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Abstract: Recently, use of cloud computing has expanded to include tasks such as data sharing among multiple
enterprises for open innovations and IoT systems for device management, etc. Public-key searchable encryption is
particularly useful for cases requiring protection of shared secret data. However, there is no public-key searchable
encryption scheme that simultaneously achieves: (A) efficient search performance, (B) multi-user support and (C) im-
plementation on database management systems, simultaneously. In this paper, we propose a new public-key searchable
encryption scheme which (A) provides an index generation mechanism for public-key searchable encryption, and (B)
generates different secret keys for multiple users. In our scheme, (A) is achieved by a portion of the deterministic
values generated from a keyword, and (B) is achieved by hierarchical inner-product predicate encryption. Our scheme
in particular, forms wildcards as the user identity from hierarchical inner-product predicate encryption in order to eas-
ily represent hierarchical identities. To achieve (C), we further propose an integration method which implements our
scheme into database management systems through a user-defined function so that its search functionality can be easily
used via SQL.
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1. Introduction

1.1 Background
In recent years, the utilization of cloud services for the early

launch of services and lowering enterprise IT costs has become
common. Use of the cloud has also expanded to include other
areas. In the past, a single company made use of the cloud for
its internal use or providing commercial services. Now however,
usage has expanded beyond single company use to also include
multi-enterprise data sharing. For example, as open innovation
becomes more fully utilized among multiple enterprises, usage
of the cloud is also increasing to share development documents
among the enterprises. By using the cloud, information can not
only be shared more efficiently among multiple enterprises, but
there is also the advantage that information can be securely shared
by granting access permission according to the affiliation of users.
Another example is IoT systems that support device management.
A lot of IoT systems that are built on the cloud can be accessed
from anywhere to gather information from devices all over the
world. In addition, all stakeholders involved in the product life
cycle, such as designers, manufactures, sales and maintenance
personnel, will be able to view data within their own affiliations,
thus facilitating the provision of various services.

In order to realize the above examples, highly secure cloud
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services should be used. One method for securing cloud ser-
vices is encryption. Especially, searchable encryption which can
perform keyword search over encrypted data without decryption
is suitable for cloud services. The first searchable encryption
scheme proposed in Ref. [28] is based on symmetric-key cryp-
tography. After that, many schemes have been proposed to im-
prove the performance or security [13], [14], [31], or to realize
order preserving encryption and its variants by relaxing IND-
CPA security [2], [7], [8], [17], [19]. In addition to algorithmic
constructions of symmetric-key searchable encryption, its inte-
gration into database management systems was also studied in
Refs. [24], [29].

On the other hand, a lot of symmetric-key searchable encryp-
tion schemes have to share among users a unique secret key which
is used for performing keyword search. This key-sharing limita-
tion is acceptable for data sharing within a single company but
not for the multi-enterprise data sharing described in our exam-
ples. This is because fine-grained access control for each data
is strictly required under multi-enterprise (i.e., multi-user) situa-
tions so that only appropriate users can access (in other words,
decrypt) the data. Furthermore, a data owner would designate
access permissions of his data by using not only the user IDs
but also affiliations or project names and then encrypt the data
with the access permission. Then, anyone who has the above
access permissions can search the encrypted data with each indi-
vidual’s private key. However, constructing a searchable encryp-
tion scheme that supports the above situation from symmetric-key
primitives is an extremely difficult task. Therefore, symmetric-
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key searchable encryption is not suitable for those situations.
In those situations, public-key searchable encryption is suit-

able for ensuring security in multi-enterprise cases. Performance
improvements have been proposed for public-key searchable en-
cryption schemes to make them more practical [5], [6] while most
searchable encryption needs to check all encrypted data sequen-
tially because of its strong security (i.e., indistinguishability).
Public-key searchable encryption that supports multi-user data
sharing and its concrete scheme has been also proposed [18].
However, there is currently no public-key searchable encryption
scheme which satisfies both efficient performance and multi-user
data sharing. Moreover, previous works focused only on algorith-
mic improvements, but not on database integration for deploy-
ment to Web systems.

This paper therefore considers the following requirements
which should be satisfied to make public-key searchable encryp-
tion practical:
Requirement A: Sufficient Search Performance.

Provide schemes in which the computational complexity of
performing keyword search is sub-linear of the amount of
shared data.

Requirement B: Data Sharing among Multiple Users.
Provide schemes which support data sharing according to
users’ identities.

In order to apply the above to actual web systems, the following
requirement should be also satisfied:
Requirement C: Integration into Database.

Provide integration methods into database management sys-
tems so that web applications can call public-key searchable
encryption via SQL.

1.2 Issues of Previous Searchable Encryption Schemes
The first searchable encryption scheme based on public-key

cryptography was proposed in Ref. [9]. A major advantage of
the scheme is that anyone can encrypt data with a public key and
that only a user having its corresponding secret key can perform
keyword search over the encrypted data. Almost all public-key
searchable encryption schemes extract keywords from data that
a user wants to store, and generate its encrypted data and their
encrypted keywords (called tags) in the storing phase. The user
conducts keyword search of the tags by using an encrypted key-
word (called trapdoor) in the search phase. After its proposal,
various public-key searchable encryption schemes with rich func-
tionalities such as AND/OR search or range search, have been
proposed [10], [15], [20], [21], [22]. A typical example of them
is constructed from hidden vector encryption (HVE). While all of
the schemes achieve high security (IND-CPA secure), they, how-
ever, have efficiency and usefulness problems. Informally, these
search performances linearly depend on the amount of encrypted
data stored in the clouds (Requirement A) and data sharing among
multiple users is not possible (Requirement B). In addition to the
problems, none of the papers (except for Refs. [23] and [29]) de-
scribe application of the schemes to a conventional database (Re-
quirement C).

There are two approaches for performance improvement of
public-key searchable encryption. One approach is (a) improving

Table 1 Previous searchable encryption schemes.

Requirement A Requirement B Requirement C
Shi et al.

Bellare et al. �
Popa et al. � �

Hattori et al. �
Suzuki et al. �
Our proposal � � �

the keyword matching algorithm itself, and the other approach
is (b) avoiding sequential search of the tags in the search phase.
(e.g. using an index) Especially, the approach described in (b) is
necessary for Requirement A because a large amount of data is
stored on the database in actual use-cases.

In order to improve the search performance regarding to Re-
quirement A, Shi et al. [27] proposed single or multi-dimensional
range query schemes which can perform range matching between
a tag and a query in O(log |S |) time, where S ⊆ Z is their message
space. To realize the schemes, they proposed a new security def-
inition called “match-revealing” by relaxing IND-CPA security.
The “match-revealing” means that the hidden values of encrypted
data which are within a queried range, might be leaked after the
range search, while the other hidden values outside of the range
have achieved IND-CPA security, yet. However, the search com-
plexity for all tags stored in database is O(N × log|S |), where N is
the number of tags in the database.

Bellare et al. [5], [6] proposed deterministic searchable encryp-
tion schemes based on RSA-OAEP. Although the search process
of the schemes can work in logarithmic order of the amount of en-
crypted data, there is no data sharing capability among multiple
users.

Popa et al. [24] proposed the database system called CryptDB
for improving performance and usefulness of searchable encryp-
tion and for realizing its database integration. Since it deployed
symmetric-key searchable encryption, data sharing among multi-
ple users is realized by sharing the same key. Therefore, CryptDB
cannot essentially provide secure data sharing among multiple
users.

Regarding Requirement B, Hattori et al. [18] proposed the
public-key searchable encryption scheme which can support se-
cure data sharing among multiple users. However, their scheme
has the disadvantage that the search performance linearly depends
on the amount of encrypted data, similarly to the scheme [9].

Regarding Requirement C, we [23] proposed the database in-
tegration of public-key searchable encryption in 2013. Suzuki
et al. [29] proposed generalized methodology to integrate search-
able encryption into database management systems. However,
their methodology focused only on symmetric-key searchable en-
cryption, but not public-key searchable encryption. This method
could also apply to this encryption, however they never imple-
mented a prototype for this encryption.

Previous works are summarized in Table 1. As shown in the ta-
ble, no previous work meets all the requirements, simultaneously,
although some of the requirements have been achieved.

1.3 Our Contribution
In this paper, we propose Public-key Searchable Encryption
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with Index Generation schemes. The first step scheme satisfies
Requirement A, and the second step scheme satisfies both Re-
quirements A and B. We also propose an implementation for in-
tegration of the proposed scheme into database management sys-
tems to satisfy Requirement C.

Regarding Requirement A, by applying the concept of general-
ization used in data anonymization [25], we propose the first step
scheme which has an index generation mechanism for public-key
searchable encryption and an adjusting mechanism between secu-
rity and performance. Concretely, at the storing phase, keywords
are generalized and grouped, and then a group ID is given to each
group. The group ID is our index value. We construct the group
ID from which the keywords cannot be uniquely identified. At the
search phase, the group ID is also used to improve the search per-
formance. In other words, a user specifies a target group ID for
search, and then performs a keyword search only for encrypted
data with the group ID.

In addition to the index construction above, the group ID is en-
crypted and then stored in the server. The group ID is partially
disclosed by an index extraction key as necessary. By adjusting
the number of index extraction keys, the user can adjust the bal-
ance between the security and the performance.

We also propose a new security definition which ensures that
keywords are not distinguishable from one another if both key-
words have the same index value. This is a less severe IND-CPA
security definition which combines IND-CPA with anonymity.

Regarding to Requirement B, we propose the second step
scheme which has a multi-user mechanism based on the con-
cept of hierarchical ID. By using the hierarchical ID, not only
the user ID but also the affiliation or project name to which the
user belongs can be expressed. However, only applying a hierar-
chical ID is not enough for the multi-enterprise situations since
typical hierarchical ID-based encryption (HIBE) can designate a
specific user, but not multiple group members as recipients. In
other words, if we use HIBE to share the data, a data owner has
to encrypt the data to match every recipient’s identity. The size
of the encrypted data then grows linearly depending on the num-
ber of recipients. In order to extend the concept of hierarchical
ID to multi-user, we apply the concept of wild-card to the hier-
archical ID. Since the wildcards “∗” corresponds to all user IDs,
the data owner can simultaneously designate multiple users who
belong to an affiliation or a project. We use inner-product predi-
cate encryption [22] to realize such an HIBE scheme supporting
the wild-cards. Then, we assume there is a key administrator who
manages the master secret key and issues user private keys, simi-
larly to ordinary IBE and its variants. In addition, we also extend
our security definition from single-user setting to multi-user set-
ting.

Regarding Requirement C, we propose integrating our pro-
posed scheme into conventional database management systems
in order to apply our scheme to web application systems. More
precisely, a tag (including an encrypted index) is stored together
with their corresponding encrypted data in the database. When
a search query is received, an index value is extracted from the
search query. Since selecting rows with the index value can be
achieved, it is easy to reduce the amount of the encrypted data

that we need to check. These processes can achieve user-defined
functions or user-defined data types, and therefore web applica-
tions can easily call searchable encryption functions via extended
SQL statements.

1.4 Organization of the Paper
In Section 2, we describe details of related works. In Section 3,

we describe a definition of conventional searchable encryption
schemes. In Sections 4, 5 and 6, we present step by step, our
public-key searchable encryption with index generation. For the
first step, we present a scheme that satisfies only Requirement A
in Section 4. For the second step, we extend our scheme to sat-
isfy both Requirements A and B in Section 5. In Section 6, for
the final step, we propose database integration to satisfy all the
Requirements A, B and C. Evaluations of our index function and
performance are also shown in this section.

2. Related Work

Although we briefly show that there is no proposal that satis-
fies all the Requirements A, B, and C in Section 1.2, we describe
more details.

Shi et al. [27] proposed single or multi-dimensional range
query schemes which can perform range matching between a tag
and a query in O(log |S |) time, where S ⊆ Z is their message
space, while an HVE based range search scheme proposed by
Boneh et al. [10] requires O(|S |) computations. Their idea is that
they build a balanced tree which represents integer values as a
leaf node. Instead of searchable encrypting the integer value di-
rectly, leaf node IDs and all of its ancestor node IDs are encrypted
by searchable encryption. To search the values, a search range is
converted into the combination of node IDs, and trapdoors are
generated from all of the node IDs corresponding to the search
range. Since the balanced tree is used for expressing the inte-
ger values, computational complexity becomes logarithmic or-
der. To realize the schemes, they proposed a new security defini-
tion called “match-revealing” by relaxing IND-CPA security. The
“match-revealing” means that the hidden values of encrypted data
which are within a queried range, may be leaked after the range
search, while the other hidden values outside of the range are still
guaranteed IND-CPA security. However, the search complexity
for all tags stored in database is O(N × log |S |), where N is the
number of data in the database.

Bellare et al. [5], [6] proposed deterministic searchable encryp-
tion schemes based on RSA-OAEP, and showed that their search
process can be performed in the logarithmic order of the amount
of data. In this method, a keyword is used as a seed of the pseudo-
random number generator for OAEP padding, and thus their algo-
rithms become deterministic. Then, conducting a keyword search
can be done by using binary comparison operation between a tag
and a trapdoor Therefore, search operation can be performed at
high speed by utilizing the optimization functionality that the or-
dinary database has. However, since the algorithm is based on
RSA encryption, data sharing among multiple users cannot be re-
alized.

Popa et al. [24] have proposed a database called CryptDB
for improving the performance of searchable encryption and its
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database integration. In that paper, they proposed an onion en-
cryption that uses both deterministic and probabilistic searchable
encryption schemes to provide a trade-off mechanism between
performance and security. Passing an onion slice key from the
client to the server that converts the probabilistic encryption into
the deterministic encryption can add to search capability, together
with degrading security. Since it was implemented as a proxy,
secret-key is shared among multiple users in an enterprise, and
then data can be shared. However, since AES and symmetric-
key searchable encryption are used, it is not possible to securely
share data among multiple enterprises. In addition, these pro-
cesses were realized by user-defined functions, and they showed
that symmetric-key searchable encryption can be applied to ordi-
nary databases. However, they did not discuss whether public-key
searchable encryption can be applied or not.

Hattori et al. [18] proposed a scheme to realize data sharing
in public-key searchable encryption. The scheme is constructed
by extending hierarchical ID-based encryption with wildcards to
satisfy ID confidentiality (attribute-hiding). Therefore, based on
the general construction scheme of searchable encryption from
attribute-hiding identity based encryption proposed by Abdalla
et al. [1], searchable encryption for multi-user setting can be real-
ized. Although this scheme realizes data sharing among multiple
users, it has performance issues similar to ordinary public-key
searchable encryption schemes.

Suzuki et al. [29] also proposed a general construction method
for applying searchable encryption to Web applications. A DB
plug-in is used to integrate searchable encryption into a database
and a DB interface wrapper is used to convert an ordinary SQL
command into a special SQL command which supports search-
able encryption in order to reduce modification of the Web appli-
cation. Encryption and decryption are performed by the HTTP
Proxy on the client side. Their implementation method was con-
firmed by the symmetric-key searchable encryption. This method
may be applicable to public-key searchable encryption but has not
been verified by prototype implementation.

3. Preliminaries

3.1 Notations
When A is a set, y

U←− A denotes that y is uniformly selected
from A. y := z denotes that y is set, defined or substituted by z.
When a is a fixed value and A is an algorithm, A(x) → a denotes
the event that A outputs a on input x. We denote a set of all natu-
ral numbers by N. For a prime number q ∈ N, we denote a finite
field of order q by Fq. A vector symbol denotes a vector repre-
sentation over Fq, e.g., −→x denotes (x1, . . . , xn) ∈ Fn

q. We denote
the message space for HIPE by MHIPE , and the keyword space
for searchable encryption by W ⊆ Fq \ {0, q − 1}. We denote a
hierarchical identity by {identity1, · · · , identityn}, where identityi

is an element of Fq \ {0, q − 1} for 1 ≤ i ≤ n. A single quoted
string ’string’ is represented as an element in Fq \ {0, q − 1}. We
denote the concatenation of strings or identities by |. We say that
a probability is negligible if the probability is smaller than 1/p(λ)
for any positive polynomial p and any security parameter λ. We
say that a probability is overwhelming if the probability is at least
1− 1/p(λ) for any positive polynomial p and any security param-

eter λ.

3.2 Searchable Encryption
Searchable encryption is an encryption scheme that allows key-

word search over encrypted data without decryption. There are
two types in searchable encryption. One is based on public-key
cryptography, and the other is based on symmetric-key cryptogra-
phy. In this paper, we focus on the former searchable encryption.
We show the definition of public-key searchable encryption pro-
posed in Ref. [9].
Definition 1. A non-interactive public-key searchable encryption
scheme consists of the following polynomial time algorithms:
• KeyGen takes as input the security parameter 1λ, and gener-

ates a public/secret key pair (mpk,msk).
• GenTag takes as input the public key mpk and a keyword w,

and generates an encrypted tag of w.
• GenTrapdoor takes as input the public key mpk, the secret

key msk, and a keyword w′, and generates a trapdoor Tdw′ of
w′.

• Test takes as input the public key mpk, the encrypted tag
Tagw, and the trapdoor Tdw′ , and outputs TRUE if w = w′

and FALSE otherwise.
The correctness of the searchable encryption scheme is

as follows. For any security parameter 1λ and any key-
word w, it holds that Test(mpk, Tagw, Tdw) = TRUE where
KeyGen(1λ) → (mpk,msk), GenTag(mpk, w) → Tagw and
GenTrapdoor(mpk,msk, w) → Tdw. In addition, the consis-
tency is Test(mpk,Tagw, Tdw′ ) = FALS E with overwhelming
probability, where w � w′, GenTag(mpk, w) → Tagw and
GenTrapdoor(mpk,msk, w′)→ Tdw′ .

As described above, the searchable encryption scheme enables
the user, who has the master secret key, to generate trapdoors.

The indistinguishable security of the searchable encryption
scheme is defined as follows.
Definition 2. A searchable encryption scheme is secure in the
sense of indistinguishability against adaptive chosen keyword at-
tacks if for any polynomial time adversaryA, the advantage ofA
in the following experiment is negligible in the security parame-
ter.
( 1 ) The challenger runs the KeyGen(1λ) algorithm to generate a

public key mpk and a secret key msk, and gives mpk to the
adversaryA.

( 2 ) The adversary A can adaptively ask the challenger for any
keyword w of his choice in order to obtain its trapdoor Tdw.

( 3 ) At some point, the adversary A sends two challenge key-
words w∗0 and w∗1 to the challenger. The only restriction is
that the adversary A did not previously ask for the trap-
door Tdw∗0 or Tdw∗1 . The challenger picks a random bit
b ∈ {0, 1} and gives the adversary the challenge ciphertext
C = GenTag(mpk, w∗b).

( 4 ) The adversary can continue to ask for any keyword w of his
choice to obtain its trapdoor as long as w � w∗0 and w � w∗1.

( 5 ) Finally, the adversary A outputs a bit b′ ∈ {0, 1} and wins
the game if b′ = b.

The advantage of A in this game is defined to be AdvS E
A (λ) =

|Pr[b′ = b] − 1/2|.
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3.3 Hierarchical Inner-product Predicate Encryption
We give the syntax of hierarchical predicate encryption pro-

posed in Ref. [22]. In this paper, we focus on hierarchical inner-
product predicate encryption (HIPE).
Definition 3. Let −→μ := (n, d; μ1, . . . , μd) s.t. 0 < μ1 < μ2 < · · · <
μd = n be a format of hierarchy of depth d attribute spaces. A hi-
erarchical predicate encryption (HPE) scheme for the class of hi-
erarchical inner-product predicates F over the set of hierarchical
attributes Σ consists of probabilistic polynomial-time algorithms
Setup, KeyGen, Enc, Dec, and Delegate� for � = 1, . . . , d − 1.
These are given as follows:
• Setup takes as input a security parameter 1λ and a format

of hierarchy −→μ , and returns a (master) public key mpk and a
(master) secret key msk.

• KeyGen takes as input the master public key mpk, the se-
cret key msk, and predicate vectors (−→v 1, · · · ,−→v �). It returns
a corresponding secret key sk(−→v 1 ,··· ,−→v �).

• Enc takes as input the master public key mpk, attribute vec-
tors (−→x 1, · · · ,−→x h), where 1 ≤ h ≤ d, and a plaintext m in the
associated plaintext space, msg. It returns a ciphertext c.

• Dec takes as input the master public key mpk, the secret key
sk(−→v 1 ,··· ,−→v �), where 1 ≤ � ≤ d, and a ciphertext c. It returns a
either plaintext m or the distinguished symbol ⊥.

• Delegatel takes as input the master public key mpk, an �-th
level secret key sk(−→v 1 ,··· ,−→v �), and an (� + 1)-th level predicate
vector −→v �+1. It returns (�+1)-th level secret key sk(−→v 1 ,··· ,−→v �+1).

The correctness of the HIPE is: For any security parameter
1λ, any predicate vector (−→v 1, · · · ,−→v �) and any attribute vector
(−→x 1, · · · ,−→x �), it holds that:

Dec(mpk, sk(−→v 1 ,··· ,−→v �), c)→ m,
s.t. −→v i · −→x i = 0 (1 ≤ i ≤ �),
where Setup(1λ,−→μ )→ (mpk,msk),
Enc(mpk, (−→x 1, · · · ,−→x �),m)→ c,
KeyGen(mpk,msk, (−→v 1, · · · ,−→v k))→ sk(−→v 1 ,··· ,−→v k),
and Delegate j(mpk, sk(−→v 1 ,··· ,−→v j)

)→ sk(−→v 1 ,··· ,−→v j+1).
In addition, the consistency is: Dec(mpk, sk(−→v 1 ,··· ,−→v �), c)→ ⊥with
overwhelming probability, in case −→v i · −→x i � 0 for at least one of
i.

The following security notions payload-hiding and attribute-

hiding for HIPE are important to construct our scheme. The defi-
nitions are almost the same except for the challenge phase. More
specifically, the adversary A chooses the challenge messages m∗0
and m∗1 for payload hiding security while the adversaryA chooses
the challenge attributes −→x ∗0 and −→x ∗1 for attribute hiding security.
Definition 4. A hierarchical inner-product predicate encryption
scheme is payload-hiding (PH) against chosen plaintext attacks
if for all probabilistic polynomial-time adversariesA, the advan-
tage ofA in the following experiment is negligible in the security
parameter.
( 1 ) Setup is run to generate a pair of mpk and msk, and mpk is

given toA.
( 2 ) A may adaptively makes a polynomial number of queries of

the following type:
• Create key: A asks the challenger to create a secret key

for a predicate f ∈ F. The challenger creates a key for f

without giving it toA.

• Create delegated key: A specifies a key for predicate f that
has already been created, and asks the challenger to per-
form a delegation operation to create a child key for f ′ ≤ f .
The challenger computes the child key without giving it to
the adversary.

• Reveal key: A asks the challenger to reveal an already-
created key for predicate f .

( 3 ) A outputs challenge attribute vectors −→x := (−→x 1, . . . ,
−→x h) and

challenge plaintext m∗0 and m∗1, subject to the restriction that
all the revealed keys which have been already queried cannot
decrypt the challenge message.

( 4 ) A random bit b is chosen. A is given c(b) :=
Enc(mpk,m∗b,

−→x ).
( 5 ) The adversary may continue to request keys for additional

predicate vectors subject to the restriction that all the re-
vealed keys which have been already queried cannot decrypt
the challenge message.

( 6 ) A outputs a bit b′, and succeeds if b′ = b.
The advantage of A in this game is defined to be
AdvHIPE,PH

A (λ) = |Pr[b′ = b] − 1/2|.
Definition 5. A hierarchical inner-product predicate encryption
scheme is attribute-hiding (AH) against chosen plaintext attacks
if for all probabilistic polynomial-time adversariesA, the advan-
tage ofA in the following experiment is negligible in the security
parameter.
( 1 ) Setup is run to generate a pair of mpk and msk, and mpk is

given toA.
( 2 ) A may adaptively makes a polynomial number of queries of

the following type:
• Create key: A asks the challenger to create a secret key

for a predicate f ∈ F. The challenger creates a key for f

without giving it toA.
• Create delegated key: A specifies a key for predicate f that

has already been created, and asks the challenger to per-
form a delegation operation to create a child key for f ′ ≤ f .
The challenger computes the child key without giving it to
the adversary.

• Reveal key: A asks the challenger to reveal an already-
created key for predicate f .

( 3 ) A outputs challenge attribute vectors −→x ∗0 := (−→x (0)
1 , . . . ,

−→x (0)
h0

)

and −→x ∗1 := (−→x (1)
1 , . . . ,

−→x (1)
h1

) and a challenge plaintext m, sub-
ject to the restriction that f (−→x ∗0) = f (−→x ∗1) for all revealed
keys of predicate f .

( 4 ) A random bit b is chosen. A is given c(b) :=
Enc(mpk,m,−→x ∗b).

( 5 ) The adversary may continue to request keys for additional
predicate vectors subject to the restriction that f (−→x ∗0) =
f (−→x ∗1).

( 6 ) A outputs a bit b′, and succeeds if b′ = b.
The advantage of A in this game is defined to be
AdvHIPE,AH

A (λ) = |Pr[b′ = b] − 1/2|.
The HIPE scheme proposed in Ref. [22] satisfies both payload-

hiding and attribute-hiding. Therefore, we use it as a building
block of our scheme later on.
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3.4 Construction of Searchable Encryption from HIPE
Similarly to the generic construction [1] which can transform

ID-based encryption into searchable encryption, we can construct
a single-user searchable encryption scheme from HIPE schemes,
as follows.
• Setup(1λ)→ (mpk,msk)
−→μ := (n = 2, d = 1; μ1 = 2)
return (mpk,msk) := SetupHIPE(1λ,−→μ )

• GenTag(mpk, w)→ Tagw

r
U←− M, c := EncHIPE(mpk,−→x := (w, 1), r)

return Tagw := (r, c)
• GenTrapdoor(mpk,msk, w′)→ Tdw′

return Tdw′ := KeyGen(mpk,msk,−→v := (1,−w′))
• Test(mpk, Tagw,Tdw′ )→ {0, 1}

m′ := Dec(mpk,Tdw′ , c)
If m′ = r, result := TRUE, otherwise result := FALSE
return result

Broadly speaking, the encrypted tag is an HIPE ciphertext gen-
erated by the keyword w and the randomly chosen message r,
where w is embedded as the attribute and r is also included in
the encrypted tag. The trapdoor is a secret key generated by the
keyword w′ which is set as the predicate. Therefore, if both the
attribute w and the predicate w′ are identical, then the message r

randomly chosen in GenTag appears in the decryption process of
Test. Here, no information on w is revealed from the Test process
if the HIPE scheme used in the construction satisfies attribute-
hiding. The construction in this way realizes that an encrypted
keyword search is to be conducted. While the construction leads
only to single user setting, we extend it to multi-user setting in
Section 5.

4. Performance Improvement

In this section, we present the first step scheme satisfying Re-
quirement A.

4.1 Idea for Performance Improvement
We explain our idea for realizing the index generation capabil-

ities. In conventional searchable encryption schemes, it is neces-
sary to perform Test for all the encrypted tags with the trapdoor
in one search process, since no information on keywords can be
obtained from the encrypted tags. Therefore, the computation
complexity of the search process becomes O(N) in case the num-
ber of encrypted tags is N.

To improve the performance issues, we deploy index genera-
tion capabilities into public-key searchable encryption. Our key
idea is that a user who has mpk generates, in addition to an en-
crypted tag, an index value derived from a keyword, determinis-
tically, and stored together it with the encrypted tag in a server.
Also, a user who has msk generates, in addition to a trapdoor,
an index value from a keyword, deterministically, similarly to the
above index generation. Hereafter, we call the former index tag

index and the latter index trapdoor index. Prior to processing all
encrypted tags, the server firstly selects candidates of encrypted
tags which may match the hidden keyword of the trapdoor, from
all the encrypted tags stored in the server, by using the tag index

values and the trapdoor index value. After that, the server runs
Test among the candidates and the trapdoor. In this situation, the
server runs Test only for a part of the encrypted tags, but not for
all encrypted tags. Thus, we can improve the search performance
of public-key searchable encryption.

This key idea is similar to generalization technique well-known
in anonymization literature. Here, we explain the above by us-
ing examples of Japanese addresses. Let a database have an
address column. For privacy protection, detailed address infor-
mation should be encrypted because the address information is
a kind of personal information which might identify an individ-
ual. On the other hand, it might not be a problem if non-detailed
address information is disclosed. For example, even if the prefec-
ture information is disclosed, the risk of identifying the individual
is extremely small. Therefore, the prefecture information may not
need to be encrypted. In such a case, it is possible to use prefec-
ture information as an index value for encrypted address. Even in
Tokyo, which has the largest population in Japan, its population
is only about 10% of the total population of Japan. Therefore,
even if ”Tokyo” is specified as an index value, the encrypted tags
to be searched can be reduced to 10% of all encrypted tags, and
the performance can be improved by 10 times while ensuring a
certain level of anonymity.

We also propose a mechanism to control the disclosure depth
of the index. This means that we can control the generalization
levels. If a system is used for a long time, it is generally difficult to
predict how large the database grows. In other words, it is difficult
for an administrator to determine a suitable generalization level in
advance. A mechanism which can adjust the generalization level
according to the size of the database is useful for this situation. In
order to realize the mechanism, our idea is that in the encryption
process, index values are generated for each depth, encrypted,
and embedded into an encrypted tag. If the administrator would
like to improve the search performance, he permits the database
to extract some index values by disclosing some decryption keys
and decrypting the encrypted index values contained in the en-
crypted tags. Search performance is then appropriately improved
depending on the disclosed depth of the index.

For example, in a case where the number of encrypted tags is
small, the search process may finish in a practical amount of time
even if all the encrypted tags are tested with a trapdoor. In this
case, there is no need to disclose any index value about which
prefecture the hidden address information of each encrypted tag
belongs to. On the other hand, it takes time for a search since
encryption tags gradually accumulate. Then, the search perfor-
mance can be improved by disclosing which area (e.g., East Japan
or West Japan) the hidden address information of each encrypted
tag belongs to. Similarly, when further encrypted tags are accu-
mulated and search processing time becomes long, region infor-
mation such as Kanto region, Kinki region, etc. or more informa-
tion such as for prefectures can be further disclosed in order to
improve the search performance. In this way, we can control the
disclosure depth of our index. In other words, our mechanism can
control the tradeoff between security and search performance.

While we have explained our idea using Japanese address in-
formation so far, our idea can be applied to various data includ-

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

ing the address information. Let an index function used in our
GenTag and GenTrapdoor be Index : {0, 1}∗ × {1, . . . , Lindex} →
{0, 1} j, where j is a size of the index values, Lindex is the maximum
depth of the index. That is, Index(w, �)→ idx�, where w is a key-
word and idx� is an element in {0, 1} j for 1 ≤ � ≤ Lindex. Here,
we assume that for a keyword w, there exists a keyword w′(� w)
such that Index(w, �) = Index(w′, �) and that we can compute the
keyword w′ in polynomial time. We discuss these assumptions in
Section 4.3. By disclosing the i-th element idxi, we can divide
the keyword space W into ki groups. In our address example,
Lindex = 3, k1 = 2, k2 = 8, and k3 = 47 because there are 2 ar-
eas, 8 regions, and 47 prefectures in Japan, respectively. In other
words, idx1 ∈ {0, 1}, idx2 ∈ {0, . . . , 7} and idx3 ∈ {0, . . . , 46}.
Here, we assume that the index function equally divides the key-
word space W within the range ±δ, where δ ∈ N. Then, each
group of k1 groups contains at least |W |/k1 − δ keywords. This is
because it holds in our example, |{w ∈ W | idx1 = 0}| ≥ |W |/k1−δ
and |{w ∈ W | idx1 = 1}| ≥ |W |/k1 − δ due to the above as-
sumption. Therefore, even if ind1 of any encrypted tag (i.e. tag
index) is disclosed, there are at least |W |/k1 − δ candidate key-
words for the hidden keyword of the encrypted tag, and then
(|W |/k1 − |δ|)-anonymity holds. The above situation also holds
in the case where ind1 of any trapdoor (i.e. trapdoor index) is dis-
closed. The number of the encrypted tags to be tested are reduced
from O(N) to O(N/k1), and therefore the search performance is
improved.

4.2 Syntax
We show the syntax of our first step scheme for Requirement

A.
Definition 6. A public-key searchable encryption with in-
dex generation for single-user setting consists of prob-
abilistic polynomial-time algorithms Setup, GenTag,
GenTrapdoor, Test, GenIndexKey, ExtractTagIndex and
ExtractTrapdoorIndex. These are given as follows:
• Setup takes as input a security parameter 1λ and a depth of

index Lindex. It returns a master public key mpk and a master
secret key msk.

• GenTag takes as input the master public key mpk and a key-
word w in some associated keyword space W. It returns en-
crypted tag Tagw.

• GenTrapdoor takes as input the master public key mpk, the
master secret key msk and a keyword w in some associated
keyword space W. It returns trapdoor Tdw.

• Test takes as input the master public key mpk, an encrypted
tag Tagw and a trapdoor Tdw. It returns a test result, TRUE
(=1) or FALSE (=0). Test returns TRUE if both hidden key-
words in the encrypted tag and the trapdoor are the same,
and otherwise returns FALSE.

• GenIndexKey takes as input the master public key mpk, the
master secret key msk and an index depth �. It returns an
index extraction key IKey�.

• ExtractTagIndex takes as input the master public key mpk,
an encrypted tag Tagw and an index extraction key IKey�.
It returns either an index value {0, 1}∗ or the distinguished
symbol ⊥.

• ExtractTrapdoorIndex takes as input the master public key
mpk, a trapdoor Tdw and an index extraction key IKey�. It
returns either an index value {0, 1}∗ or the distinguished sym-
bol ⊥.

Let us consider our correctness conditions of the first step
scheme. The Test algorithm returns TRUE if both a tag and a
trapdoor are generated from the same keyword.

Further, the index values extracted from a tag and a trapdoor
must be the same when these are generated from the same key-
word, and the depth � index values extracted from a tag and a
trapdoor must be the same when the �-th elements of output of
Index evaluated by the keywords w and w′ are the same, where
the tag and trapdoor are generated from w and w′, respectively.
Therefore, the following correctness conditions must be satisfied.
Definition 7 (Correctness conditions). For any security parame-
ter 1λ , any � ≤ Lindex, and any different keywords w and w′ which
have the same index value on �-th depth of index, it holds that:
( 1 ) Test(mpk, Tagw,Tdw) = TRUE

( 2 ) ExtractTagIndex(mpk,Tagw, IKey�)
= ExtractTrapdoorIndex(mpk, Tdw, IKey�)

( 3 ) ExtractTagIndex(mpk,Tagw, IKey�)
= ExtractTagIndex(mpk, Tagw′ , IKey�)

where KeyGen(1λ)→ (mpk,msk), GenTag(mpk, w)→ Tagw,
GenTag(mpk, w′) → Tagw′ , GenTrapdoor(mpk,msk, w) →
Tdw, GenIndexKey(mpk,msk, �)→ IKey�.

Further, it is necessary that the Test algorithm returns FALSE
if both a tag and a trapdoor are generated from different key-
words, and that the depth � index values extracted from a tag
and a trapdoor are different when the �-th elements of outputs
of Index evaluated by the keywords w and w′ are different, where
the tag and the trapdoor are generated from w and w′, respectively.
Therefore, the following consistency conditions must be satisfied.
Definition 8 (Consistency conditions). For any different key-
words w and w′ which have different index values on �-th depth
of index, it holds that:
( 1 ) Test(mpk, Tagw,Tdw′ ) = FALS E with overwhelming prob-

ability
( 2 ) ExtractTagIndex(mpk,Tagw, IKey�)
� ExtractTrapdoorIndex(mpk, Tdw′ , IKey�)

( 3 ) ExtractTagIndex(mpk,Tagw, IKey�)
� ExtractTagIndex(mpk, Tagw′ , IKey�)

where KeyGen(1λ) → (mpk,msk), GenTag(mpk, w) → Tagw,
GenTag(mpk, w′) → Tagw′ , GenTrapdoor(mpk,msk, w′) →
Tdw′ , GenIndexKey(mpk,msk, �)→ IKey�.

4.3 Security Definition
In the previous section, we constructed index values by using

the concept of k-anonymity for performance improvements while
security is also ensured. In this subsection, we discuss the secu-
rity of the first step scheme. In the scheme, while index values are
initially kept secret, the index values will be disclosed partially
for improving search performance. This situation is formulated
as follows: Even if an adversary knows plain keyword candidates
(hereafter, keyword group) for each encrypted tag, it is impossible
to specify which keywords chosen from the corresponding key-
word group are encrypted. We define security as hidden keywords
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being indistinguishable within the same keyword group identified
by the index values. First, the security definition of the searchable
encryption for a single-user setting is shown as follows:
Definition 9. Let Lindex be a constant. A public-key searchable
encryption with index generation scheme up to Lindex depth is
adaptively secure against chosen keyword attacks if for all proba-
bilistic polynomial-time adversariesA, the advantage ofA in the
following experiment is negligible in the security parameter.
( 1 ) Setup is run to generate a pair of mpk and msk, and mpk is

given toA.
( 2 ) A may adaptively makes a polynomial number of queries of

the following type:
• Trapdoor query: A asks the challenger to create a trapdoor

for a keyword w ∈ W. The challenger creates a trapdoor
Tdw for w and gives it toA.

• Index key query: A asks the challenger to create an index
extraction key for � ≤ Lindex depth. The challenger creates
an index extraction key IKey� for depth � and gives it toA.

( 3 ) A chooses two challenge keywords w∗0, w
∗
1 ∈ W, and sends

them to the challenger. The only restriction is that the A
cannot choose keywords which can be distinguished by any
trapdoors or index extraction keys which A has already
queried.

( 4 ) The challenger chooses a random bit b and creates a chal-
lenge message Tagw∗b

( 5 ) A may adaptively make a polynomial number of trapdoor
queries or index key query, similar to phase (2). The only re-
striction is that theA cannot query trapdoors or index extrac-
tion keys which can identify the challenge message Tagw∗b .

( 6 ) A outputs a bit b′, and succeeds if b′ = b.
The advantage of an adversary in this game is defined to be
AdvS E

A (λ) = |Pr[b′ = b] − 1/2|.
We have to set several restrictions on queries in our adaptive

game, similarly to a lot of other adaptive games in public-key en-
cryption, in order to avoid trivial attacks. Also, we put a restric-
tion on the index depth Lindex in our adaptive game. This detail is
given as follows.

The number of the equivalence classes S Idx = {w ∈
W |Index(w) = Idx}(Idx ∈ Image(Index)) might be increased ex-
ponentially as Lindex is increased linearly. In our adaptive game, a
polynomial time adversary has to choose two challenge keywords
w and w′ such that Index(w) = Index(w′) (i.e., w and w′ belong to
the same equivalence class). If Lindex (more precisely, �) is large,
it might be hard for the adversary to choose the keywords. There-
fore, we additionally place a restriction that Lindex is a constant in
the security parameter in our adaptive game.

Fortunately, this restriction is useful for various cases. Let the
keyword space for example be a set of Japanese family names,
and the index function be a part of SHA256 hash values. It is
well known that the cardinality of the keyword space is nearly
100,000. In this case, if we set Lindex = 5 (or namely, we use the
first 5 bits of hash values), then it will be about 25 times faster
than an ordinary search process, while about 3000-anonymity is
ensured. If Lindex = 10, then it will be about 210 times faster while
about 100-anonymity is ensured.

4.4 Construction
Details of our algorithms in the first step scheme are de-

scribed in Fig. 1. The GenTag function generates an encrypted
tag, which contains both a searchable encryption part, TagS E ,
(SE part for short) and an encrypted index, {EncIdxTagi}Lindex .
The SE part is generated in the same manner explained in Sec-
tion 3.4. The encrypted index is generated by encrypting each
index value which is output by the Index function. Similarly,
the GenTrapdoor function generates a trapdoor which contains
an SE part and an encrypted index similar to that of the en-
crypted tag. The Test function compares the SE part of an en-
crypted tag with the SE part of a trapdoor to test if the hidden
keywords match/mismatch. The GenIndexKey function gener-
ates an index extraction key according to the index depth to be
disclosed. Using the generated index extraction key, the index
value can be extracted from an encrypted tag and a trapdoor by
the ExtractTagIndex function and the ExtractTrapdoorIndex
function, respectively. By using this as index, it is possible to ex-
tract the candidates of encrypted tags for which the Test function
should be executed at the search time.

Though the search performance is improved, there are the fol-
lowing tradeoffs:
( 1 ) The size of the tags and the trapdoors grows linearly ac-

cording to Lindex. That is, our proposed scheme requires a
larger storage size than that of ordinary searchable encryp-
tion scheme.

( 2 ) After an index extraction key IKey� is disclosed, running our
tag index extraction function ExtractTagIndex for all the
tags stored in the server is required to obtain the index val-
ues of depth �, and the server stores them into database. The
complexity of this process is roughly O(T AG × DecHIPE),
where T AG is the number of the stored tags and DecHIPE

is the decryption complexity of an HIPE scheme. Also, the
server has to perform the above index extraction for all the
tags after an index extraction key is further disclosed. When
a tag is stored after the above index extraction, the server
also has to perform the same process for the tag.

( 3 ) After the index extraction process ( 2 ), the server
has to perform our trapdoor index extraction function
ExtractTrapdoorIndex for a trapdoor by using index ex-
traction keys already disclosed in the keyword search phase.
The complexity of this process is roughly O(� × DecHIPE),
where � is the number of the index extraction keys disclosed
already.

Therefore, it is necessary to estimate the maximum size of the
data and determine the index depth Lindex appropriately. We dis-
cuss the Index function more detail in Section 6.3.

The EncodeAttribute function vectorizes a 2 dimen-
sional attribute {attr1, attr2} into a 4 dimensional vector
(σ1attr1, σ1, σ2attr2, σ2), and the EncodePredicate function
vectorizes a 2 dimensional predicate {pred1, pred2} into a 4
dimensional vector (ρ1,−ρ1 pred1, ρ2,−ρ2 pred2). The decryption
of HIPE succeeds only if the inner product value of both vectors
is 0, or namely, σ1ρ1(attr1 − pred1) + σ2ρ2(attr2 − pred2) = 0
over Fq is satisfied. This equation holds with overwhelming
probability, where attr1 = pred1 and attr2 = pred2, which mean
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Fig. 1 Algorithm of the first step scheme (single-user setting).

that both attributes and predicates are the same.
Theorem 1. The first step scheme satisfies Definition 7.
Proof. We explain the correctness condition 1 is satisfied. The
Test function decrypts the random number r encrypted with the
attribute {′S E′, w} by HIPE in the GenTag function, by using
the HIPE secret key generated with the predicate {′S E′, w} in the
GenTrapdoor, and therefore the random number r appears as
its decryption result. This function compares the decryption re-
sult with the un-encrypted random number r contained in the en-
crypted tag, then returns TRUE(= 1). Therefore, the correctness
condition 1 is satisfied.

We explain the correctness condition 2. Both the GenTag
function and the GenTrapdoor function generate the same in-
dex value for the same keyword w by the Index function, and
encrypt them with the attributes {′IdxTag′, i} and {′IdxTd′, i}, re-
spectively. The GenIndexKey uses the predicates {′IdxTag′, i}
and {′IdxTd′, i} to generate the secret key for extracting index
values from encrypted tags and a trapdoor, respectively. The
ExtractTagIndex and ExtractTrapdoorIndex functions respec-
tively decrypt the encrypted index values contained in the en-
crypted tags and the trapdoor using the secret key, and return the
same decryption result, that is, output of Index function. There-

fore, the correctness condition 2 also holds.
We explain the correctness condition 3. Let the index val-

ues of the keywords w, w′ be Idxw, Idxw′ , respectively. From
the assumption, both Idxw, Idxw′ are the same index value Idx

at �-th depth. As shown in the correctness condition 2, our con-
struction simply encrypts the index value with the fixed attribute
{′IdxTag′, i} and decrypts it with the fixed predicate {′IdxTag′, i}.
Thus, if HIPE satisfies the correctness condition of HIPE, the out-
put of ExtractTagIndex is the same index value Idx for both key-
words. In other words, the correctness condition 3 also holds. �
Theorem 2. The first step scheme satisfies Definition 8.
Proof. First, we show the consistency condition 1 is satisfied.
We used the construction scheme proposed by Abdalla et al. [1]
to construct a searchable encryption from HIPE. Since their con-
struction satisfies computationally consistent, it follows that our
first step scheme also satisfies computationally consistent. We
show the outline of the proof. Let U be any polynomial time
adversary attacks the computational consistency of our scheme,
and consider the following polynomial time adversary A attack-
ing the IND-CPA security of HIPE. The adversary A runs U to
obtain keywords w, w′. It returns {′S E′, 1, w, 1} as the challenge
attribute vector and randomly chosen challenge messages R0,R1
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Fig. 2 Sequence of games for the first step scheme.

from MHIPE . In the guess stage, given the challenge ciphertext
Cb (that encrypts the Rb under identity {′S E′, 1, w, 1}), A uses
its key-derivation oracle to obtain a private key sk{1,−′S E′ ,1,−w′} for
{1,−′S E′, 1,−w′}. If DecHIPE(sk{1,−′S E′ ,1,−w′},Cb) = R1, then it
returns 1, otherwise 0. In other words, the adversary A wins the
game. This is a contradiction since HIPE used in our scheme sat-
isfies IND-CPA security, and then our scheme satisfies the con-
sistency condition 1.

We explain the consistency condition 2. Let the index values
of the keywords w, w′ be Idxw, Idxw′ , respectively. From the as-
sumption, both keywords w, w′ have different index values at �-th
depth, then Idxw � Idxw′ . As shown in the correctness condi-
tion 2, our construction simply encrypts the index value with the
fixed attribute {′IdxTag′, i} and decrypts it with the fixed predi-
cate {′IdxTag′, i}. Thus, if HIPE satisfies correctness condition,
the outputs of ExtractTagIndex and ExtractTrapdoorIndex are
different index values Idxw, Idxw′ , respectively. Namely, the con-
sistency condition 2 also holds.

We explain the consistency condition 3. Similar to the con-
sistency condition 2, If both keywords w, w′ have different index
values at �-th depth, then the outputs of ExtractTagIndex are
also different. In other words, the consistency condition 3 also
holds. �

4.5 Security Proof
In this section, we show that our first step scheme described in

Fig. 1 satisfies Definition 9.
Theorem 3. Let Lindex be a constant. The proposed search-
able encryption scheme with index generation is adaptively se-
cure against chosen keyword attacks under the attribute-hiding
and payload-hiding HIPE scheme. For any adversary A, the ad-
vantages ofA is negligible and evaluated as follows:

AdvS E
A (λ) ≤ LindexAdvHIPE,AH

B (λ) + AdvHIPE,PE
B (λ)

Proof. To prove the theorem, we consider the sequence of
games described in Fig. 2. In these games, � is the number of
index queries which are adaptively called by the adversary A.
Let Adv(0)

A (λ), Adv(1−k)
A (λ) and Adv(2)

A (λ) be AdvS E
A (λ) in Game0,

Game1− k and Game2, respectively. It is clear that Adv(2)
A (λ) = 0

because there is no information from which an adversary can dis-
tinguish between two challenge keywords.

First, we discuss the gaps between the advantages of Game0
and Game1− 1. The difference of the games is the index value in
Lindex-th encrypted index tag (EncIdxTagLindex ). The distribution
of EncIdxTagLindex in Game0 and Game1 − 1 cannot be distin-
guished by the attacker because HIPE has payload-hiding prop-
erty. Therefore, the gaps can be evaluated as follows:

|Adv(0)
A (λ) − Adv(1−1)

A (λ)| ≤ AdvHIPE,PE
B (λ)

Similarly, the gaps between the advantages of Game1 − k and
Game1 − (k + 1) can be evaluated as follows:

|Adv(1−k)
A (λ) − Adv(1−(k+1))

A (λ)| ≤ AdvHIPE,PE
B (λ)

The same as in the above discussion, we discuss the gaps be-
tween the advantages of Game1 − (Lindex − �) and Game2. The
difference in the games is the attributes from which cS E is cre-
ated. Because HIPE has an attribute-hiding property, the gaps
can be evaluated as follows:

|Adv(1−(Lindex−�))
A (λ) − Adv(2)

A (λ)| ≤ AdvHIPE,AH
B (λ)

Finally, we obtain

AdvS E
A (λ) ≤ |Adv(0)

A (λ) − Adv(1−1)
A (λ)|

+ |Adv(1−1)
A (λ) − Adv(1−2)

A (λ)|
. . .

+ |Adv(1−(Lindex−(�−1))
A (λ) − Adv(1−(Lindex−�))

A (λ)|
+ |Adv(1−(Lindex−�))

A (λ) − Adv(2)
A (λ)|

+ |Adv(2)
A (λ)|

≤ LindexAdvHIPE,AH
B (λ) + AdvHIPE,PE

B (λ).

This completes the proof of the theorem. �

5. Multi-user Support

For the second step, we extend the first step scheme to satisfy
both Requirements A and B.
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5.1 Idea for multi-user support
The idea for extending the first step scheme to multi-user

setting is applying a hierarchical identity with a wildcard into
our scheme. We need to consider how to convert the hier-
archical identity with a wildcard into vector which HIPE can
handle. Our idea is to convert a hierarchical identity ID :=
{ID1, . . . , IDLID } into a vector (ID1, 1, . . . , IDLID , 1) at tag genera-
tion, (1,−ID1, . . . , 1,−IDLID ) at trapdoor generation. The condi-
tion that the inner-product of both vectors becomes zero and ac-
cess control based on a hierarchical identity is then achieved. In
addition, to realize a wild-card as identity, we convert the wild-
card into the zero-vector, (0, 0), which gives an inner product 0
for any vector, thus matching any ID. For example, if a hierar-
chical ID, (′Adept.′, ∗), can be matched with both hierarchical
IDs,(′Adept.′,′ UserA′) and (′Adept.′,′ UserB′), then any users
belonging to ’A Dept.’ can search the encrypted tags or in other
words multi-user support can be achieved.

5.2 Syntax
We extend the syntax which can support hierarchical identity

with wildcard.
Definition 10. Let user identity be a sequence {ID1, . . . , IDLID } ∈
(Fq \ {0, q − 1})LID . A public-key searchable encryption with
index generation scheme for multi-user setting consists of
probabilistic polynomial-time algorithms Setup, GenUserKey,
GenTag, GenTrapdoor, Test, GenIndexKey, ExtractTagIndex
and ExtractTrapdoorIndex. These are given as follows:
• Setup takes as input a security parameter 1λ, a depth of iden-

tity LID, and a depth of index Lindex. It returns a master public
key mpk and a master secret key msk.

• GenUserKey takes as input the master public key mpk, the
master secret key msk, and a user identity IDU . It returns a
corresponding user secret key skU .

• GenTag takes as input the master public key mpk, a recipient
identity IDR and a keyword w in some associated keyword
space W. It returns an encrypted tag Tagw.

• GenTrapdoor takes as input the master public key mpk, a
user secret key skU and a keyword w in some associated key-
word space W. It returns a trapdoor Tdw.

• Test takes as input the master public key mpk, an encrypted
tag Tagw and a trapdoor Tdw. It returns a test result, TRUE
(=1) or FALSE (=0). Test returns TRUE if both hidden key-
words in the encrypted tag and the trapdoor are the same,
and otherwise returns FALSE.

• GenIndexKey takes as input the master public key mpk, the
master secret key msk, a recipient identity IDR and an index
depth �. It returns an index extraction key IKeyR,�.

• ExtractTagIndex takes as input the master public key mpk,
an encrypted tag Tagw and an index extraction key IKeyR,�.
It returns either an index value {0, 1}∗ or the distinguished
symbol ⊥.

• ExtractTrapdoorIndex takes as input the master public key
mpk, a trapdoor Tdw and an index extraction key IKeyR,�. It
returns either an index value {0, 1}∗ or the distinguished sym-
bol ⊥.

The definition is almost the same as Definition 6 except a

hierarchical identity for a group and users are specified in the
argument of each algorithm. In addition, we also define the
GenUserKey function that issues a secret key for each user.
Correctness conditions and consistency conditions are similar to
those of the single-user setting except that both user identities and
recipient identities need to be considered.

5.3 Security Definition
It is easy to extend our security definition from a single-user

setting to a multi-user setting as follows:
Definition 11. Let Lindex be a constant. A public-key search-
able encryption with index generation scheme up to Lindex depth is
adaptively secure against chosen keyword attacks if for all proba-
bilistic polynomial-time adversariesA, the advantage ofA in the
following experiment is negligible in the security parameter.
( 1 ) Setup is run to generate a pair of mpk and msk, and mpk is

given toA.
( 2 ) A may adaptively makes a polynomial number of queries of

the following type:
• User key query: A asks the challenger to create a user se-

cret key for a user identity IDU . The challenger creates a
user secret key skU and gives it toA.

• Trapdoor query:A asks the challenger to create a trapdoor
for a keyword w ∈ W and a user identity IDU . The chal-
lenger creates a trapdoor Tdw for w and gives it toA.

• Index key query: A asks the challenger to create an index
extraction key of depth � for a recipient identity IDR. The
challenger creates an index extraction key IKeyR,� of depth
� and gives it toA.

( 3 ) A chooses two challenge keywords w∗0, w
∗
1 ∈ W, a recip-

ient identity ID∗R, and sends them to the challenger. The
only restriction is that the A cannot choose keywords and
a recipient identity which can be distinguished by any user
keys, trapdoors, or index extraction keys which A has al-
ready queried.

( 4 ) The challenger choose a random bit b and create a challenge
message Tagw∗b

( 5 ) A may adaptively make a polynomial number of user key
queries, trapdoor queries or index key queries, similar to
phase (2). The only restriction is that the A cannot query
user keys, trapdoors or index extraction keys which can dis-
tinguish the challenge message Tagw∗b .

( 6 ) A outputs a bit b′, and succeeds if b′ = b.
The advantage of an adversary in this game is defined to be
AdvS E

A (λ) = |Pr[b′ = b] − 1/2|.
Since the scheme supports the hierarchical identity, the adver-

sary needs to specify the challenge recipient identity ID∗R with
challenge keywords, w∗0, w

∗
1. In the index key query, the adver-

sary can specify for which recipients the index extraction key is
used. In addition, the adversary can retrieve any user secret key
via a user key query. However, the adversary cannot retrieve an
index extraction key or a user secret key which distinguishes the
challenge keyword.

5.4 Construction
The scheme for multi-user setting is shown in Fig. 3. The
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Fig. 3 Algorithm for the second step scheme (multi-user setting).

scheme is almost the same as Fig. 1 except hierarchical identi-
ties for groups and users are embedded into an encrypted tag, a
trapdoor and an index extraction key, respectively. Each function
uses the EncodeAttribute and the EncodePredicate functions to
vectorize a hierarchical ID into an attribute or a predicate vector
for HIPE so that the search is only possible if both hierarchical
IDs are a match. Correctness conditions and consistency condi-
tions can be proved in a similar way.

5.5 Security Proof
Similar to the first step scheme, the following theorem is satis-

fied.
Theorem 4. The second step searchable encryption scheme
with index generation is adaptively secure against chosen key-
word attacks under the attribute-hiding and payload-hiding HIPE
scheme. For any adversary A, the advantage of A is negligible
and evaluated as follows:

AdvS E
A (λ) ≤ LindexAdvHIPE,AH

B (λ) + AdvHIPE,PE
B (λ)

We can prove the security of the scheme in a similar manner as
that for the single-user setting so we omit the proof here.

6. Implementation and Evaluation

In this section, we describe the implementation especially for
satisfying Requirement C and our proposal is then complete. In
other words, all the Requirements A, B and C are satisfied. In ad-
dition, we describe the evaluation results of our proposed scheme.

6.1 Database Integration
We describe an integration method to apply the public-key

searchable encryption with index generation scheme satisfying
Requirements A and B, into a database so as to satisfy Require-
ment C.

[Database schema] Modifying database schema is required to
support the searchable encryption. For our proposed scheme,
it is necessary to store the encrypted tags and index values and
also to store encrypted data itself. Therefore, as shown in the
Fig. 4, four columns should be defined for each column of data.
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Fig. 4 Encrypted data table.

The encrypted data column is for encrypted data generated by
an encryption scheme supporting multi-user functionality such as
HIPE. The encrypted tag column is for encrypted tags generated
by searchable encryption and is used at the search process. Both
the encrypted data column and the encrypted tag column are a bi-
nary data type because the encrypted data and the tag are binary
data. The index column is for (disclosed) index values and is a
string type for comparing as a string. In the case of a string type,
the index capability of the database can work or in other words the
search performance is high. The recipient column is for recipient
identities that indicate a group capable of search for the encrypted
tag, and is a character string type. Our implementation uses pub-
lic key encryption (PKE) and public-key searchable encryption
(PEKS), independently. Some literature [11], [26], [30], [32] pro-
poses both PKE and PEKS as secure integration schemes. The
previous results on generic construction would be applicable to
our schemes.

[Search procedure] First, the user ID of the client is re-
ceived together with the trapdoor, and only the rows which can
be searched by the client are selected, according to comparison
of recipient IDs and the user ID. Next, before searching an en-
crypted tag column, the server extracts index values from the
trapdoor using all index extraction keys which the server had al-
ready received from a key administrator, and chooses the longest
index value from the extracted index values. Then the rows to
be searched are further selected according to the comparison of
the longest index value (trapdoor index) and its corresponding in-
dex column (tag index). It should be noted that since the depth
of the index value disclosed for each recipient is different, for-
ward matching is required to compare both the tag index and the
trapdoor index. For example, if a trapdoor index value is ‘0011’,
not only the row having an index value ‘0011’ but also the row
having an index value ‘001’ are selected as a candidate to be
searched. After that, the searchable encryption process is exe-
cuted by running Test function for all of the selected encrypted
tags by the trapdoor. Then the server specifies all of the encrypted
tags which may contain the search keyword and returns the spec-
ified encrypted data as the search result. The procedures make
it possible to perform a database search using the searchable en-
cryption while reducing the data to be processed using the index.

[Index extraction procedure] When an index extraction key is
received from a key administrator, the recipient identity should
be received together and appropriate rows selected. Then, the
index value is extracted from each encrypted tags and is written
into the index column of the corresponding row. In some cases,
a search is requested while the index is being updated, but since
the index column is compared by forward matching as described

Fig. 5 DBMS integration.

in the search procedure, search procedure and index extraction
procedure can be parallelly processed.

[Implementation of user-defined functions] Modifying an ap-
plication code to execute such processes is a difficult task. There-
fore, some processes of the searchable encryption should be in-
corporated into the database. The block diagram of the imple-
mentation is shown in Fig. 5. Encrypted data and encrypted tags
are stored on the database, and the time-consuming match process
(processing the Test function) is performed in parallel by a plu-
rality of threads or computing nodes. Further, in order to call the
processing of the searchable encryption via SQL, the matching
processing is implemented by a user-defined function or a user-
defined data type. As a result, we can use SQL statement so as to
call our searchable encryption without calling the Test function
directly in the application code. At the same time, since paral-
lel processing using a plurality of threads or computing nodes is
automatically performed, it is possible to improve search perfor-
mance. Similarly, we can develop a user-defined function which
updates an index value from an encrypted tag. In the searchable
encryption, master public parameter and index extraction keys
are required for the matching process. Therefore, a management
table for storing a master public parameter and index extraction
keys must be prepared. In the user-defined function described
above, the master public parameter and index extraction keys are
referred to in the management table.

In this way, we obtain a public-key searchable encryption
scheme satisfying all Requirements A, B, and C.

6.2 Key Management
To operate our schemes securely, key management is impor-

tant. As an example, a project manager or a leader of an alliance
plays a role as a key administrator to manage the master secret
key securely, and distribute the master public key to all users. The
key administrator also manages user attributes of their project or
alliance and issues a user private key which contains attributes
corresponding to the target user. The user can perform both en-
cryption and search by using the master public key and his private
key. The key administrator also issues index extraction keys. The
key administrator periodically monitors the amount of stored data
or receives a request from a user to decide whether performance
improvement is required or not. If the key administrator deter-
mines performance improvement is required, he issues a new in-
dex extraction key for specific recipient IDR and sends it to the
database. Therefore, the key administrator has to manage both
users and anonymity levels to ensure both security and perfor-
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mance.

6.3 Implementation of Index function
In order to use our proposed scheme securely, it is important to

construct an Index function. The idea behind ensuring security
is that if an adversary knows an index value and finds a candidate
for the keyword from which the encrypted tag was created, then
there should at least be a certain number of candidates. This is
similar to the concept of k-anonymity. In general, to ensure the
k-anonymity, it removes identifiers or quasi-identifiers so that an
adversary cannot re-identify the individual. In other words, there
area at least k-candidates of individuals, while the data remains
practically useful. Our method divides the keyword space into
multiple groups using the index values generated by the Index
function. If the size of each groups is at least k or more, an adver-
sary cannot re-identify the keyword from an encrypted tag and
an index value. In other words, if there are at least k keyword
candidates then security similar to k-anonymity is ensured.

One of the Index functions is an anonymization table. This is
useful when the keyword space is fixed in advance or small, such
as postal code, municipality name, etc. For example, if we want
to use a 4-bit index for municipality name, then the municipality
name space is divided into 24 = 16 groups, each of which is the
same size. The 4-bit group ID is assigned to each groups shared
among users as an anonymization table. The Index function is
constructed based on the anonymization table. Since there were
1897 city names in 2015 [16], even if a 1-bit index value is dis-
closed, the size of groups is at least 948, so 948-anonymity is
satisfied. Also, even if a 2-bit index value is disclosed, the size
of groups is at least 474, so 474-anonymity is satisfied. In this
way, even when an adversary knows an encrypted tag and its in-
dex values, the adversary cannot re-identify which municipality
name in the group is the original keyword, and there are at least
k-candidate of municipality name.

The anonymization table is useful when the keyword space is
predetermined, but it is not always the case. Another candidate
of the Index function is to use a part of keyword hash. Since
the output bits of hash functions are generally considered to be
random, it is expected that they will roughly divide the keyword
space into equal size. Therefore, we have experimented with the
4-bit index construction of municipality names by SHA-256 hash
function. The result of our experiment is shown in Table 2.

The experiment shows that the size of the groups is approxi-
mately the same when divided into 8 groups using 3 bits, and the
number of municipality names included in the groups is within
5.5% range of the average. However, when the municipality
names are divided into 16 groups using 4 bits, it was found that
the number of municipality names included in the groups varies
up to 18.19% range of the average. The probability of 0 and 1 in
each bits converges to 1/2 when the number of keywords is large,
but in this case, the probability does not converge to 1/2 because
the number of keywords in each group is only about 100. Our
results shows that even if the number of group elements is 200
or 300, the group size is almost the same within several percent
from average even if we use the hash values to divide the keyword
space into groups. In general, in case that the keyword space can

Table 2 The number of elements in the group.

bit1 bit2 bit3 bit4

956 (bit1=0)

459 (bit2=0)
224 (bit3=0)

120 (bit4=0)
104 (bit4=1)

235 (bit3=1)
97 (bit4=0)

138 (bit4=1)

497 (bit2=1)
248 (bit3=0)

126 (bit4=0)
122 (bit4=1)

249 (bit3=1)
136 (bit4=0)
113 (bit4=1)

941 (bit1=1)

470 (bit2=0)
230 (bit3=0)

101 (bit4=0)
129 (bit4=1)

240 (bit3=1)
131 (bit4=0)
109 (bit4=1)

471 (bit2=1)
237 (bit3=0)

105 (bit4=0)
132 (bit4=1)

234 (bit3=1)
120 (bit4=0)
114 (bit4=1)

Table 3 The probability distribution of the group.

bit1 bit2 bit3 bit4

50.7% (bit1=0)

23.6% (bit2=0)
11.2% (bit3=0)

7.0% (bit4=0)
4.2% (bit4=1)

12.4% (bit3=1)
4.6% (bit4=0)
7.9% (bit4=1)

27.1% (bit2=1)
14.1% (bit3=0)

7.2% (bit4=0)
6.9% (bit4=1)

12.9% (bit3=1)
6.9% (bit4=0)
6.1% (bit4=1)

49.3% (bit1=1)

23.4% (bit2=0)
11.0% (bit3=0)

4.8% (bit4=0)
6.2% (bit4=1)

12.4% (bit3=1)
6.3% (bit4=0)
6.1% (bit4=1)

25.9% (bit2=1)
13.1% (bit3=0)

6.0% (bit4=0)
7.1% (bit4=1)

12.8% (bit3=1)
6.3% (bit4=0)
6.4% (bit4=1)

not be determined in advance, we can consider that the size of the
keyword space is sufficiently large. For example, there are almost
250,000 words in Japanese dictionary, Koujien, and it is thought
that there are about 100,000 kinds of Japanese family name [12].
In these case, it can be expected that we can use 5 to 10 bits index
values.

Although we show that the keyword space can be divided
roughly equally, the distribution of the keywords might not be
uniform. The population of each municipality varies greatly, from
the largest population, 903,346 residents, to the smallest popula-
tion, 0 residents. The average population is 67,377, the median is
29,638, and the standard deviation is 98,252. If we assume mu-
nicipality names appear according to the distribution of the resi-
dents, the probability of each index value is shown in Table 3.

It can be seen from the table that the distribution of each index
value becomes smoother, even though the population distribution
is highly different. When a 3 bit index is divided into 8 groups,
the probability of each index value becomes smooth to a range
of 14.1% to 11.0%. Even in cases where there is a large differ-
ence in the distribution of original data as in the present case, the
probability of index value becomes smoother, and it is considered
difficult to identify a keyword from the index value distribution.
Further, since the probability of the index value becomes smooth,
it is understood that the search performance can be improved to
approximately 2n in accordance with the number of bits n of the
disclosed index value.
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Table 4 Search performance of our proposed scheme.

the number the number of extracted indexes
of tags none 1 bit 3 bit 5 bit 7 bit

5,000 11.71 [s] 5.31 [s] 1.33 [s] 0.73 [s] 0.27 [s]
10,000 23.29 [s] 15.12 [s] 2.74 [s] 0.67 [s] 0.36 [s]
50,000 114.70 [s] 63.27 [s] 12.41 [s] 2.31 [s] 0.70 [s]

100,000 232.73 [s] 127.06 [s] 30.16 [s] 4.25 [s] 0.73 [s]

6.4 Performance
We show the performance evaluation results from our pro-

posed scheme. We chose the HIPE scheme proposed in Ref. [22],
the pairing function over BN-curves [4], and its parameter and
computing formulas proposed in Ref. [3]. We implemented our
scheme in C programming language, and evaluated its perfor-
mance on Amazon Linux AMI release 2018.03, T2.micro Xeon
family (3.3 GHz maximum, 64 bit, single core), 1 GB of memory,
and PostgreSQL 9.6.10 as a database. Three computation threads
were used for executing Test function. The postal code was used
as the data, and encryption tags were created by an algorithm
shown in Fig. 3, using two dimensional IDs, affiliation name and
user name, and stored on the database. The Index function is
constructed using SHA-256 hash function. We measured SQL
response time in our implementation 10 times, and the average
value was used as the measurement result. The evaluation result
is shown in Table 4.

As shown in the measurement result, the search time increases
as the number of registered data items increases. For example,
when 50,000 encrypted tags are stored, the search time requires
114.7 seconds, while it requires only 23.29 seconds for 10,000
encrypted tags, 11.71 seconds for 5,000 encrypted tags. By dis-
closing 1 bit of the index value, the search time can be short-
ened to 63.27 seconds in case of 50,000 encrypted tags, which
is about half the time. Similarly, by increasing the index to 3 bits
and 5 bits, it is found that the search time is also shortened to
12.41 seconds and 2.31 seconds. For example, if the response
time could be limited to a few seconds, then the index will still
be safe from disclosure even then there are 1,000 to 2,000 data
items. When the number of data items increases to about 5,000,
it might disclose a 1 bit index value in order to improve the perfor-
mance. Similarly, when the number of data items increases up to
10,000 or 50,000 then changing to 3 bit or 5 bit index disclosure
will improve the performance even more.

7. Conclusion

In this paper, we point out three important subjects on public-
key searchable encryption for its practical use: (A) performance
improvements, (B) sharing data for multi-users, (C) integra-
tion public-key searchable encryption into a database. With re-
gard to (A), we propose a mechanism that achieves both high
performance and strong security by applying the concept of k-
anonymity. We then propose a scheme to achieve it using HIPE.
Similarly, with regard to (B), we also show that a hierarchical ID
with wildcard is suitable for multi-user searchable encryption and
achieve a wildcard as a two-dimensional zero vector on HIPE.
For (C), we propose a mechanism for integrating searchable en-
cryption into a database by using user-defined functions or user-
defined data types which can be implemented on major database.

In the future we will need to support more flexible searches
such as forward matching searches or partial matching searches.
Another topic for future work is considering key management
such as who issues the secret key and how to provide it to users.
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