustness is max-
imized) is one of the active research areas in the network ro-
bustness [4], [5]. For example, in Ref. [4], the authors proposed
a method to improve the algebraic connectivity by sequentially
rewiring links in the network.

3. Spectral Measures

In what follows, we briefly explain the definitions of five spec-
tral measures used in this paper. Please refer to Ref. [5] for the
details.

For a given graph G = (V, E), let A and D(= diag(dv)) denote
adjacency matrix and degree matrix, respectively. Here, dv repre-
sents the degree of node v ∈ V . From the adjacency and degree
matrices, Laplacian matrix L of graph G is defined as L = D − A.
Let λN ≤ λN−1 ≤ · · · ≤ λ2 ≤ λ1 denote a set of eigenvalues of ad-
jacency matrix A, where N(= |V |) represents the number of nodes.
Also, let μ1 ≤ μ2 ≤ · · · ≤ μN−1 ≤ μN denote a set of eigenvalues
of Laplacian matrix L.

From the eigenvalues of adjacency and Laplacian matrices, five
spectral measures are defined as follows.
• Spectral radius

The spectral radius is defined as the largest eigenvalue λ1 of
adjacency matrix A. Spectral radius is one of important met-
rics of dynamical processes on a graph (e.g., propagation of
virus and rumor). It is known that the graph with small spec-
tral radius is robust against the propagation of information
such as virus [11].

• Spectral gap
The spectral gap is defined as the difference λ1 − λ2 in the
largest eigenvalue λ1 and the second largest eigenvalue λ2

of adjacency matrix A. The spectral gap is known to be re-

lated to expansion properties of a graph (i.e., how the graph
is sparse and highly-connected) [5].

• Natural connectivity
From a set of eigenvalues of adjacency matrix A, the natural
connectivity is defined as

log

⎛⎜⎜⎜⎜⎜⎝
1
N

N∑

i=1

eλi

⎞⎟⎟⎟⎟⎟⎠ . (1)

Natural connectivity indicates the redundancy of a graph,
and its characteristics is that it changes monotonically
with the increase/decrease in the number of edges in the
graph [14].

• Algebraic connectivity
The algebraic connectivity is defined as the second smallest
eigenvalue μ2 of Laplacian matrix L. Algebraic connectivity
indicates how easily/hardly a graph is disconnected. A graph
with large algebraic connectivity indicates that it is difficult
to divide the graph to subgraphs [12].

• Effective resistance
From a set of eigenvalues of Laplacian matrix L, the effective
resistance is defined as

N
N∑

i=2

1
μi
. (2)

Effective resistance is calculated from the sum of inverses
of eigenvalues obtained from a Laplacian matrix. Effective
resistance implies the robustness of a graph [5].

4. Method

Through experiments, we investigated the predictability of the
network robustness against random node removal from five spec-
tral measures (the spectral radius, the spectral gap, the natural
connectivity, the algebraic connectivity, and the effective resis-
tance). Specifically, we generated multiple networks for differ-
ent network sizes and densities using synthetic network genera-
tion models, and measured the correlation between every spectral
measure for a given original network and the largest cluster com-
ponent size for the network after random node removals. Figure 2
illustrates the overview of our experiments. In our experiments,
we calculated the correlation of the spectral measures of origi-
nal networks and the largest cluster component sizes of networks
after random node removal.

We generated a large number of networks using six net-
work generation models (BA (Barabási Albert) model [22], ran-
domized BA model, Li-Maini model [23], ER (Erdõs-Rényi)
model [24], DB (Degree-Bounded) model [19], and random reg-
ular graph) with different network sizes and densities.

The DB model generates a network with N nodes and the av-
erage degree of k. The DB model generates a degree-bounded
random network as follows; (1) N nodes are initiated; and (2) for
every node, k/2 links are added between the node and another
randomly-chosen node.

Since the BA model generates a network by repeatedly adding
vertices with a fixed number m of edges, it can only generate net-
works with specific average degrees. The randomized BA model
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Fig. 1 Example networks generated with six types of network generation models (N = 1,000 and k = 4).

Fig. 2 An overview of our experiments.

relaxes this limitation; i.e., it can generate a scale-free network
with an arbitrary average degree.

The difference between the BA model and the randomized BA
model is in their preferential attachment stages. At the k-th cycle,
the randomized BA model adds a node with a random number Xk

of edges whereas the BA model with the fixed number m of edges.
More specifically, in the randomized BA model, the number Xk

of edges added at the k-th cycle is determined by the Bernoulli
process with the probability of 1/m.

The Li-Maini model [23] is one of network generation models
for creating networks with cluster (i.e., community) structure. It
has been designed to recreate the community structure observed
in many social and biological networks. The Li-Maini model is
an evolving network model based on inner-community and inter-
community preferential attachment.

In our experiments, the network size N was varied between 100
and 1,000. Also, the average degree k (i.e., the network density)
was varied between 4 and 8. We generated 100 network instances
with each network generation model for given conditions (i.e., the
network size N and the average degree k).

Example networks generated with those network generation
models are illustrated in Fig. 1. This figure visualizes the differ-
ences in generated networks; for instance, the network generated
with Li-Maini model has a cluster structure.

For given network model M and node removal ratio p, we in-
vestigate the correlation between one of spectral measures for the
original network and a descriptive metric (i.e., the largest clus-
ter component size) for the degenerated network. In our exper-
iments, we calculated five spectral measures from the adjacency
and the Laplacian matrices of the original network. We then ob-

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

tained a degenerated network by randomly removing nodes from
the original network, and the largest cluster component size in the
degenerated network.

The correlation is measured by the correlation coefficient and
the coefficient of determination. More specifically, for network
model M, node removal ratio p, and spectral measure m, we mea-
sure the correlation coefficient Cm

M,p and the determination of cor-
relation Rm

M,p. The correlation is calculated as follows; (1) 100

network instances with N nodes and average degree k are gen-
erated using network generation model M; and (2) for these 100
network instances, the mean m of spectral measure m is calcu-
lated; and (3) degenerated networks are obtained by randomly re-
moving p% of nodes from these network instances, and the mean
L(p) of largest cluster component sizes of these degenerated net-
works is calculated; and (4) by repeating (1) to (3) while chang-
ing network size N and average degree k, multiple samples of (m,
L(p)) are obtained; and (5) from samples of (m, L(p)) obtained in
(4), the correlation coefficient Cm

M,p is calculated by the following
equation, and the determination of correlation Rm

M,p is obtained.

Cm
M,p =

cov(m, L(p))
σm σL(p)

(3)

Fig. 3 Histogram of eigenvalues λ of an adjacency matrix for a network instance (N = 1,000 and k = 4).

Fig. 4 Histogram of eigenvalues μ of a Laplacian matrix for a network instance (N = 1,000 and k = 4).

Here, cov(m, L(p)) is the covariance of m and L(p), σm and σL(p)

are standard deviations of m and L(p), respectively.

5. Results and Discussion

Before investigating the correlation between spectral measures
and a descriptive robustness metrics, we examine the spectral
properties of six types of networks as well as their robustness
against random node removal.

The spectrum of six types of networks (i.e., the histogram of
eigenvalues of an adjacency matrix and a Laplacian matrix) are
plotted in Figs. 3 and 4, respectively. In those figures, results for
six network generation models are plotted. From these results, it
is found that the distribution of eigenvalues highly depends on the
network generation model. Specifically, in the case of scale-free
networks whose degree distribution is highly skewed (BA, ran-
domized BA, and Li-Maini), the distribution of eigenvalues for
those networks are also highly skewed.

Spectral measures summarized in Section 3 are directly defined
from those eigenvalues — eigenvalues λi of an adjacency matrix
and eigenvalues μi of a Laplacian matrix; e.g., the spectral radius
is the maximum of λi, the algebraic connectivity is the second
minimum of μi, and the effective resistance is proportional to the
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Fig. 5 Relation between the node removal ratio and the largest cluster component size after random node
removal for networks with different densities (N = 1,000).

Fig. 6 Relation between the node removal ratio and the normalized largest cluster component size after
random node removal for networks with different densities (N = 1,000).

average of 1/μi.
Figures 3 and 4 illustrate that every type of network has dif-

ferent spectral properties, indicating that every type of network
should have a different robustness against node removal.

The robustness of six types of networks is shown in Figs. 5 and
11, which illustrate how the largest cluster component is shrunk
as the number of randomly-removed node increases. To clarify
the difference of the largest cluster component sizes among six
types of networks, the normalized largest cluster component size,
which is defined as the ratio of the largest cluster component size
to the network size (i.e., the number of remaining nodes exclud-
ing removed nodes), is plotted in Fig. 6. From these results, it
can be found that the largest cluster component sizes vary accord-
ing to the network generation model and the node removal ratio.
Namely, when the node removal ratio is low (i.e., p ≤ 0.5), the
largest cluster component size of non-scale-free networks (e.g.,
DB and random regular graph) is larger than that of non-scale-
free networks. On the contrary, when the node removal ratio is
extremely high (i.e., p ≥ 0.7), the largest cluster component size
of scale-free networks (e.g., BA and randomized BA) is larger
than that of non-scale-free networks.

These simulation results indicate that the robustness against
random node removal is quite different in six types of networks
and that such difference is noticeable in rather sparse networks
(e.g., k = 4). However, for denser networks (e.g., k = 8), the
difference in the largest cluster component size of network gen-
eration models except for the randomized BA model is marginal
when the node removal ratio is not so high (i.e., p ≤ 0.5).

The predictability of the network robustness against random
node removal is shown in Figs. 7 and 8, which depict the corre-
lation coefficient between every spectral measure and the largest
cluster component size for different node removal ratios p. In
Fig. 7, for a given network model, results for spectral measures
are shown. Also, in Fig. 8, for a given spectral measure, results
for different network generation models are shown.

One can find from Figs. 7 and 8 that the effective resistance has

a much stronger correlation with the largest cluster component
size than the other spectral measures unless the node removal ra-
tio is very high, which suggests high predictability of the network
robustness from the effective resistance. Also, one can find that
the spectral radius seems to be the best metric to predict the net-
work robustness under extremely-high node removal ratios. Sim-
ilar to the spectral radius, the natural connectivity might be usable
to predict the network robustness. However, the spectral gap and
the algebraic connectivity are not suitable for predicting the net-
work robustness since those two spectral measures are unstable
(i.e., the strength of the correlation highly depends on the type of
networks).

Stability of the predictability is also the favorable property of
the effective resistance as shown in Fig. 8, which illustrates how
the correlation coefficient between a spectral measure and the
largest cluster comment size after random node removal are af-
fected by the network topology.

In Figs. 9 and 10, the predictability of the network robustness
from the effective resistance is also examined by the coefficient
of determination, which is defined as the fraction of the variation
that can be explained by the regression equation. These figures
indicate that the coefficient of determination of the effective re-
sistance is much higher than those of the other spectral measures.

Finally, based on our observations, we answer the research
questions presented in Section 1.
Q1. Among five spectral measures (spectral radius, spectral gap,

natural connectivity, algebraic connectivity, and effective
resistance), which spectral measure predicts the geometri-
cal metric (i.e., the largest cluster component) after random
node failure most accurately?
Among the five types of spectral measures focused in this
paper, the effective resistance is most suitable for predicting
the largest cluster component size under low node removal
ratio (i.e., p ≤ 0.5). However, the spectral radius and the nat-
ural connectivity are usable under the extremely-high node
removal ratio (i.e., p ≥ 0.7).
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Fig. 7 Correlation coefficient between every spectral measure and the largest cluster component size after
random node removal.

Fig. 8 Correlation coefficient between every spectral measure and the largest cluster component size after
random node removal for different network generation models.

Q2. How is the predictability of those spectral measures affected
by the network (i.e., topology, network size, and density)?
As Figs. 8 and 10 imply, the effective resistance is stable

for networks generated with six types of generation models.
In particular, the correlation between the effective resistance
and the largest cluster component size are stronger for scale-
free networks rather than non-scale-free networks.

Q3. Similarly, how is the predictability of those spectral mea-
sures affected by the degree of random node failure (e.g.,

under 1%, 5%, and 10% node loss)?
As described in answer to Q1, the predictability of spec-
tral measures is highly affected by the node removal ratio.
Namely, under a low node removal ratio, the effective resis-
tance is usable, whereas, under a high node removal ratio, the
spectral radius and the natural connectivity are usable. For
this reason, it is required to choose the spectral measure ac-
cording to the evaluated system appropriately. For instance,
in the context of evaluating the robustness of computer net-
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Fig. 9 Coefficient of determination between every spectral measure and the largest cluster component
size after random node removal.

Fig. 10 Coefficient of determination between every spectral measure and the largest cluster component
size after random node removal for different network generation models.

works, the node removal ratio is not so high, which suggests
using the effective resistance for predicting the network ro-
bustness.

6. Case of Adversary Node Removal

In this section, we investigate the predictability of the network
robustness from spectral measures under adversary node removal
rather than random node removal.

We use the same methodology with that in Section 4 except

that, for a given node removal ratio p, a fraction p of high-degree
nodes are deterministically removed from the network; i.e., nodes
are removed from the network in the descending order of their de-
grees. In adversary node removal, the largest hub node with the
largest number of links with other nodes is always removed from
the network at first. The second largest hub node is removed next.
Such a process is repeated until a fraction p of nodes are removed
from the network.

The (normalized) largest component sizes of six types of net-
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Fig. 11 Relation between the node removal ratio and the largest cluster component size after adversary
node removal for networks with different densities (N = 1,000).

Fig. 12 Relation between the node removal ratio and the normalized largest cluster component size after
adversary node removal for networks with different densities (N = 1,000).

Fig. 13 Correlation coefficient between every spectral measure and the largest cluster component size
after adversary node removal.

works for different node removal ratios p are shown in Figs. 11
and 12, which clearly illustrate the vulnerability of scale-free net-
works (i.e., BA, randomized BA and Li-Maini) compared with
non-scale-free networks (i.e., ER, DB and random regular graph).
From those results, it can be found that similar to the case of ran-
dom node removal, the largest cluster component sizes vary ac-
cording to the network generation model and the node removal ra-
tio. Namely, non-scale-free networks are more robust than scale-
free networks and the random regular graph shows the best ro-
bustness among others. Moreover, it can be found that networks
generated with all network generation models are isolated when
the node removal ratio exceeds approximately 0.3.

The predictability of the network robustness against adversary

node removal is illustrated in Figs. 13 and 14. One can find from
Fig. 13 that the predictability of the spectral measures is highly
affected by the network generation models and the node removal
ratio. In non-scale-free networks, it can be found that the effective
resistance has a much stronger correlation with the largest cluster
component size than other spectral measures until giant cluster
collapse (p ≤ 0.1). On the other hand, one can find that the spec-
tral radius seems to be the best metric to predict the network ro-
bustness in a scale-free network or any network for p ≥ 0.1. The
weak correlation between the effective resistance and the largest
cluster component size in scale-free networks is probably due to
the collapse of the giant cluster in those networks. Note that
Fig. 11 illsutrates that the giant cluster diminishes in all scale-free
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Fig. 14 Coefficient of determination between every spectral measure and the largest cluster component
size after adversary node removal.

networks even when the node removal ratio is small.
Finally, based on our observations, we answer the last research

question presented in Section 1.
Q4. How are our observations regarding the above questions Q1–

Q3 affected if nodes are removed adversary rather than ran-

domly?
In the case of adversary node removal, the same conclusion
as in the case of random node removal can be obtained. The
predictability of the spectral measures is highly affected by
the node removal ratio. The effective resistance is still suit-
able for predicting the largest cluster component size until
the giant cluster collapses. Also, the spectral radius is usable
when the node removal ratio is not small.

7. Conclusion

In this paper, we have investigated how effectively spectral
measures can estimate the robustness of a network against ran-
dom node failure. Through experiments, we have investigated
the predictability of the network robustness against random node
removal from five spectral measures (the spectral radius, the spec-
tral gap, the natural connectivity, the algebraic connectivity, and
the effective resistance). Specifically, we have generated multi-
ple networks for different network sizes and densities using syn-
thetic network generation models, and measured the correlation
between every spectral measure for a given original network and
the largest cluster component size for the network after random
node removals. Consequently, we have shown that that, among
five types of spectral measures, the effective resistance is most
suitable for predicting the largest cluster component size under
low a node removal ratio, and that the predictability of the effec-
tive resistance is stable for various networks generated with dif-
ferent network generation models. Furthermore, we have inves-

tigated the predictability of the network robustness from spectral
measures under adversary node removal and revealed observa-
tions in the predictability of spectral measures for random node
removal are still valid for adversary node removal.

As future work, we are planning to investigate the predictabil-
ity of other descriptive metrics from spectral measures, and exam-
ine whether the descriptive metric (e.g., the largest cluster com-
ponent size) can be estimated from spectral measures.
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