Electronic Preprint for Journal of Information Processing Vol.28

Recommended Paper

Using LSI to Detect Unknown Malicious VBA Macros

1,a) 2

Mamoru MiMURA TAarRO OHMINAMI

Received: November 25, 2019, Accepted: June 1, 2020

Abstract: Targeted email attacks are one of the main threats to organizations of all sizes and fields. In targeted
email attacks, malicious VBA (Visual Basic for Applications) macros are often embedded into the attachment files to
compromise the target computers. These malicious VBA macros are obfuscated in several ways to deceive anti-virus
programs. Therefore there are limitations on applying pattern-based detection to detecting these unknown malicious
VBA macros. To detect unknown malicious VBA macros, some methods with machine learning techniques are appli-
cable. One method extracts words from the source code, and constructs a language model to represent VBA macros
for machine learning techniques. This method constructs a language model from all the extracted words which include
trivial words. Hence, there seems still room for improvement of this model. To construct an efficient language model,
this paper focuses on LSI (Latent Semantic Indexing). LSI is a fundamental technique in topic modeling and calculates
similarity of documents. Our method extracts words from the source code and converts them into feature vectors with
several natural language processing techniques. Our method trains a classifier with benign and malicious VBA macros
and detects unknown malicious VBA macros. Several thousands of samples for evaluation are obtained from Virus
Total. The experimental results show that our method could detect unknown malicious VBA macros more efficiently,
and reveal the advantages and disadvantages of each language model.

Keywords: VBA macro, SVM, NLP, Bag-of-Words, TFIDF, LSI

1. Introduction

Targeted email attacks are one of the main threats to orga-
nizations of all sizes in every field. In targeted email attacks,
malicious VBA (Visual Basic for Applications) macros are of-
ten embedded into the attachment files to compromise the tar-
get computers. According to a report, MS (Microsoft) docu-
ment files account for a large percentage of the attachments in
targeted email attacks and most MS document files contain ma-

licious VBA macros *'.

VBA is the programming language of
Office programs and allows automating tasks in MS document
files.

ways to deceive anti-virus programs. Some attackers confirm in

These malicious VBA macros are obfuscated in several

advance that their VBA macro will not be detected even by anti-
virus programs having the latest definitions. In fact, even main
anti-virus programs with the latest definitions cannot always de-
tect new malware samples [1], [2]. Hence, pattern-based detec-
tion has limits when detecting these new malicious VBA macros.
Moreover, malicious VBA macros do not require vulnerabilities
to compromise a computer.

To detect new malicious VBA macros, some methods with
machine learning techniques have been proposed [3], [4]. Due
to limited evaluation methods, the practical performance and
long-term effect are still open to discussion. One method ex-
tracts words from the source code and constructs a language
model to represent VBA macros for machine learning tech-
niques [5], [6], [7]. Thereafter, these represented feature vectors

I National Defense Academy, Yokosuka, Kanagawa 239-8686, Japan

2 Japan Air Self-Defense Force, Shinjuku, Tokyo 162-8801, Japan
¥ mim@nda.ac.jp

© 2020 Information Processing Society of Japan

are classified by trained models such as SVM (Support Vector
Machine). This method constructs a language model from all
the extracted words, which include trivial words. For instance,
common words included in most VBA macros are not useful for
classification. Conversely, very rare words that seldom appear in
VBA macros might be not useful. Hence, there seems still room
for improvement on this model.

Our method assumes VBA macros are written by a natural
language. To construct a more efficient language model, our
method uses LSI (Latent Semantic Indexing). LSI is a natural
language processing technique for extracting semantics of words
in documents. This model assumes that words that are close in
meaning will occur in similar pieces of documents, and reduces
the number of words while preserving the similarity structure
by SVD (Singular Value Decomposition). Our method extracts
words from the source code and converts them into feature vec-
tors with NLP (Natural Language Processing) techniques such
as LSI. Our method trains a model with benign and malicious
VBA macros, and detects unknown malicious VBA macros with
the trained model. Our method requires benign and malicious
samples for training. We obtained several thousands benign and

malicious samples from Virus Total *2, which is one of the most
popular sites that share malware samples. To evaluate the practi-

cal performance and long-term effect against new malicious VBA

The preliminary version of this paper was published at the 14th Interna-
tional Workshop on Security IWSEC 2019), August 2019. The paper
was recommended to be submitted to Journal of Information Processing
(JIP) by the Program Co-Chairs of IWSEC 2019.
https://nakedsecurity.sophos.com/2017/05/31/wolf-in-sheeps-clothing-
a-sophoslabs-investigation-into-delivering-malware-via-vba/

#2 https://www.virustotal.com/

Electronic Preprint for Journal of Information Processing Vol.28

macros, the time series of samples is very important. The datasets
for evaluation are constructed, considering the time series. The
experimental results show that our method could detect unknown
malicious VBA macros containing new malware families, and re-
veal the advantages and disadvantages compared with each lan-
guage model.

Previous studies do not reveal the effectiveness of LSI in
VBA macros nor evaluate the long-term effect of their methods.
Even though the required time is an essential element in evalu-
ating practical performance, these studies did not pay attention
to required time either. Our previous study [8] did not evaluate
the long-term effect by time series analysis with each language
model. This study will reveal the advantages and disadvantages
of each language model. This paper provides the following con-
tributions:

(1) Proposes a more accurate and efficient method to detect un-
known malicious VBA macros with LSI[8].

(2) Evaluates the long-term effect by time series analysis with
each language model.

(3) Reveals the advantages and disadvantages of each language
model.

The structure of this paper is shown below. Section 2 describes

related studies. Section 3 describes malicious VBA macros,

and Section 4 provides NLP techniques. Section 5 presents our

method, and Section 6 demonstrates the performance. Finally, we

discuss the results and conclude this paper.

2. Related Work

Our method examines MS document files by applying NLP
techniques.

2.1 MS Document File

Several methods without dynamic analysis are proposed to ex-
amine MS document files. OfficeMalScanner is a basic tool to
detect malicious MS document files [9]. This tool scans the en-
tire MS document file for generic shellcode patterns or embedded
objects, and the malicious index rating can be used for automated
analysis as threshold values. We proposed a method to extract the
executable files embedded in a document file [1]. This method
can detect new malicious document files with known obfusca-
tion methods. Otsubo et al. developed a tool to detect anomaly
file structures of document files containing executable files [10].
They examined hundreds of malicious document files and found
document files not strictly conforming to the file format.

A similar idea has been extended to XML-based office docu-
ments. Cohen et al. presented a novel structural feature extrac-
tion method for XML-based Office documents [2]. This method
extracts discriminative features from malicious documents based
on their structure, and detects malicious document files with ma-
chine learning algorithms. Nissim et al. created a detection model
that detects new malicious docx files[11]. In this model, de-
tection relies upon their structural feature extraction methodol-
ogy [2].

Another approach is a visualization based method for malware
detection [12]. In this approach, the target file is converted into
an image to examine. Deep learning methods have achieved out-

© 2020 Information Processing Society of Japan

standing performance in image classification. Yakura et al. used
CNN (Convolutional Neural Network) with Attention Mecha-
nism to analyze imaged binary samples [13], [14]. CNN was also
used to detect shellcode in imaged document files [15].

These methods can be applied to document files and detect new
malicious document files. Some methods might detect malicious
document files which contain VBA macros. These methods how-
ever do not examine the contents of VBA macros. Hence, ma-
licious VBA macros in a normal document file might not be de-
tected. Thus, there were few methods to detect malicious VBA
macros themselves. One possible reason is that malicious VBA
macros are relatively few in number compared to malicious doc-
ument files.

2.2 VBA Macro

There are several methods for examining the contents of VBA
macros. Bearden et al. proposed a method of classifying MS of-
fice files containing macros as malicious or benign using the K-
Nearest Neighbors machine learning algorithm [3]. This method
extracts important features from p-code opcode (translated VBA
macro code) with TFIDF (Term Frequency-Inverse Document
Frequency). Our method uses raw VBA macro code and con-
structs an LSI model from the TFIDF scores. Kim et al. focused
on the obfuscation techniques and proposed an obfuscated macro
code detection method using machine learning classifiers [4]. To
train these classifiers, their method uses 15 discriminant static
features, taking into account the characteristics. Because cross-
validation is not valid for time series models, the practical perfor-
mance and long-term effect are still open to discussion.

Miura et al. proposed a method to detect new malicious VBA
macros with Doc2vec [5], [6], [7]. Doc2vec learns fixed-length
feature representations from variable-length pieces of texts, such
as documents [16]. This method extracts words from the source
code, and constructs a Doc2vec model to represent VBA macros
for classifiers. This method, however, constructs a language
model from all the extracted words. Hence, this model might
contain unnecessary words to classify.

2.3 NLP-based Detection

In the network security field, several studies focus on NLP
techniques. A Doc2vec model was used to examine proxy logs
for intrusion detection[17], [18]. This method was improved
to mitigate the class imbalance problem[19], [20]. A similar
technique was extended to examine network traffic [21], [22], or
JavaScript code [23]. Ndichu et al. used Abstract Syntax Tree
(AST) for code structure representation and Doc2vec for feature
learning to detect malicious JavaScript code [24]. Ito et al. pro-
posed a method to detect malicious executable files with NLP
techniques [25]. Wang et al. proposed a source code-based anal-
ysis system that detects vulnerabilities with NLP techniques [26].
These methods use NLP techniques to examine proxy logs, net-
work packets, JavaScript code and so on. Our method uses NLP
techniques to examine the contents of VBA macros.

Electronic Preprint for Journal of Information Processing Vol.28

3. Malicious VBA Macro

3.1 Behavior

Malicious VBA macros mainly contained in MS document
files conform to CFB (Compound File Binary) file format or
OOXML (Office Open XML) file format. CFB file format is
the binary file format used by Microsoft Office 2003 and earlier.
OOXML stores a document as a collection of separate files and
folders in a compressed zip package, and is used by Microsoft
Word 2007 and later versions. Many extensions conforming to
both file formats support VBA macros. VBA is a programming
language running with Office programs and provides useful func-
tions. VBA macros are a series of commands that can be run au-
tomatically to perform a task. The following sample code shows
how to run a VBA macro automatically.

1: Sub Auto_Open()
2: Msgbox "Hello World!"
3: End Sub

This simple example shows a welcome message with specific
text. Thus, attackers abuse these useful functions to compromise
other computers. They code a malicious VBA macro into an MS
document file, and send it to the target by e-mail. Malicious VBA
macros mainly could be used to drop malware and download mal-
ware. The former is called dropper and the latter is called down-
loader. Once a malicious document file is opened, only a single
click is required for the malicious VBA macro to activate.

Dropper contains and extracts the main body from itself. The
main body is encoded or obfuscated by various methods. Thus,
dropper enables persistent access to the computer without Inter-
net connection. Downloader downloads the main body from the
Internet as its name suggests. Thus, downloader requires internet
connection to gain persistent access to the computer. Downloader
does not contain the main body. Hence, the size tends to be less
than dropper’s.

As described in this section, malicious VBA macros tend to
contain functions to download or extract the main body in the
source code. Traditional approaches attempted to represent these
features manually. In contrast, our method attempts to detect
these features automatically with NLP techniques.

3.2 Obfuscation

Malicious VBA macros are often obfuscated by various meth-
ods such as Base64. The typical obfuscation techniques are sum-
marized in Table 1.

The Encode Strings technique is converting parameters with
reversible algorithms. Several functions are used for encoding
strings. For instance, some functions such as Asc(), Hex(), and
Chr() change characters to the number of the ASCII code. These
functions convert strings into numerous numerical characters.
Therefore, malicious VBA macros tend to contain these functions
and formatted numerical characters.

Table 1 Typical obfuscation techniques.

method
encode strings
2 | replace strings
3 split strings

example
convert to ASCII code
replace with random strings
divide strings into characters

—

© 2020 Information Processing Society of Japan

The Replace Strings technique is replacing strings with ran-
dom strings. Several functions are used for replacing strings. For
instance, some functions such as Replace(), Right(), or Left() are
used to replace strings to other random strings. These functions
mainly convert function names and variable names into random
strings. Therefore, malicious VBA macros tend to contain these
functions and random strings.

The Split Strings technique divides the strings into other char-
acters. This technique is effective for hiding from signature-based
anti-virus programs. The divided characters are restored to their
original strings by join operators such as “and” or “plus”.

As described in this section, malicious VBA macros tend to
contain these functions and characteristic strings. Kim et al. ex-
tracted these features manually to use machine learning classi-
fiers [4]. Our method does not extract these fixed features. Our
method assumes that NLP techniques will automatically extract
these features.

4. NLP Technique

4.1 Bag-of-Words

BoW (Bag-of-Words) is a basic method to extract feature vec-
tors from documents. BoW represents the frequency of a word in
a document and extracts a matrix from documents. In this matrix,
each row corresponds to each document, and each column corre-
sponds to each unique word in documents. This method does not
consider word order or meaning. In this method, the number of
unique words corresponds to the dimension of a matrix. There-
fore, the more the number of unique words increases, the greater
the increase in the number of dimensions. Therefore, methods
to adjust the number of dimensions are required. To adjust the
number of dimensions, important words have to be selected.

4.2 Term Frequency-Inverse Document Frequency
TFIDF (Term Frequency-Inverse Document Frequency) is one
of the most popular methods for defining word importance.

TFIDF value is calculated as follows.
D

X lo
&2 document_frequency;

TFIDF;; = frequency;;

The frequency;; is the frequency of a word 7 in a document
J. The document_frequency; is the frequency of documents in
which the word i appears. The TF is the frequency; ;. The IDF
is the logarithm of a value in which D (the number of total doc-
uments) is divided by the document_frequency;. TFIDF value is
a value which is the product of TF and IDF. Finally, TFIDF val-
ues are normalized. In this model, if a word appears rarely in an
entire corpus and appears frequently in a document, the TFIDF
value increases.

4.3 Latent Semantic Indexing

BoW converts documents into vectors. From these vectors,
TFIDF produces vectors with the same number of rows and
columns, which represent word importance. To reduce the di-
mension of the vectors, LSI (Latent Semantic Indexing) or LSA
(Latent Semantic Analysis) is often used. The core idea is to
take a matrix of documents and words, and decompose it into a
separate document-topic matrix and a topic-word matrix. LST is

Electronic Preprint for Journal of Information Processing Vol.28

used for classifying documents, data clustering and calculating
similarity of documents. Given m documents and n words in our
vocabulary, we can construct an m X n matrix 7 in which each
row represents a document and each column represents a word.
T is described as follows.

th o tfi
S I
lfml e tfmn

In this matrix, a row will be a vector corresponding to a word
giving its relation to each document. Likewise, a column in this
matrix will be a vector corresponding to a document giving its
relation to each word. In the simplest version of LSI, each entry
can simply be a raw count of the number of times the j-th word
appeared in the i-th document. In practice, however, raw counts
do not work particularly well because they do not account for the
significance of each word in the document. In all likelihood, T
is sparse and redundant across its many dimensions. As a result,
to find the few latent topics that capture the relationships among
the words and documents, we want to perform dimensionality re-
duction on 7. Dimensionality reduction can be performed using
truncated SVD (Singular Value Decomposition). From the theory
of linear algebra, there exists a decomposition of 7 such that D
and W are orthogonal matrices and V is a diagonal matrix. Matrix
T’ is calculated from 7 by SVD using TFIDF as follows.

d1 U1 O

T =DVW ~| : [wi o w]
dr O Uy

An element of V corresponds to each topic of all the docu-
ments. A row of D corresponds to each document. A column of
W corresponds to each word. Thus, SVD reduces dimensionality
by selecting only the r largest singular values, and only retain-
ing the first » columns or rows of D and W. To select the largest
values, we can use TFIDF scores. In this case, r is a hyper pa-
rameter we can select and adjust to reflect the number of topics.
In our method, this parameter is used to reduce dimensionality
while keeping the significance of each word in the document.
This model efficiently represents word frequency of a document.
However, this model does not consider the work meaning or con-
text.

4.4 Doc2vec

Word2vec was created to represent word meaning or con-
text[27]. Word2vec consists of shallow neural networks which
are trained to reconstruct linguistic contexts of words. Word2vec
takes as its input a large corpus of documents and produces a vec-
tor space of several hundred dimensions, with each unique word
in the corpus being assigned a corresponding vector in the space.
Word vectors are positioned in the vector space such that words
which share common contexts in the corpus are located in close
proximity to one another in the space. Word2vec is a method to
represent the word with a meaning or context. Paragraph Vec-
tor is the extension of Word2vec to represent a document [28].
Doc2vec is an implementation of the Paragraph Vector. The only

© 2020 Information Processing Society of Japan

change is replacing a word into a document ID. This model rep-
resents a document with word meaning or context. Words, how-
ever, could have different meanings in different contexts. Hence,
vectors of two documents which contain the same word in two
distinct senses need to account for this distinction.

5. Proposed Method

5.1 Outline

This paper proposes a method to detect unknown malicious
VBA macros with LSI. Our method requires benign and mali-
cious VBA macros as training data. The outline of our method is
shown in Fig. 1.

In the training phase, our method extracts words from their
source code, and constructs an LSI model. Thereafter, our
method extracts feature vectors, and trains a classifier with the
feature vectors and labels. In the test phase, our method extracts
feature vectors from unknown samples with the LSI model, and
detects malicious VBA macros with the trained classifier.

5.2 Training Phase

In the training phase, our method requires benign and mali-
cious VBA macros as training data. These samples are obtained
from web pages such as Virus Total. First, our method extracts
VBA macros from benign and malicious MS document files.
Thereafter, our method divides their source code into words (D).
Special characters shown in Table 2 are used as the delimiter.

Second, our method constructs an LSI model from these words
extracted from all the samples (). The unique words are se-
lected from these words to construct a BoW model. The Bow
model is converted into a TFIDF model which represents word
importance. The TFIDF model produces the vectors, and these
vectors are reduced by SVD to construct an LSI model. The LSI

LR @? @? B B Unsknown
Benign Malicious

!

| @ Extract words |

(®) Extract feature vectors with the
constructed language model
F———{ ® betect maiicious macros |
@ @ i
1.B ER.=

Benign Malicious

| (@ Extract words |

(@ Construct a language model and
extract feature vectors

!

| @) Train classifiers

Fig. 1 Proposed method.

Table 2 Special characters as the delimiter.

symbol pronounce symbol pronounce

” double quote \r carriage return

‘ backquote \f form feed
<> less / greater than \v vertical tab.
{} brace \t horizontal tab.
0O parenthesis \n line feed

. period - underline

s comma % percent sign

: colon $ dollar sign

; semicolon / slash

= equals ! exclamation mark
+ plus ? question mark
- dash @ at sign

* asterisk

Electronic Preprint for Journal of Information Processing Vol.28

model converts benign and malicious VBA macros into feature
vectors. The dimension of feature vectors is compressed into the
number of topics. Finally, an SVM classifier is trained by these
feature vectors with their labels (3®). SVM is a supervised learn-
ing model that assigns new examples to one category or the other.

5.3 Test Phase

In the test phase, our method investigates unknown samples.
These unknown samples are assumed as the attachments in tar-
geted email attacks. First, our method extracts words from MS
document files in the same way (@). Second, these words are
converted into feature vectors by the LSI model (®) which was
constructed in the training phase. Finally, the trained classifier
investigates these feature vectors, and predicts the label (®).

6. Evaluation

6.1 Implementation

We implemented our method with Python2.7 in an environ-
ment as shown in Table 3. Our method uses olevba*? to ex-
tract VBA macros from MS document files. Olevba is a script
to parse OLE and OpenXML files such as MS document files to
detect VBA macros and extract their source code in clear text.
Our method uses scikit-learn-0.19.2 ** to implement SVM. Scikit
learn is a machine learning library and has many classification al-
gorithms. The parameters are provided from a grid search which
exhaustively generates candidates from a grid of parameter val-
ues. As a result, a linear kernel (C = 0.5) is chosen. We used
gensim-3.4.0*> to implement an LSI model. Gensim has many
functions related to NLP techniques such as BoW or LSI. More-
over, we implemented the previous methods [5], [6], [7] with
BoW and Doc2vec. In this paper, the same parameters are chosen
to provide a fair comparison.

6.2 Dataset

To evaluate our method, actual VBA macros were obtained
from Virus Total. These VBA macros contain both benign and
malicious VBA macros. Table 4 shows the number of samples.

We selected all MS document files containing VBA macros.
Their file extensions are doc, docx, xls, xIsx, ppt, and pptx. These
samples were uploaded to Virus Total between April 2015 and
March 2018 for the first time. Each year in the table corresponds
to the fiscal year from April to March. In general, unknown sam-
ples are investigated as soon as possible. Hence, we assume these
samples appeared at the time. In targeted email attacks, anti-
virus programs with the latest definitions cannot always detect
new malware samples [1], [2]. This suggests that some anti-virus
programs could not detect malicious samples correctly. Hence,
we determined to use malicious samples, which are judged ma-
licious by a rate of more than 50% of anti-virus vendors. The
benign samples are judged benign by all anti-virus vendors. We
compared the hash values and removed duplicated samples.

Table S shows the main malware families in each dataset.

#3
#4
*5

https://github.com/decalage2/oletools/wiki/olevba
https://scikit-learn.org/
https://radimrehurek.com/gensim/

© 2020 Information Processing Society of Japan

Table 3 Environment.

CPU IntelCorei7 (3.40 GHz)
Memory | 16GB
oS Windows 10 Home

Table 4 The number of VBA macros obtained from Virus Total.

year | benign | malicious total

2015 622 870 1,492
2016 1,200 1,150 2,350
2017 | 2,220 1,083 3,303

total 4,042 3,103 7,145

Table 5 Main malware families in each dataset.

Dataset | Family name
TrojanDownloader:097M/Donoff
TrojanDownloader:097M/Adnel
2015 TrojanDownloader:097M/Bartallex
TrojanDownloader:W97M/Adnel
TrojanDownloader:W97M/Donoft
TrojanDownloader:097M/Donoff
Virus:W97M/Thus.GB

2016 Trojan:Win32/Tiggre!rfn

Virus: X97M/Metcol. A
Trojan:Win32/Occamy.C
TrojanDownloader:097M/Donoff
Trojan:097M/Madeba.A !det

2017 TrojanDownloader:JS/Swabfex.P
Virus:W97M/Thus.GB
TrojanDownloader:097M/Donoff.CD

Table 6 Confusion matrix.

Actual value
True | False
Predicted | Positive TP FP

result False FN TN

These names are defined by Windows Defender Antivirus *°.

Thus, each dataset is adequately distributed and contains a
wide variety of malware samples. Furthermore, the consecutive
datasets contain new malware families, which are not defined yet.

6.3 Evaluation Metrics
To evaluate accuracy, we use Accuracy, Precision, Recall, and
F1 score as metrics. These metrics are defined as follows.

TP+TN
Accuracy =
TP+FP+FN+TN
Precisi TP
7 =
ecision = ————
TP
Recall = ——
TP+ FN

_ 2Recall X Precision

" Recall + Precision

Table 6 shows the confusion matrix.
In this experiment, TP means detecting malicious VBA macros
correctly.

6.4 Experimental Method

To reveal the performance and long-term effect against new
VBA macros, the time series of samples is very important. The
purpose of our method is detecting unknown malicious VBA
macros. In practical use, many methods which contain our
method can only use previous samples for training, and the test
samples should not be the previous samples. If test samples con-

6 https://www.microsoft.com/en-us/windows/windows-defender/

Electronic Preprint for Journal of Information Processing

Table 7 The combinations of the training data and test data.
1 2 3

2015 | 2015 | 2016
2016 | 2017 | 2017

Training Data
Test Data

0.9
0.8 —
0.7 ;
0.6
0.5
0.4
03
0.2
0.1

—

0 100 200 300 400 500 600 700 800 900 1000

-e-Accuracy ——F1 -a-Precision ----Recall

Fig. 2 Results of the preliminary experiments.

tain previous samples, it is not possible to evaluate the practi-
cal performance appropriately. Hence, cross-validation that ran-
domly splits a dataset into a training and a testing set is not ap-
propriate in this case [29]. Therefore, the datasets for evaluation
are constructed considering the time series.

First, we conduct a preliminary experiment to find the opti-
mum value of a hyper parameter. As described in the previous
section, this hyper parameter is the number of topics, and is used
to reduce dimensionality while retaining the significance of each
word in the document. In this preliminary experiment, we con-
duct a 5-fold cross-validation with the 2015’s dataset. We trace
changes to the value of the dimension. Since this preliminary
experiment, subsequent experiments will be conducted with the
optimum value.

Next, we conduct 5-fold cross-validation with 2015’s datasets
to confirm the generalization performance.

Finally, we conduct time series analysis to reveal the perfor-
mance and long-term effect. The combinations of the training
data and test data are shown in Table 7.

The first combination is performed to reveal the stable perfor-
mance. Our previous study did not consider the training bias of
the language model [8]. In this experiment, we repeat the process
5 times to remove the training bias. This provides more reliable
results. The second combination is performed to reveal the long-
term performance. The third combination will reveal how update
improves the performance.

6.5 Result

Figure 2 shows the result of the preliminary experiments.

The horizontal axis corresponds to the dimensions, and the ver-
tical axis corresponds to each metric. The dimensions are ad-
justed by varying the parameter described in the previous section.
As described in Fig. 2, the precision and recall are in a tradeoff
relationship. The accuracy and F1 score are maximized at 400
dimensions. Thus, we determined the optimum value, and fix the
number of topics to 400 in subsequent experiments.

Table 8 shows generalization performance of the 5-fold cross-
validation with 2015’s datasets.

LSI produced slightly better performance than other language

© 2020 Information Processing Society of Japan

Vol.28

Table 8 Result of the 5-fold cross-validation.

metrics BoW | LSI | Doc2vec
Accuracy | 094 | 0.99 0.98
Precision 0.98 0.99 0.98
Recall 0.91 0.99 0.99
Fl 0.95 | 0.99 0.98

Table 9 Average scores of the time series analysis.

metrics BoWw | LSI Doc2vec
Accuracy | 0.73 0.89 0.93
Precision 0.94 0.99 0.97
Recall 0.50 | 0.80 0.89
F1 0.66 0.88 0.93

Table 10 Average required time of the time series analysis.

Bow | LSI Doc2vec
construction - 3.8s 21.3s
training 1.1s | 0.2s 0.1s
detection 0.1s | 0.Is 0.1s

Table 11 Average scores of the time series analysis (2015-2017).
metrics BoW | LSI | Doc2vec
Accuracy | 0.68 | 0.89 0.93
Precision 0.60 0.92 0.95
Recall 0.16 | 0.73 0.82
F1 0.23 0.82 0.88
Table 12 Average scores of the time series analysis (2016-2017).
metrics BoW LSI Doc2vec
Accuracy | 091 0.97 0.96
Precision 0.85 0.97 0.92
Recall 0.88 | 0.93 0.95
Fl 0.87 | 0.95 0.94

models. All metrics achieved almost perfect performance. As we
expected, BoW is less than other language models even in cross-
validation. Because we reduced the dimension by the frequency
for the sake of fair comparison. In a BoW model, the dimen-
sion indicates the word appearance, which is the critical and only
element for detection. Therefore, we conclude that the general-
ization performance of our method is better.

Table 9 shows performance of the time series analysis.

Due to practical restriction, the performance is generally re-
duced from the 5-fold cross-validation. Regarding accuracy and
F1 score, Doc2vec produced the best performance among the lan-
guage models. The best F1 score achieves 0.93. LSI provides the
second best performance.

Table 10 shows required time of the time series analysis.

The construction indicates time for the language model con-
struction. The training and detection indicate time for the SVM
classifier. Doc2vec requires more time than other language mod-
els for training which includes construction time. All language
models could inspect 2,350 samples within 0.1 second.

Table 11 and Table 12 show performance of the time series
analysis with each combination.

Even though the training model was constructed over a year
ago, the LSI and Doc2vec models maintain satisfactory perfor-
mance. The best F1 score achieves 0.88 in the Doc2vec model. In
contrast, the BoW model could no longer classify VBA macros.

Since the update, all models improved their performance sig-
nificantly. The best F1 score achieves 0.95 in the LSI model.
Thus, time aging slightly reduces the performance in the LSI and

Electronic Preprint for Journal of Information Processing

Table 13 Each detection rate of known and unknown malware families.

Dataset 2016 2017
Total number 1150 1083
Each Known | Unknown | Known | Unknown
cline2-5 Number 850 300 542 541
Detection Count 779 272 466 446
Detection Rate (%) 91.6 90.7 82.3 86.1

Table 14 Number of unique words in the samples detected incorrectly.

Sample | Number of unique words Number of unique words
included in only benign included in only malicious

FN 4118 3195

FP 2384 1955

Doc2vec models. This can be improved by updating the training
models. In the BoW model, time aging dramatically reduces the
performance.

7. Discussion

7.1 Accuracy

In actual use, many methods using machine learning tech-
niques cannot use the following samples for training. These
methods should be evaluated with the previous samples. In the
time series analysis, our method used only previous samples for
training. The best F1 score achieves almost 0.95. Thus, our
method is effective on new VBA macros. Despite the training
samples that were discovered over a year ago, the F1 score main-
tains almost 0.82. Hence, our method is accurate, and perfor-
mance is not excessively reduced due to aging.

Next, Table 13 shows the detection rate of known and un-
known malware families.

All of the detection rates are in almost the same range. There-
fore, our method is effective not only for known families but also
unknown malware families.

Several samples were detected incorrectly by our method. We
analyzed these samples, and counted the unique words included
in only benign and malicious files. Table 14 shows the number of
unique words in the samples detected incorrectly. The overlooked
malicious samples (FN) tend to contain more words included in
only benign files than other samples. Therefore, these malicious
samples were classified as benign. The detected benign samples
(FP) also tend to contain words included in only benign files.
However, the words included in only malicious files are relatively
numerous. Hence, we conclude that is why these benign samples
were classified as malicious. Excluding these unique words from
the language model might decrease false negatives or false pos-
itives. To improve the accuracy, words which do not decrease
accuracy should be selected from these words.

7.2 Topic Vector

We analyzed the contents of the topic vectors to reveal the ef-
fectiveness of LSI. Some examples of the words classified by LSI
are shown in Table 15.

The topics 1, 2, 3, and 6 consist of random strings which are
often contained in obfuscated malicious VBA macros. Each topic
has regularity such as alphabetical character, alphanumeric char-
acter, numerical character or the length. The topics 4 and 5
contain meaningful words. Some words are related with VBA

© 2020 Information Processing Society of Japan

Vol.28

Table 15 Some examples of the words classified by the topic vector.

Topic | Parts of the contents

1 epcrazkwlscpbqm, ipathwdinj, ylabbu, ynvneqrhdqazxz
vxghus, ubepnlsziosn
wlijflsdkj, ghrj32, 2k3h, sdlkjfwhfe, rkj23, njgkwndjwqd
gs8jugblam, qa94, zyprern, e5iqj, twkk, zytologischen
control, checkbox, range, click, cells, sheets
range, selection, select, activewindow, long, macro
lirdifghvefomgkmsysaqvqrpufmtkkkzqskk
6 ujphtxxljdvsoljplwzpklvf
feyityvgxyuvedjncjpiggmhiglvowacmdhjbadhsocwne
smgytipxywbmgnqgedtxarqgyiqsnquisnbobbxwzgy

| | W

macros. Thus, LSI classifies related words into each topic vec-
tor. This allows reducing the dimensions without lowering clas-
sification accuracy. Furthermore, the topic vectors represent the
essence. Hence, LSI is effective for classifying VBA macros.
Thus, LSI represents VBA macros efficiently, and that is why the
LSI model is effective for detection.

7.3 Advantages and disadvantages

According to the experimental results, LSI and Doc2vec pro-
duced better performance than BoW. Doc2vec maintained better
performance than LSI in the long term. Since the update, LSI im-
proved the performance significantly. The best F1 score achieves
0.95 in the LSI model. This suggests that LSI requires many train-
ing samples to maintain good performance. In contrast, Doc2vec
requires fewer training samples. However, Doc2vec requires
more time than other language models for training. In actual use,
there are no problems with a longer training time. Hence, the
best language model depends on the situation. If we have enough
training samples and can update the model frequently, we should
use LSI. Doc2vec should be the alternative model to compensate
for fewer samples.

7.4 Comparison

Based on the experimental result, this section produces the
quantitative comparison. We focus on the evaluation methods of
the previous studies to detect malicious VBA macros.

Bearden et al. conducted 10-fold cross-validation with several
dozen samples to evaluate their method [3]. The number of ma-
licious VBA macros is only 40. Kim et al. conducted 10-fold
cross-validation with several thousand samples to evaluate their
method [4]. Nevertheless, they used 90% of the samples for train-
ing, and the detection rate was no more than 0.915. Moreover,
they did not describe the details of malware samples. As we de-
scribed before, cross-validation is not appropriate for evaluating
performance for detecting new malicious VBA macros because
the training samples only contained the previous samples. There-
fore, it is not clear whether their method can detect new malicious
VBA macros in actual use. We used only previous samples for
training from more than ten thousand samples. The training sam-
ples account for almost 25 percent of our samples. As a result, our
method could detect new malicious VBA macros. Furthermore,
this paper describes the details of malware samples.

Miura et al. evaluated their method with several thousand sam-
ples for 2 years[5], [6], [7]. The best F1 score achieved 0.93.
However, they did not evaluate the long-term effect of their meth-

Electronic Preprint for Journal of Information Processing Vol.28

ods. We obtained six thousands of samples for 3 years from Virus
Total. We categorized these samples into each year, and evalu-
ated the long-term effect by time series analysis. Moreover, the
best F1 score achieved almost 0.95. Previous studies also did not
evaluate the time required by their methods. Required time is an
essential element for evaluating actual performance. Our method
requires only one-third to one-quarter of the time of the previ-
ous method. Furthermore, we compared each detection rate of
known and unknown malware families. This revealed that our
method was effective not only in detecting known families but
also unknown malware families.

7.5 Ethics

Our method requires benign and malicious samples which can
be collected from the Internet. Our method is light-weight and
easy to implement. We used malware samples obtained from a
commercial web site. We indicated clear conditions for selecting
malware samples from the web site. The details of samples were
described and investigated. Hence, our method is reproducible
and has high transparency.

7.6 Limitations

In this paper, our method used an SVM classifier to detect ma-
licious VBA macros. Other classifiers could be used for clas-
sification. This paper focused on the language models, and re-
vealed their advantages and disadvantages. To evaluate the fea-
ture of the language models, the same classifier should have been
used. SVM provided better accuracy for VBA macro detec-
tion [7]. Hence, we decided to use an SVM classifier.

Another limitation is caused by the datasets. In this experi-
ment, we used balanced datasets extracted from macro samples.
Ideally, the datasets should represent the population of all macros
in the world. The actual ratio of benign and malicious sam-
ples seems highly imbalanced. As we mentioned previously, our
datasets are more practical than previous studies. To evaluate the
actual performance, more practical datasets are required. How-
ever, this issue is complicated and beyond the scope of this paper.

8. Conclusion

In this paper, we propose a more accurate and efficient method
for detecting new malicious VBA macros with LSI. Our method
extracts words from the source code and converts them into fea-
ture vectors with an LSI model. Previous works do not reveal the
effectiveness of LSI in VBA macros nor evaluate the long-term
effect of their methods. The experimental results reveal the ef-
fectiveness of LSI in VBA macros. Furthermore, we evaluate the
long-term effect by time series analysis with actual VBA macros.
The best F1 score achieves almost 0.95. Hence, our method is
more accurate and can detect new malware families.

Our method is light-weight and investigates VBA macros with-
out requiring much time. Therefore, one topic for future work is
implementing a real-time detection system. We can implement
our method on a mail server or proxy server for investigating files
in real time. Another future work is evaluating the actual perfor-
mance on more practical datasets.

© 2020 Information Processing Society of Japan

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Mimura, M., Otsubo, Y. and Tanaka, H.: Evaluation of a Brute Forcing
Tool that Extracts the RAT from a Malicious Document File, AsiaJ-
CIS, pp.147-154, IEEE Computer Society (2016) (online), available
from (http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=
7781470).

Cohen, A., Nissim, N., Rokach, L. and Elovici, Y.: SFEM: Struc-
tural feature extraction methodology for the detection of malicious of-
fice documents using machine learning methods, Expert Syst. Appl.,
Vol.63, pp.324-343 (2016).

Bearden, R. and Lo, D.C.-T.: Automated microsoft office macro
malware detection using machine learning, 2017 IEEE International
Conference on Big Data, BigData 2017, Nie, J.-Y., Obradovic,
Z., Suzumura, T., Ghosh, R., Nambiar, R., Wang, C., Zang, H.,
Baeza-Yates, R.A., Hu, X., Kepner, J., Cuzzocrea, A., Tang, J. and
Toyoda, M. (Eds.), pp.4448-4452, IEEE (2017) (online), available
from (http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=
8241556).

Kim, S., Hong, S., Oh, J. and Lee, H.: Obfuscated VBA Macro De-
tection Using Machine Learning, DSN, pp.490-501, IEEE Computer
Society (2018) (online), available from (http://ieeexplore.ieee.org/xpl/
mostRecentIssue.jsp?punumber=8415926).

Miura, H., Mimura, M. and Tanaka, H.: Macros Finder: Do You Re-
member LOVELETTER?, Proc. Information Security Practice and
Experience - 14th International Conference, ISPEC 2018, pp.3-18
(online), DOI: 10.1007/978-3-319-99807-7_1 (2018).

Miura, H., Mimura, M. and Tanaka, H.: Discovering New Malware
Families Using a Linguistic-Based Macros Detection Method, 2018
Sixth International Symposium on Computing and Networking Work-
shops (CANDARW), pp.431-437 (online), DOI: 10.1109/CANDARW.
2018.00085 (2018).

Mimura, M. and Miura, H.: Detecting Unseen Malicious VBA
Macros with NLP Techniques, JIP, Vol.27, pp.555-563 (online), DOI:
10.2197/ipsjjip.27.555 (2019).

Mimura, M. and Ohminami, T.: Towards Efficient Detection of Ma-
licious VBA Macros with LSI, Proc. Advances in Information and
Computer Security - 14th International Workshop on Security, INSEC
2019, Attrapadung, N. and Yagi, T. (Eds.), Lecture Notes in Computer
Science, Vol.11689, pp.168—185, Springer (2019).

Boldewin, F.: Analyzing MSOffice malware with OfficeMalScanner
(2009).

Otsubo, Y., Mimura, M. and Tanaka, H.: O-checker: Detection of Ma-
licious Documents through Deviation from File Format Specifications,
Black Hat USA (2016).

Nissim, N., Cohen, A. and Elovici, Y.: ALDOCX: Detection of
Unknown Malicious Microsoft Office Documents Using Designated
Active Learning Methods Based on New Structural Feature Extrac-
tion Methodology, IEEE Trans. Information Forensics and Security,
Vol.12, No.3, pp.631-646 (2017).

Kancherla, K. and Mukkamala, S.: Image visualization based mal-
ware detection, 2013 IEEE Symposium on Computational Intelligence
in Cyber Security (CICS), pp.40—44 (online), DOI: 10.1109/CICYBS.
2013.6597204 (2013).

Yakura, H., Shinozaki, S., Nishimura, R., Oyama, Y. and Sakuma, J.:
Malware Analysis of Imaged Binary Samples by Convolutional Neu-
ral Network with Attention Mechanism, Proc. 8th ACM Conference on
Data and Application Security and Privacy, CODASPY 2018, pp.127—
134 (online), DOI: 10.1145/3176258.3176335 (2018).

Yakura, H., Shinozaki, S., Nishimura, R., Oyama, Y. and Sakuma, J.:
Neural malware analysis with attention mechanism, Computers & Se-
curity, Vol.87, p.101592 (online), DOIL: 10.1016/j.cose.2019.101592
(2019).

Mimura, M., Otsubo, Y., Tanaka, H. and Goto, A.: Is Emulating
“Binary Grep in Eyes” Possible with Machine Learning?, CANDAR,
pp-337-343, IEEE Computer Society (2017) (online), available from
(http://ieeexplore.ieee.org/xpl/mostRecentlssue.jsp?punumber=
8338657).

Le, Q.V. and Mikolov, T.: Distributed Representations of Sentences
and Documents, Proc. 31st International Conference on Machine
Learning, ICML 2014, pp.1188—1196 (2014) (online), available from
(http://jmlr.org/proceedings/papers/v32/le14.html).

Mimura, M. and Tanaka, H.: Heavy Log Reader: Learning the Context
of Cyber Attacks Automatically with Paragraph Vector, Proc. Infor-
mation Systems Security - 13th International Conference, ICISS 2017,
pp-146-163 (online), DOI: 10.1007/978-3-319-72598-7_9 (2017).
Mimura, M. and Tanaka, H.: Leaving All Proxy Server Logs to Para-
graph Vector, Journal of Information Processing, Vol.26, pp.804-812
(online), DOI: 10.2197/ipsjjip.26.804 (2018).

Mimura, M. and Tanaka, H.: A Linguistic Approach Towards Intru-
sion Detection in Actual Proxy Logs, Proc. 20th International Con-
ference, ICICS 2018, pp.708-718 (online), DOI: 10.1007/978-3-030-

Electronic Preprint for Journal of Information Processing Vol.28

01950-1_42 (2018).

[20] Mimura, M.: Adjusting lexical features of actual proxy logs for in-
trusion detection, Journal of Information Security and Applications,
Vol.50, p.102408 (online), DOI: 10.1016/j.jisa.2019.102408 (2020).

[21] Mimura, M. and Tanaka, H.: Reading Network Packets as a Natural
Language for Intrusion Detection, Information Security and Cryptol-
ogy - ICISC 2017 - 20th International Conference, Seoul, South Korea,
November 29 - December 1, 2017, Revised Selected Papers, pp.339—
350 (online), DOI: 10.1007/978-3-319-78556-1_19 (2017).

[22] Mimura, M.: An Attempt to Read Network Traffic with Doc2vec,
Journal of Information Processing, Vol.27, pp.711-719 (online), DOI:
10.2197/ipsjjip.27.711 (2019).

[23] Mimura, M. and Suga, Y.: Filtering Malicious JavaScript Code with
Doc2Vec on an Imbalanced Dataset, 2019 14th Asia Joint Conference
on Information Security (AsiaJCIS), pp.24-31 (online), DOI: 10.1109/
AsiaJCIS.2019.000-9 (2019).

[24] Ndichu, S., Kim, S., Ozawa, S., Misu, T. and Makishima, K.: A ma-
chine learning approach to detection of JavaScript-based attacks using
AST features and paragraph vectors, Applied Soft Computing, Vol.84,
p.105721 (online), DOI: 10.1016/j.as0c.2019.105721 (2019).

[25] Tto, R. and Mimura, M.: Detecting Unknown Malware from ASCII
Strings with Natural Language Processing Techniques, 2019 14th Asia
Joint Conference on Information Security (AsiaJCIS), pp.1-8 (online),
DOI: 10.1109/AsialCIS.2019.00-12 (2019).

[26] Wang, J., Ma, S., Zhang, Y., Li, J., Ma, Z., Mai, L., Chen, T. and Gu,
D.: NLP-EYE: Detecting Memory Corruptions via Semantic-Aware
Memory Operation Function Identification, 22nd International Sym-
posium on Research in Attacks, Intrusions and Defenses, RAID 2019,
pp-309-321 (2019) (online), available from (https://www.usenix.org/
conference/raid2019/presentation/wang-0).

[27] Mikolov, T., Chen, K., Corrado, G. and Dean, J.: Efficient Estimation
of Word Representations in Vector Space, CoRR, Vol.abs/1301.3781,
pp.1-12 (2013) (online), available from ¢http://arxiv.org/abs/1301.
3781).

[28] Le, Q. and Mikolov, T.: Distributed representations of sentences and
documents, International Conference on Machine Learning, pp.1188—
1196 (2014).

[29] Marchal, S. and Asokan, N.: On Designing and Evaluating Phish-
ing Webpage Detection Techniques for the Real World, /7/th USENIX
Workshop on Cyber Security Experimentation and Test, CSET 2018,
Collberg, C.S. and Peterson, P.A.H. (Eds.), USENIX Association
(2018).

Editor’s Recommendation
This paper achieves to detect unknown malicious VBA macros
by their machine learning scheme using LSI (Latent Semantic In-
dexing). This is the first attempt to detect unknown malicious
VBA macros with LSI. In addition, several thousands of samples
for evaluation are gathered. The evaluation method will be useful
for other researches. The paper gives insights to readers in this
research field and thus is selected as a recommended paper.
(Program Co-Chairs of IWSEC 2019, Takeshi Yagi)

© 2020 Information Processing Society of Japan

Mamoru Mimura received his B.E. and
M.E. in Engineering from National De-
fense Academy of Japan, in 2001 and
| 2008 respectively. He received his Ph.D.

1 in Informatics from the Institute of Infor-
mation Security in 2011 and M.B.A. from
' - Hosei University in 2014. During 2001—
2017, he was a member of the Japan Mar-
itime Self Defense Force. During 2011-2013, he was with the
National Information Security Center. Since 2014, he has been
a researcher in the Institute of Information Security. Since 2015,
he has been with the National center of Incident readiness and
Strategy for Cybersecurity. Currently, he is an Associate Profes-
sor in the Department of Computer Science, National Defense
Academy of Japan.

Taro Ohminami received his B.E. in
Engineering from National Defense
Academy of Japan in 2019. Currently, he
is a member of the Japan Air Self-Defense
Force.

