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Single-Precision Calculation of
Iterative Refinement of Eigenpairs of

a Real Symmetric-Definite Generalized Eigenproblem
by Using a Filter Composed of a Single Resolvent

HiroshiMurakami,a)

Abstract: By using a filter, we calculate approximate eigenpairs of a real symmetric-definite generalized eigenprob-
lem Av = λBv whose eigenvalues are in a specified interval. In our experiments in this paper, the IEEE-754 single-
precision floating-point (binary 32bit) number system is used for all calculations.
In general, a filter is constructed by using some resolvents R(ρ) with different shifts ρ. For a given vector x, an action
of a resolvent y := R(ρ)x is given by solving a system of linear equations C(ρ)y = Bx for y, here the coefficient
C(ρ) = A − ρB is symmetric. We assume to solve this system of linear equations by matrix factorization of C(ρ), for
example by modified Cholesky method (LDLT decomposition method). When both matrices A and B are banded, C(ρ)
is also banded and modified Cholesky method for banded system can be used to solve the system of linear equations.
The filter we used is either a polynomial of a resolvent with a real shift, or a polynomial of an imaginary part of a
resolvent with an imaginary shift. We use only a single resolvent to construct the filter so to reduce both amounts of
calculation to factor matrices and especially storage to hold factors of matrices. The most disadvantage when we use
only a single resolvent rather than many is, such a filter cannot have good properties especially when calculation is
made in single-precision computation. Therefore, approximate eigenpairs required are not in good accuracy if they are
extracted from the set of vectors obtained by an application of a combination of B-orthonormalization and filtering to
a set of initial random vectors, But we can show by experiments, approximate eigenpairs required are refined well if
they are extracted from the set of vectors obtained by a few applications of a combination of B-orthonormalization and
filtering to a set of initial random vectors.
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1. Introduction
For a given generalized eigenproblem Av = λBv whose ma-

trices A and B are real-symmetric and B is positive-definite, by

using a filter we try to solve all approximate eigenpairs whose

eigenvalues are in a specified real interval [a, b]. There are many

references of methods which can be classified as filter diagonal-

ization methods [1], [3], [5], [7], [8], [10], [15].

Corresponding to the eigenproblem, the filter is composed of

some resolvents R(ρi) ≡ (A−ρiB)−1B whose shift ρi is a complex

number.

For a given vector x, an application of the resolvent y← R(ρ)x
is calculated by solving a system of linear equations C(ρ)y = Bx
for y with the shifted matrix C(ρ) ≡ A − ρB as the coefficient

matrix. In present study, we assume to solve this kind of system

by some direct method which uses matrix factorization.

When the shift ρ is a real number, the matrix C(ρ) is real-

symmetric. When ρ is a real number less than the minimum

eigenvalue of the eigenproblem, the matrix is real-symmetric and
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positive-definite. When the shift is an imaginary number, the

matrix is complex-symmetric and non-singular. For a symmet-

ric matrix either real or complex, the modified Cholesky method

can be used to solve the system of linear equations by using a

matrix-decomposition and then forward and backward substitu-

tions. The modified Cholesky method for complex-symmetric

matrices is derived from the one for real-symmetric matrices by

just replacing numbers and arithmetic operations from real ones

to complex ones.

When the problem size is very large, with limited com-

puting resources, both amounts of computation for matrix-

decompositions of shifted matrices and especially storage to hold

factors of matrices tend to restrict the calculation, which are pro-

portional to the number of resolvents used to construct the filter.

So, it is desirable to reduce the number of resolvents to compose

the filter. There are two types of filters which is composed of only

a single resolvent: 1) The filter which is a real polynomial of a

resolvent with a real shift, 2) The filter which is a real polyno-

mial of the imaginary-part of a resolvent with an imaginary shift.

In present study, we used a Chebyshev polynomial to express the

“real polynomial” of the filter in order to make the filter design

simple.
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However, characteristics of filters of these simple types are not

very good, since they are composed of a single resolvent instead

of many ones, and also the real polynomial is expressed by using

a Chebyshev polynomial in order to make the filter design simple.

For example, their transfer functions cannot have steep changes

of values, thus μ− 1 the geometrical ratio of widths of transition-

bands and pass-bands cannot be made so small. Also, (when the

upper-bound of the transfer function magnitude in stop-bands gS

is set very small) the value of 1/gP is large which is the max-

min ratio of the transfer function of the filter in the pass-band

λ ∈ [a, b]. When this max-min ratio is very large, rates of re-

quired eigenvectors contained in the set of vectors tend to have

different orders of magnitudes after an application of the filter.

Therefore, within a vector, values of those eigenvectors whose

magnitudes of transfer-rates are smaller lose accuracy by round-

off errors since they are suppressed by those eigenvectors whose

magnitudes of transfer-rates are larger. By this reason, for those

eigenvectors which are extracted from a set of filtered vectors,

their accuracy tend to be lower if magnitudes of transfer-rates of

them are smaller. Therefore, some approximate eigenpairs may

not attain the required level of accuracy.

In the above explanation about filtering method, we assumed

the filter is applied only once to a set of initial vectors. The fol-

lowing procedure shows how to calculate approximate eigenpairs

by applying the filter once.

1) Let Y (0) be a set of m random column vectors as initial vec-

tors.

2) B-orthonormalize Y (0) to make X(1);

X(1) is filtered to make Y (1).

3) Taking into account the filter’s characteristics, approximate

eigenpairs are constructed from both sets of vectors X(1) and

Y (1).

2. Iterative Refinement of Eigenpairs by Using
a Filter

When characteristics of the filter are not good, the accuracy

of approximate eigenpairs obtained by an application of the filter

started from a set of random vectors is also not good. However,

in that case, approximate eigenpairs can be refined by a few iter-

ations of a combination of B-orthonormalization and filtering.

The following procedure shows a method to calculate refined

approximate eigenpairs by applying the filter IT times.

1) Let Y (0) be a set of m random column vectors as initial vec-

tors.

2) Iterate the following for i = 1, . . ., IT

B-orthonormalize Y (i−1) to make X(i);

X(i) is filtered to make Y (i).

3) Approximate eigenpairs are constructed from both sets of

vectors X(IT) and Y (IT) considering the threshold of the trans-

fer rate of the filter for the required eigenvectors.

(During the iteration in the above step 2, if the decrease of the ef-

fective rank of the set of vectors is found by B-orthonormalization

with a threshold, then we decrease m the number of vectors in the

set.)

The process of orthonormalization prevents eigenvectors of

small magnitudes of transfer-rates from losing their accuracy by

numerical round-off errors. It prevents the set of vectors domi-

nated by those eigenvectors whose magnitudes of transfer-rates

are larger. The principle to use orthogonalization of vectors in

each iteration step is called “orthogonal iteration” and it is well-

known[4], [12], [13].

2.1 Orthonormalization by Using SVD
In our experiments, we used B-SVD method to make B-

orthonormalization of a given set of vectors, which is the singular

value decomposition method with matrix B as the inner-product

metric.

The procedure is described below.

1) Make a size m real symmetric-definite matrix G ⇐ YT BY .

2) Make an eigenvalue decomposition G ⇒ UDUT by us-

ing Jacobi method[11][2] to obtain size m diagonal matrix

D and orthogonal matrix U (diagonals of D are prepared in

descending order).

3) We make a set of B-orthogonal column vectors by Y ⇐
YU.

When round-off errors in making G are accumulated, or the

original Y is ill-conditioned, the B-orthogonality of the set of col-

umn vectors Y which is obtained by the above procedure may not

be sufficient. To improve the B-orthogonality, we may iterate the

above steps from 1) to 3) a few times, and when G becomes al-

most diagonal, then the B-orthogonality is regarded as sufficient

and the iteration is terminated.

After the B-orthogonalization is finished, we make B-

normalization with a threshold by the following method. We re-

ject those columns of Y whose norms (square roots of diagonals

of G) are below a threshold, and for those columns remained we

multiply reciprocals of their norms, then Y will be a set of B-

orthonormal vectors. In the new set of Y , the number of vectors

are decreased by the number of rejected ones.

On the B-orthogonalization method, there are other litera-

tures[14][6].

3. Filters Composed of a Single Resolvent
We solve those eigenpairs whose eigenvalues are in a speci-

fied interval [a, b]. We have two kinds of filters depending on the

location of the interval.

Filter to Solve Eigenpairs with Lowest Eigenvalues
When the interval is located at the lower-end of the eigenvalue

distribution, we use a filter F which is a polynomial of a sin-

gle resolvent R(ρ) whose shift ρ is a real number less than the

minimum eigenvalue λmin, and the polynomial is represented by

a degree n Chebyshev polynomial Tn(x) (1). Here, gS is the tight

upper-bound of the transfer function magnitude |g(t)| of the filter

in the stop-band, γ is a real constant, and I is the identity operator.

F = gS Tn(2γR(ρ) − I) . (1)
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Filter to Solve Eigenpairs with Internal Eigenvalues
When the interval is located at an interior of the eigenvalue dis-

tribution (or at any position), we use a filter F which is a polyno-

mial of the imaginary part of a single resolvent R(ρ′) whose shift

ρ′ is an imaginary number, and the polynomial is represented by

a Chebyshev polynomial of degree n (2). Here, gS is the tight

upper-bound of the transfer function magnitude |g(t)| of the filter

in stop-bands, γ ′ is a real constant, Im is the operator to take the

imaginary part of a matrix, and I is the identity operator.

F = gS Tn(2γ ′ ImR(ρ′) − I) . (2)

3.1 Designs of Filters Composed of a Single Resolvent
In this paper, we specify the filter composed of a single re-

solvent by using a triplet of parameter (n, μ, gS). Here, n is the

degree of Chebyshev polynomial of the first kind, and μ is the

position of the boundary between transition-band and stop-band

of the filter (in the normalized coordinate t), and gS is the tight

upper-bound of the transfer function magnitude |g(t)| of the filter

in stop-bands. (In pass-band, the maximum and the minimum of

the transfer function are 1 and gP, respectively.)

If we ignored the effect of numerical round-off errors, in each

filtered vector, the ratio of unrequired eigenvectors to the ratio of

required eigenvectors is reduced by a small factor gS/gP or less

for each application of the filter.

Below, we explicitly show how filters are constructed.

3.1.1 Case to Use a Real Shift for the Resolvent
In this case, we assume the interval [a, b] contains the lowest

eigenvalues in the eigenvalue distribution, and a is no greater than

the minimum eigenvalue.

From a given triplet of parameters (n, μ, gS), we calculate the

real shift ρ and the real coefficient γ (and also gP) by following

expressions in (3).⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
σ ← μ/ sinh

(
1
2n cosh−1 1

gS

)
,

ρ ← a − (b − a)σ,

γ ← (b − a)(σ + μ),

gP ← gS cosh
{
2n sinh−1

√
(μ − 1)/(1 + σ)

}
.

(3)

Then the filter F is given by the expression (1).

The normalized coordinate t of λ in this case is the linear func-

tion t ≡ (λ − a)/(b − a) which maps between intervals λ ∈ [a, b]

and t ∈ [0, 1]. Then, both transfer functions f (λ) and g(t) are

given by following expressions in (4).⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
f (λ) = gS Tn

(
2γ × 1

λ − ρ − 1

)
,

g(t) = gS Tn

(
2 × μ + σ

t + σ
− 1

)
.

(4)

3.1.2 Case to Use an Imaginary Shift for the Resolvent
In this case, we use an imaginary shift, then the interval [a, b]

can be placed anywhere. From the triplet of parameters (n, μ, gS),

by using expressions in (5), we calculate the imaginary shift ρ′

and the real coefficient γ ′ (and also gP).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ ← μ/ sinh
(

1
2n cosh−1 1

gS

)
,

ρ′ ← a+b
2
+

(
b−a

2

)
× σ√−1,

γ ′ ←
(

b−a
2

)
× μ2+σ2

σ
,

gP ← gS cosh
{
2n sinh−1

√
(μ2 − 1)/(1 + σ2)

}
.

(5)

Then the filter F is given by the expression (2).

In this case, the normalized coordinate t of λ which maps be-

tween intervals λ ∈ [a, b] and t ∈ [−1, 1] is the linear function

t ≡ (2λ − a − b)/(b − a).

Then, both transfer functions f (λ) and g(t) are given by follow-

ing expressions in (6).⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
f (λ) = gS Tn

(
2 γ ′ Im

1

λ − ρ′ − 1

)
,

g(t) = gS Tn

(
2 × μ

2 + σ2

t2 + σ2
− 1

)
.

(6)

3.2 Application of a Simple-Type Filter to a Set of Vectors
Our simple-type filter F , which uses a degree n Chebyshev

polynomial of the first kind, has the following form in expression

(7).

F = gS Tn(X) . (7)

Here, the operator X is 2γR(ρ) − I if the shift ρ is a real number,

and it is 2γ′ ImR(ρ′) − I if the shift ρ′ is an imaginary number.

The action of this operatorX can be easily calculated if the action

of a resolvent either R(ρ) or R(ρ′) is calculated.

From a set of column vectors V , we define V (�) ≡ T�(X) V ,

and we compute V (n) from V by using the three-term recursion

relation (8).⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
V (0) ← V,
V (1) ← XV,
V (�) ← 2XV (�−1) − V (�−2) (� ≥ 2).

(8)

Then, an application of the filter F to a set of vectors V is given

by the expression (9).

F V = gS V (n) . (9)

For a filter of degree n, by using this three-term recursion rela-

tion, there are n applications of a resolvent to a set of m vectors.

Each application of a resolvent is calculated by solving a set of

m systems of linear equations with a common coefficient matrix.

For a shift ρ̃ which is either real or imaginary, the calculation

of Y ← R(̃ρ)X is made by solving C(̃ρ)Y = BX for Y . Here,

C(̃ρ) ≡ A − ρ̃ B, and both matrices X and Y consist of m column

vectors. We have assumed that a system of linear equations is

solved by using some direct method, therefore we only have to

factor the symmetric matrix C(̃ρ) once, and by using the factors

we solve this set of m systems of equations not column by column

but as a whole in order to make a good data reference locality.

There are n applications of the same resolvent inside an appli-

cation of the filter, however we have to factor C(̃ρ) only once as

long as the factors of the matrix can be hold to reuse. In the iter-

ative refinement of eigenpairs by using a filter, the same filter is

applied a few times, in that case also we have to make the matrix

factorization corresponding to the filter only once in all as long

as the factors can be hold.

4. About Present Experiments
4.1 Filters Used in Experiments

In experiments in present paper, the filter’s parameter μ is al-

ways set to 1.5, and also the parameter gS is set to 1E − 5. For
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Fig. 1 Transfer function magnitudes | g(t) | of filters which consist of a sin-

gle resolvent with a real shift ( μ = 1.5, gS = 1E−5 ).

each case when the interval of eigenvalues for eigenpairs is at the

lower-end of the eigenvalue distribution or when the interval is in-

terior of the distribution, we used 4 settings for filters: the degree

n is changed to 4, 6, 8 and 10. For these 4 settings of filters, val-

ues of gP and gS/gP are tabulated. For filters to solve eigenpairs

with lowest eigenvalues by using a real shift (Table 1), and for fil-

ters which solve eigenpairs with internal eigenvalues by using an

imaginary shift (Table 2). For these filters, their transfer function

magnitudes |g(t)| are plotted in graphs. Here t is the normalized

coordinate of the eigenvalue λ (The interval λ ∈ [a, b] is mapped

linearly to the interval t ∈ [0, 1] when filters are for eigenval-

ues at the lower-end, and it is mapped to the interval t ∈ [−1, 1]

when filters are for internal eigenvalues). For filters which are

for lowest eigenvalues, their transfer function magnitudes |g(t)|
are plotted in the graph (Fig. 1). For filters which are for internal

eigenvalues, their transfer function magnitudes are plotted in the

graph (Fig. 2).

Table 1 Filters which consist of a single resolvent with a real shift ( μ = 1.5,

gS = 1E-5 ).

n gP gS/gP

4 5.33E-4 1.88E-2

6 1.53E-3 6.54E-3

8 2.55E-3 3.92E-3

10 3.34E-3 2.99E-3

Table 2 Filters which consist of a single resolvent with an imaginary shift (

μ = 1.5, gS = 1E-5 ).

n gP gS/gP

4 3.69E-3 2.71E-3

6 1.25E-2 8.01E-4

8 2.11E-2 4.73E-4

10 2.74E-2 3.65E-4

4.2 About Single-Precision Calculation
For all calculations in this paper, we used only IEEE-754 stan-

dard single-precision floating-point numbers and their operations

(binary 32bit). The single-precision has about 7.22 digits of pre-

cision in decimal.

In our previous paper[9], we used IEEE-754 double-precision
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Fig. 2 Transfer function magnitudes | g(t) | of filters which consist of a sin-

gle resolvent with an imaginary shift ( μ = 1.5, gS = 1E−5, right-half

).

and quadruple-precision floating-point numbers to make experi-

ments of iterative-refinement of eigenpairs by using a filter com-

posed of a single resolvent. Although it is more difficult to

make robust calculations with single-precision than with double-

precision or quadruple-precision, recently attention has been fo-

cused on methods of reducing power consumption by performing

calculations with low precision, therefore we calculated all exper-

iments in this paper with single-precision only.

4.3 Generalized Eigenproblem Derived from FEM
In each experiment, a real symmetric-definite generalized

eigenproblem (10) is used for example, which comes from a dis-

cretization by finite element method (FEM) of the 3-D Laplacian

eigenproblem (11) in a cube whose sides have a length π with

zero-Dirichlet boundary condition.

Av = λBv . (10)

−ΔΨ(x, y, z) = λΨ(x, y, z) . (11)

By the equi-division of sides in three directions into N1+1, N2+1,

N3 + 1 sub-intervals, the cube is partitioned into (N1 + 1)(N2 +

1)(N3 + 1) finite elements in total (we assume N1 ≤ N2 ≤ N3).

Tri-linear functions are used for basis of expansion inside each

finite element. With zero-Dirichlet boundary condition, both ma-

trices A and B have a size N = N1N2N3 and a lower bandwidth

wL = 1 + N1 + N1N2. (All eigenvalues are positive for this type

of matrix generalized eigenproblem which is derived from FEM

discretization of the Laplacian eigenproblem with zero-Dirichlet

boundary condition.)

4.4 Definition of Relative Residual
In each experiment, the accuracy of an approximate eigenpair

(λ, v) is judged by using the relative residual Θ which is defined

by the following expression (12).

Θ ≡ ||Av − λBv||
||λBv|| . (12)

This value does not depend on the normalization of the vector v,
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and the value is also unchanged when both matrices A and B are

multiplied by a common non-zero scaling factor. In experiments,

the Euclidean distance is used for the norm of a vector || · ||. When

φ is the angle between both position vectors Av and λBv in Eu-

clidean space, then we have an inequality sin φ ≤ Θ.

It is efficient to calculate relative residuals for many approxi-

mate eigenpairs together. Both AV and BV are calculated by ma-

trix multiplications to reduce data references to matrices A and

B to one each. Here V is a matrix whose columns are vectors of

approximate eigenpairs.

5. Results of Single-Precision Calculations of
Iterative Refinement

We show two examples Exam-1 and Exam-2. In each example,

the same FEM partitioning (N1,N2,N3) = (50, 60, 70) is used,

therefore their equations of the eigenproblem (10) are the same.

The size of both matrices A and B is N = 210000, and their lower

bandwidth is wL = 3051.

We solve those eigenpairs of the generalized eigenproblem

whose eigenvalues are in a specified interval. The specified in-

terval [a, b] for eigenvalue is [0, 100] for Exam-1, and [100, 200]

for Exam-2.

We iterated the combination of B-orthonormalization and fil-

tering up to 6 times for Exam-1, and up to 4 times for Exam-2.

In the first iteration, a set of vectors is generated from uniform

random numbers, and it is B-orthonormalized, and the filter is

applied to it.

One of the reasons why calculation of the filter diagonalization

in single-precision computation is more difficult than the one in

double-precision computation is as follows. In the case of cal-

culations in single-precision computation, the proportion of re-

quired eigenvectors contained in the set of initial vectors which is

generated from uniform random numbers is not so much signifi-

cant compared with the level of round-off error (especially when

the size of eigenproblem is large).

Another reason is that ranges of feasible filter characteristics

are quite limited in single-precision computation than in double-

precision computation. For example, since single-precision num-

ber has only about 7 digits of precision, a tiny value, such as 10−12

cannot be realized for the value of gS of a filter. In the calcula-

tion of the filter application, it is not effective to set the value

of gS smaller than the level of the round-off error, because small

magnitudes of filter transfer-rates in stop-bands are realized by

numerical cancellations.

The computer system which we used in experiments was a

single node of Oakforest-PACS system (Fujitsu PRIMERGY

CX1640M1). It has a single intel Xeon Phi 7250(1.4GHz,

68 cores) for CPU with 96 GiB DDR4 memory and 16 GiB

MCDRAM. The operating system was CentOS 7.6. The source

code for experiments was written in Fortran 90 language with

OpenMP directives. For the compiler, we used intel for-

tran v19.0.5.281 with compile options (”-fast -xMIC-AVX512

-align array64byte -qopenmp”). For all examples, the

number of OpenMP threads we used was 204.

5.1 Exam-1: Approximate Eigenpairs with Lowest Eigen-
values

In this example Exam-1, we try to solve those eigenpairs whose

eigenvalues are in the interval [a, b] = [0, 100]. There are 402

such eigenpairs to be solved. Since eigenvalues of these eigen-

pairs are at the lower-end of the eigenvalue distribution, we used

a real shift for the resolvent in each filter for this example.

There are 764 eigenvalues in the interval [a, b′] = [0, 150],

which is the union of the pass-band and the transition-band of the

filter with μ = 1.5. Since it is desirable to use more initial vec-

tors than that number, we set the number of the initial vectors to

m = 800 for calculations.

When gS = 10−5 and the degree n is increased from 4 to 10 by

2 (four tables from Table 3 to Table 6, and four figures from Fig-

ure 3 to Figure 6), numbers of eigenpairs obtained are wrong for

the case of IT = 1, but numbers of eigenpairs obtained are correct

and 402 for cases IT is 2 or more. For cases the degree n is 6 or

more, even for those eigenpairs with eigenvalues near the upper-

end of the interval which are slow to be improved, their relative

residuals decreased well as the number of iterations increased.

In each of tables (from Table 3 to Table 6), we also show

the total elapsed time consumed to obtain approximate eigen-

pairs by IT times applications of the filter combined with B-

reorthonormalizations to a set of m vectors and also including

the Cholesky decomposition once to prepare the filter. The graph

is also shown in Figure 7.

Table 3 Exam-1 (n = 4, gS = 1E−5, μ = 1.5, m = 800)

IT # pairs Max of Θ Elapsed time(s)

1 139 1.6E-01 164

2 402 2.7E-02 236

3 402 1.2E-03 261

4 402 3.5E-04 285

5 402 3.5E-04 322

6 402 3.5E-04 358

Table 4 Exam-1 (n = 6, gS = 1E−5, μ = 1.5, m = 800)

IT # pairs Max of Θ Elapsed time(s)

1 222 2.2E-01 191

2 402 1.0E-02 254

3 402 2.9E-04 336

4 402 2.9E-04 426

5 402 2.9E-04 473

6 402 2.9E-04 535

Table 5 Exam-1 (n = 8, gS = 1E−5, μ = 1.5, m = 800)

IT # pairs Max of Θ Elapsed time(s)

1 265 1.8E-01 210

2 402 3.4E-03 317

3 402 2.8E-04 403

4 402 2.7E-04 483

5 402 2.7E-04 569

6 402 2.7E-04 669

Table 6 Exam-1 (n = 10, gS = 1E−5, μ = 1.5, m = 800)

IT # pairs Max of Θ Elapsed time(s)

1 286 1.7E-01 220

2 402 2.1E-03 347

3 402 2.7E-04 457

4 402 2.6E-04 567

5 402 2.6E-04 677

6 402 2.6E-04 801
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Fig. 3 Exam-1 : Eigenvalue vs. relative residual ( n = 4, gS = 1E−5,
μ = 1.5, m = 800 ).
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Fig. 4 Exam-1 : Eigenvalue vs. relative residual ( n = 6, gS = 1E−5,
μ = 1.5, m = 800 ).

-5

-4

-3

-2

-1

0

1

 0  20  40  60  80  100

LO
G

10
  T

H
ET

A

EIGENVALUE

IT=1
IT=2
IT=3
IT=4

Fig. 5 Exam-1 : Eigenvalue vs. relative residual ( n = 8, gS = 1E−5,
μ = 1.5, m = 800 ).
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Fig. 6 Exam-1 : Eigenvalue vs. relative residual ( n = 10, gS = 1E−5,
μ = 1.5, m = 800 ).
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Fig. 7 Exam-1 : Number of iteration vs. total elapsed time in seconds

(filters consist of a single resolvent with a real shift, and initially

m = 800 vectors are filtered ).

5.2 Exam-2: Approximate Eigenpairs with Internal Eigen-
values

In this example Exam-2, we try to solve those eigenpairs whose

eigenvalues are in the interval [a, b] = [100, 200]. There are 801

such eigenpairs. Since their eigenvalues are interior of the eigen-

value distribution, we used an imaginary shift for the resolvent of

each filter for this example.

There are 1, 192 eigenvalues in the interval [a′, b′] = [75, 225],

which is the union of the pass-band and transition-bands of the

filter with μ = 1.5. Since it is desirable to use more initial vec-

tors than that number, we set the number of initial vectors to

m = 1, 300 for calculations.

With gS = 10−5 and the degree of the filter n is increased from

4 to 10 by 2 (four tables from Table 7 to Table 10, and four figures

from Figure 8 to Figure 11), the number of eigenpairs obtained

is wrong and different from the correct number 801 for the case

of IT = 1, but numbers are all correct for cases IT is 2 or more.

And if we look into graphs in four figures which correspond to
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degrees n from 4 to 10 by 2, we can recognize that for each case

the relative residual of eigenpairs decreased well as the number

of iteration IT increased (Since in each of these four figures, the

graph of IT = 3(blue) and the graph of IT = 4(brown) over-

lap almost, therefore at IT = 3 the refinement has been finished

already).

In each of tables (from Table 7 to Table 10), we also

show the total elapsed time consumed to obtain approximate

eigenpairs by IT times applications of the filter including B-

reorthonormalizations to a set of m vectors and also including

the complex Cholesky decomposition once to prepare the filter.

The graph is also shown in Figure 12.

Table 7 Exam-2 (n = 4, gS = 1E−5, μ = 1.5, m = 1300)

IT # pairs Max of Θ Elapsed time(s)

1 700 3.1E-01 413

2 801 2.3E-03 672

3 801 3.6E-05 790

4 801 2.2E-05 964

Table 8 Exam-2 (n = 6, gS = 1E−5, μ = 1.5, m = 1300)

IT # pairs Max of Θ Elapsed time(s)

1 800 3.3E-01 479

2 801 2.2E-04 782

3 801 2.3E-05 991

4 801 2.3E-05 1,189

Table 9 Exam-2 (n = 8, gS = 1E−5, μ = 1.5, m = 1300)

IT # pairs Max of Θ Elapsed time(s)

1 824 3.3E-01 564

2 801 8.1E-05 920

3 801 3.4E-05 1,157

4 801 3.3E-05 1,417

Table 10 Exam-2 (n = 10, gS = 1E−5, μ = 1.5, m = 1300)

IT # pairs Max of Θ Elapsed time(s)

1 828 2.7E-01 629

2 801 5.9E-05 1,028

3 801 3.6E-05 1,342

4 801 3.6E-05 1,657
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Fig. 8 Exam-2 : Eigenvalue vs. relative residual ( n = 4, gS = 1E−5,
μ = 1.5, m = 1300 ).
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Fig. 9 Exam-2 : Eigenvalue vs. relative residual ( n = 6, gS = 1E−5,
μ = 1.5, m = 1300 ).
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Fig. 10 Exam-2 : Eigenvalue vs. relative residual ( n = 8, gS = 1E−5,
μ = 1.5, m = 1300 ).
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Fig. 11 Exam-2 : Eigenvalue vs. relative residual ( n = 10, gS = 1E−5,
μ = 1.5, m = 1300 ).
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Fig. 12 Exam-2 : Number of iteration vs. total elapsed time seconds (filters

consist of a single resolvent with an imaginary shift, and initially

m = 1, 300 vectors are filtered ).

6. Conclusion
We made some experiments to solve those eigenpairs of a real

symmetric-definite generalized eigenproblem whose eigenvalues

are in the specified interval by using a filter.

Filters we used are composed of an action of a single resolvent.

For the shift of resolvent, we can use a real number to solve those

eigenpairs whose eigenvalues are at the lower-end of the eigen-

value distribution. When we use an imaginary number for the

shift, the interval for eigenvalues to be solved may be placed any-

where. The filter is a real polynomial of a single resolvent whose

shift is real, or it is a real polynomial of an imaginary part of a

single resolvent whose shift is imaginary. When the degree of

the real polynomial is n, there are n applications of the resolvent

inside an application of the filter. We used a Chebyshev polyno-

mial to represent the real polynomial, which made the filter de-

sign simple, and also an application of the filter can be calculated

by using the three-term recursion relation.

An application of a resolvent to a vector is calculated by solv-

ing a system of linear equations whose coefficient is the shifted

matrix made from both matrices of the given generalized eigen-

problem. We assumed that the system of linear equations is

solved by some direct method by using decomposition of the co-

efficient matrix. Since our filter consists of a single resolvent,

we need to make a matrix decomposition only once, and matrix-

factors are hold and used sequentially n times inside the filtering

to solve a set of system of linear equations with a common ma-

trix coefficient but m different right-hand-sides, here n is degree

of the polynomial of the filter and m is the number of vectors to

be filtered.

By the use of a single resolvent for the filter instead of many,

we reduced both costs to compute matrix decompositions and es-

pecially to store matrix-factors. However, those filters composed

of a single resolvent are not good in uniformity of transfer-rate in

the pass-band if they are compared to filters composed of many

resolvents, especially when the precision of numbers and arith-

metic operations used in computation is low.

The set of initial vectors, which is generated from random

numbers, is B-orthonormalized and then filtered to give another

set of vectors, to which we analyze and try to extract approxi-

mate eigenvectors. If uniformity of transfer-rate of the filter in

the pass-band is not good, approximate eigenpairs which are re-

quired may be inaccurate or some of them may be lost, especially

when the precision used in computation is low.

However, in the similar way as “orthogonal iteration” [4], [12],

[13] which is a well-known method for many years, initially a

set of vectors is generated from random numbers, and then the

combination of orthonormalization and filtering is applied a few

times to the set. The orthonormalization prevents the tendency

of those vectors to become linearly dependent, and the filtering

reduces well those eigenvectors which are not required. By this

refinement, the set of vectors becomes a better approximate basis

of the invariant-subspace which is spanned by required eigenvec-

tors. From the set of refined vectors, we construct a basis of ap-

proximate invariant-subspace whose condition is good. Then, the

Rayleigh-Ritz procedure is applied to the basis to obtain approx-

imate eigenpairs required as Ritz pairs.

We made some experiments for a real symmetric-definite gen-

eralized eigenproblem of banded system whose matrix size is

210, 000 and lower-bandwidth is 3, 051, which comes from a

FEM discretization of the Laplacian eigenproblem in a cube with

zero-Dirichlet boundary condition at the surface of the cube.

From results of experiments which used only single-precision for

computations, even we used a filter whose characteristics were

not so good because it was composed of only a single resolvent

in order to reduce requirements for computer resources, we found

present approach of iterative refinement worked very well to solve

eigenpairs required.
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