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Abstract: In a supply chain where multiple products need to be delivered via a container ship, we need to consider a
joint replenishment problem in periodic-review system where transportation costs of these containers are shared among
products. By proposing a Q-learning agent with function approximation, called the branching deep Q-network (DQN)
with reward allocation, the purpose of this paper is to ease the strict assumptions, such as the zero lead time or the
stationary demand, which are essential in the existing heuristic algorithms. Our numerical experiments demonstrate
that the proposed agent learns the coordinated replenishment policy and outperforms the benchmark policy.
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1. Introduction

The maritime transportation costs depend on the required num-
ber of containers in a supply chain, where multiple products are
required to be delivered via a container ship. Therefore, the trans-
portation cost per product would decrease when several products
are ordered simultaneously. In this case, the joint replenishment
policy (JRP), which considers the multi-product situations, is re-
quired to achieve the minimum total cost.

With maritime transportation, replenishment opportunities are
often restricted to, say, once a week, depending on the port op-
eration constraints. Therefore, this problem setting is defined as
a joint replenishment problem in a periodic-review system, that
is, replenishment opportunity comes at a regular time intervals,
where the container costs are shared among products. In addition,
stochastic non-stationary demands rather than stochastic station-
ary demands, whose statistical properties such as mean, variance,
and autocorrelation, are all constant over time, need to be con-
sidered because of seasonality, trend or other factors in the actual
business setting.

With stochastic demands, the Markov decision processes
(MDP) have been employed for the formulation of the problem.
When the number of products is very small, the MDP can be
only solved because the action spaces grow exponentially with
the number of products because of its combinatorial nature. Some
studies (Refs. [10] and [11]) have succeeded in finding the opti-
mal policy with MDP formulation, but the number of products
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remains only two or four.
Heuristic algorithms have been proposed for a large number

of products. However, these heuristic algorithms often require
strong assumptions, such as stationary demand, or/and ignore
some of the important logistic conditions, such as non-zero order-
to-delivery lead time and minimum order quantities. In addi-
tion, most studies in JRP have assumed continuous-review sys-
tem, where an order can be placed at any particular time. There-
fore, the assumptions on the demands and/or logistic conditions
of the existing approaches do not match our problem setting.

By proposing the reinforcement learning (RL) agent, the pur-
pose of this paper is to find the dynamic multi-product replen-
ishment policy based on the branching DQN (BDQN) [13] with
the extension of the reward allocation mechanism. The BDQN
was proposed for robot control, in which the n dimensional ac-
tion branches follow the shared state representation in the neu-
ral network Q-function approximation, while enabling the linear
growth of the total number of network outputs along with increas-
ing the dimensionality of action. We focus on the similarity be-
tween the supply chain management and robot control in terms
of challenging uncertainties, and came up with the idea of treat-
ing each product as an independent decision maker with a credit
assignment policy that is a hybrid of the global and the local re-
wards, which we call reward allocation.

Considering the difference between the assumed application
in Ref. [13], where only single global reward is available, and
our problem setting, where all the costs except the transportation
costs can be calculated with respect to each product, we add the
reward allocation mechanism to the original BDQN agent. In our
case, each branch consists of one product, and our objective vari-
able is total cost; the transportation costs are calculated across
multiple products whereas the holding costs and penalty costs are

c© 2020 Information Processing Society of Japan 36



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 36–49 (Aug. 2020)

calculated independently of each product. Thus, we introduce the
reward allocation function to determine how much reward is allo-
cated to each branch in order for each branch to effectively learn
the coordinated behavior while escaping from falling into a local
solution.

We extend our previous paper [12] by conducting experiments
on increased number of products and different parameters, and
examining the performance comparison between two reward al-
location strategies. Note that this paper does not prove that our
proposed agent is the best among the possible BDQN extensions,
and our attempt to apply the BDQN extension is only limited to
the joint replenishment problem setting.

We evaluate our proposed agent, called the branching deep Q-
network with reward allocation (BDQN-RA), by applying it to
a multi-product inventory control problem and ran numerical ex-
periments that varied the number of products and demand station-
arity in consideration of non-zero order-to-delivery lead time and
minimum order quantities.

By conducting several numerical experiments, we found that
our proposed agent achieves a better performance than the bench-
mark policy and exhibits a robust learning process even with 50
products with a non-stationary demand. We also found that the re-
ward allocation strategy considerably affects the agent’s behavior
and appropriate reward allocation strategy is crucial in learning
the cooperative behavior among branches.

The reminder of this paper is as follows. Section 2 reviews the
literature on both JRP and RL. Section 3 presents our proposed
solution. Section 4 presents the results of the numerical experi-
ment, and Section 5 provides the conclusions of the paper.

2. Related Works

In this section, we first review the literature on JRP with
stochastic demands. Then, we proceed to the survey of RL par-
ticularly on how to overcome the problem of state and action di-
mensionalities.

2.1 Joint Replenishment Policy
If there is only one product and if the stock status is only de-

termined at the time of the review (usually called the periodic-
review system), then the (s, S ) policy has to be widely employed.
In the (s, S ) policy, an order is placed if the inventory position
is at or below the order point s. The order is supplied after a
replenishment lead-time and is available to satisfy the customer
demands. The (s, S ) policy produced a low total cost under the
assumption of the demand pattern and the cost factors. Ref. [14]
extended this method into a well-known dynamic lot-sizing prob-
lem.

However, under a multi-product inventory system, the coordi-
nation across products should be taken into account, and Ref. [5]
asserts that a coordinated ordering policy can achieve 13% of the
cost savings as compared with the economic order quantity mod-
els for a single-item approach when a set of twenty products is
considered.

A way to model this problem is to formulate it as a MDP, and
use a value iteration algorithm to find the optimal joint replen-
ishment policy. To find the optimal policy, an improved policy-

iteration algorithm is presented in Refs. [10] and [11]. Although
they succeeded in finding the optimal policy, they could not over-
come the curse of dimensionality, and their approach can be only
used for two or four products.

One of the most representative heuristic algorithms for JRP is
the (S, c, s) policy. The (S, c, s) policy was proposed by Ref. [1],
which is often referred to as a “can-order” policy, where an order
is triggered by an item j when its inventory position falls to or
below the reorder level s. Then, any item for which the inven-
tory position is at or below its can-order level c is also included
in the order and is raised to the order-up-to level S . Although a
continuous-review system was first assumed in the (S, c, s) pol-
icy, it was applied to a periodic-review system in the research of
Ref. [4]. However, stationary demands need to be assumed with
the (S, c, s) policy, since these parameters are fixed. A number
of studies have been conducted on the determination of these pol-
icy parameters and ease some of the required assumptions in the
literature.

Certain studies (Refs. [7], [8]) have formulated MDP, and
solved MDP with policy iteration for a small number of prod-
ucts. Policy iteration with MDP is computationally intensive;
therefore, these studies proposed the heuristic algorithm to han-
dle a large number of products. In Refs. [7] and [8], capacity
constraints were introduced, whereas stationary demands were
assumed and the replenishment lead time was assumed zero. In
addition, these studies have assumed a continuous-review system.
Thus, these approaches cannot be applied to our problem setting.

2.2 Reinforcement Learning for Large State and Action
Spaces

The BDQN was proposed to overcome the large discrete action
spaces based on DQN, which uses neural network function ap-
proximation in Q-learning; therefore, we first review Q-learning
and DQN as a way to overcome the large state spaces, and pro-
ceed to the survey of the BDQN agent.

Q-learning is based on estimating the expected total discounted
future rewards of each state-action pair under the policy
π: Qπ (st, at) = E[rt+1 + γrt+2 + γ

2rt+2 + . . . + γ
T−trT |π], where

st, at, rt, and γ denote the states, action, reward, and discount fac-
tor, respectively. The Q function can be computed recursively
with dynamic programming as follows:

Qπ(s, a) = Es′
[
r + γEa′∼π(s′)

[
Qπ

(
s′, a′

)] |s, a, π] . (1)

We define the optimal Q∗(s, a) = maxπ Qπ(s, a). Then, the
optimal Q function satisfies the Bellman equation: Q∗(s, a) =
Es′

[
r + γmaxa′ Q∗ (s′, a′) |s, a]. Q-learning is an off-policy TD

control algorithm, and the one-step Q-learning is defined by:

Q (st, at) = (1 − αt) Q (st, at) + αt(rt+1 + γmax
a

Q (st+1, a)),

(2)

where α is the learning rate. When the state-action space is small
enough for the Q-values to be represented as a lookup table, this
iterative approximation converges to the true Q-values. However,
this tabular-type Q-value representation soon faces problems due
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to the large state-action space. Q-learning with function approxi-
mation has been proposed to overcome this problem. In the func-
tion approximated Q-learning, the following loss function needs
to be minimized in the training process:

L(θ) = E[(y − Q(s, a; θ))2], (3)

where

y = r + γmax
a′

Q(s′, a′; θ′), (4)

and θ is the parameter of the neural network. A target network
and experience replay have been proposed to cope with the prob-
lems related to non-stationarity and correlation in the sequence of
observations [9].

Although deep RL has achieved a remarkable success for a
large state space as described above, the problem associated with
a large action space remains unsolved. To manage the large dis-
crete action spaces, Ref. [13] proposed BDQN for robot control.
If a robot has multiple movable parts (like arms, legs, fingers,
etc.) and each part has several action options, then its combina-
tion of actions grows exponentially with the number of movable
parts.

In BDQN (see the left-hand side of Fig. 1 for illustration), func-
tion approximated Q-values are represented with individual net-
work branches following a shared network module that encodes
a latent representation of the input and helps with the coordina-
tion of the branches. This architecture enables the linear growth
of the total number of network outputs with increasing dimen-
sionality of actions. The results showed that this branching agent
performed well against the state-of-the-art continuous control al-
gorithm, deep deterministic policy gradient (DDPG).

In this architecture, by employing a single global reward, the
temporal difference target and loss function are defined as fol-
lows:

yd = r + γ
1
N

∑
d

Q−d

⎛⎜⎜⎜⎜⎜⎝s′, arg max
a′d∈Ad

Qd

(
s′, a′d

)⎞⎟⎟⎟⎟⎟⎠ , (5)

L = E(s,a,r,s′)∼D

⎡⎢⎢⎢⎢⎢⎣ 1
N

∑
d

(yd − Qd (s, ad))2

⎤⎥⎥⎥⎥⎥⎦ . (6)

Here, d ∈ {1, . . . ,N} denotes the action dimension with |Ad | =
n discrete sub-actions; yd denotes the temporal difference target
for branch d; ad ∈ Ad denotes the sub-action; Qd denotes the
Q-value at state s and sub-action ad for the branch d; Q−d denotes
the target network; D denotes the experience replay buffer; and
a denotes the joint-action tuple (a1, a2, . . . , aN). The researchers
stated that Eq. (5) showed better results than the naive setting for
the temporal difference target:

yd = r + γQ−d

⎛⎜⎜⎜⎜⎜⎝s′, arg max
a′d∈Ad

Qd

(
s′, a′d

)⎞⎟⎟⎟⎟⎟⎠ . (7)

They also applied a dueling network into their branching ar-
chitecture by setting the common state-value estimator and sub-
action advantage as:

Qd (s, ad) = V(s) +

⎛⎜⎜⎜⎜⎜⎜⎜⎝Ad (s, ad) − 1
n

∑
a′d∈Ad

Ad

(
s, a′d

)⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (8)

where V(s) denotes the common state value and Ad (s, ad) denotes
the corresponding sub-action advantage.

According to the survey paper [2], control theory is an impor-
tant research avenue in the supply chain management from the
perspective of challenging uncertainties, feedback cycles and dy-
namics. Furthermore, there have been several attempts for the
application of the control theory for supply chain management in
the literature. Therefore, it would not be a bad idea to apply the
approach in robot control, which is one of the most representative
application fields of control theory, to supply chain management.
As in Ref. [13], where they treated each movable part as an in-
dependent decision maker, we come up with the idea of treating
each product as an independent decision maker.

However, unlike [13], where only single global reward is avail-
able, all the costs except the transportation costs can be calculated
with respect to each product in our problem setting. Therefore,
we added the reward allocation mechanism to the original BDQN
agent such that the agent could learn coordinated ordering pol-
icy across multiple branches, where the part of rewards can be
calculated with respect to each branch. The explanation of the
proposed agent is provided in Section 3.

3. Method

3.1 Problem Setting
We consider a multi-product inventory system between one

supplier and one retailer in a periodic-review system, and prod-
ucts are delivered via maritime transportation. Our objective is
to minimize the total retailer cost, which includes the holding,
penalty, and transportation costs. We assumed a non-stationary
demand and a demand forecast conditioned by the forecast error
parameter, which means that the agent knows the expected de-
mand forecast accuracy as a form of prior knowledge. We have
used the following notations:
i : Item number, i = 1, . . . ,N,
t : Period, t = 1, . . . , T ,
LT : Lead time from supplier to retailer, (in weeks),
li : Lot size of item i, (in palette),
di,t : Demand for item i during period t, (in palette),
fi,t : Forecast of the demand for item i during period t,(in palette),
xi,t : Order quantity for item i made at time t, (in palette),
pi,t : Replenishment for item i from supplier during period t, (in

palette),
p̂i,t : Replenishment forecast for item i from supplier during pe-

riod t, (in palette),
Ii,t : Inventory position of item i at the start of time t, (in palette),
Îi,t,t̂ : Inventory position forecast for item i at time t̂ forecasted at

time t (in palette),
ui,t : Unsatisfied demand of item i during period t, (in palette),
si,t : Shipment of item i from retailer during period t, (in palette),
Ei : Forecast error parameter of item i.

The demand forecasts are generated so that the proportion of
standard deviation of forecast error (di,t − fi,t) to the standard de-
viation of demand itself equals Ei. Thus, Ei represents the degree
of demand forecast accuracy. Ei = 0 means a perfect forecast,
whereas Ei = 1 means no effect of prediction. Let Ei be 0.5 for
all items in our experiments. We permitted the lost sales. Replen-
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ishment at time t can be used from time t+ 1. In this study, we do
not take supplier stock-out or any supply delay into consideration.
Thus, the relationship among inventory, replenishment, shipment,
demand, unsatisfied demand and inventory position forecast can
be formulated as follows.

p̂i,t+LTi = xi,t, (9)

pi,t = p̂i,t, (10)

si,t = min(di,t, Ii,t), (11)

ui,t = di,t − si,t, (12)

Ii,t+1 = Ii,t − si,t + pi,t, (13)

Îi,t,t̂+1 = Ii,t −
t̂∑

t′=t

fi,t′ +
t̂∑

t′=t

p̂i,t′ . (14)

Cost is defined as follows:

Chold
i,t = Uhold × Ii,t, (15)

Cpel
i,t = Upel × ui,t, (16)

Ctrans
t = U trans ×

⌈∑
i xi,t

CAP

⌉
, (17)

where CAP represents the container capacity (in palette) and �·� is
the ceiling function. Chold

i,t , Cpel
i,t , and Ctrans

t represent the holding,
penalty, and transportation costs of item i during period t, respec-
tively, and Uhold, Upel, and U trans are the unit holding, shortage,
and transportation costs respectively.

In this problem setting, we tried to set our unit costs and other
logistic conditions to have realistic values as much as possible.
When we deliver goods from China to Japan using a 20-ft con-
tainer ship, its maritime cost would be approximately $400. The
holding cost in Japan is approximately $1.5 per m3 per day, and a
palette is approximately 1.2 m3 in its size. Each product demand
fits onto a palette, which is the usual method of packing in a con-
tainer ship, so that the cost calculation would be consistent with
an actual business setting. A 20-ft container can accommodate
approximately 15 to 20 palettes; therefore, our container capacity
(CAP) is 20 palettes. The order quantity unit size, which we call
the lot size, should be an integer in palette. Demand and forecast
can be specified in decimals because a customer’s order to the re-
tailer would be stated in pieces rather than palettes. Throughout
our study, we let LT (which is the time required from order to
delivery) to be three weeks by assuming maritime transportation
between China and Japan.

3.2 MDP Formulation for Multi-product Inventory System
with Demand Forecasts

3.2.1 Observations and State Variables
We need to consider the partial observability for the inven-

tory control with the demand forecast. The partially observable
Markov decision process (POMDP) provides a framework for
making decisions under uncertainties. A POMDP is defined as
a tuple (S , A,O,T, Z,R), where S , A, and O are the state, action,
and observation space, respectively. The state-transition function
T (s, a, s′) = P(s′ | a, s) is the probability of the agent being in
the state s′ after taking action a in the state s. The observation
function Z(s, a, o) = P(o | a, s) is defined as the probability of the
agent receiving observation o after taking action a in the state s.

In a POMDP, the agent cannot know its exact state, and be-
lief b(s), which is the probability distribution over S , is used.
We can define b(s) as b(s) = P(s | h), where h denotes the
past observation and action. Although the belief states along
with the updating rule form a completely observable MDP, its
learning process is computationally intensive. Among the several
heuristic approaches for POMDP, Ref. [6] proposed Q-MDP ap-
proximation, which defined the following expression: Q(b, a) =∑

s b(s)QMDP(s, a).
With the availability of demand forecast information, the or-

der decision at time t has been made primary based on the fu-
ture inventory position at time t + LT to ensure that our inventory
satisfies the future demands after order replenishment. At every
time step, meaning the beginning of every week, the agent ob-
tains information about the future inventory positions according
to the demand forecast. The on-order quantity OOi,t of item i at
time t (i.e., the items that have been ordered but have yet been
received) can be defined by

∑
t r̂i,t. Let [·]st:T be the summation of

[·] from st to st+ T . In each period, the agent has observations as
ot = [(Ii,t,OOi,t, Îi,t,t+LT , f t:LT

i,t , f t+LT :M
i,t )]N

i=1 and makes a decision
based on ot. Here, M is the parameter that decides how far the
future demand needs to be considered and we allow M to be four
weeks. The definition of MDP states that the next state and the
next reward should be only decided by the current state and the
action taken at time t; ot cannot be defined as a state because the
actual future inventory position or/and future demand can be dif-
ferent from the forecasted inventory and demand. However, true
information on Ii,t+LT , dt:LT

i,t , and dt+LT :M
i,t can be observed after-

ward by the use of the actual demand. Thus, we can define the
state by st = [(Ii,t,OOi,t, Ii,t+LT , dt:LT

i,t , d
t+LT :M
i,t )]N

i=1.
Let us assume that the average demand forecast error and the

variance of demand do not change from time to time and that
the agent knows Ei and the variance of demand for item i (vari)
as a form of prior knowledge, e.g., through past historical obser-
vations. Then, our belief state b(s) should be conditioned only
on ot and can be defined by P(st |ot) instead of P(st |h) in a gen-
eral POMDP. In addition, by assuming that the expected forecast
error follows a normal distribution, we can infer state st from ob-
servation ot, since di,t follows N( fi,t,

√
variEi).

Here, we have several approaches for this problem setting.
Since we can obtain the true state information, experience mem-
ory can consist of the true state so that the Markovian property
holds (option T1). Otherwise, we can use the observation while
ignoring the partial observability (option T2). For the selection of
action, we have to take action based on our observation, and we
have two options: to use the demand forecast itself (option V1),
or to estimate the true state by using our prior knowledge about
the demand forecast accuracy (option V2). Illustrations of these
approaches are provided in Table 1.

Note that our belief state b(s) can be calculated by the use of
only ot and Ei. While greedily selecting the action in option V2,
we used the following expression for the greedy policy:

at = arg max
a
E[Q(ŝt, a)], (18)

where ŝt are the estimated states that use the Monte Carlo sam-
pling by using the abovementioned distribution of di,t. In our ex-
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Fig. 1 Left-hand side: BDQN. Right-hand side: BDQN-RA.

Table 1 Options for experience memory and action selection.

Training T1 Select Action at ← arg maxa Q(st , at)
Memorize D ← [st , at , r, st+1]

T2 Select Action at ← arg maxa Q(ot , at)
Memorize D ← [ot , at , r, ot+1]

Validation V1 Select Action at ← arg maxa[Q(ot , a)]
V2 Select Action at ← arg maxa E[Q(ŝt , a)]

Two options for memorizing the experience in the training period and

selecting an action in validation period are represented.

periments, we generated 300 samples at each step. We assumed
that the combination of option T1 and V2 would yield the best
performance. Contrary to our initial expectations, the combina-
tion of T2 and V2 performed the best, where we treated Q(ot, at),
that is obtained with option T2, as if it represents Q(st, at) in the
validation phase. Therefore, we adopted this strategy for our ex-
periments.
3.2.2 Action Space

In each period, an agent orders xi,t ∈ Xi, which can be any
multiples of lot sizes li. However, an infinite action space is not
practical. In addition, taking a large number of orders as com-
pared with the demand is unrealistic from a supply chain point of
view. Therefore, we limited the possible order quantity for prod-
uct i to Xi = {liai | ai ∈ Ai = {0, 1, 2, 3}} where Ai denotes the
action space for product i.

3.3 Branching Deep Q-network with Reward Allocation
In Ref. [13], they examined the action branching agent for an

environment, which only had the availability of a global reward.
In our case, each branch consisted of one product. Our objec-
tive variable was the total cost; the transportation cost was cal-
culated across multiple products whereas the holding cost and
penalty cost were calculated independently for each product,
which means that the total cost included both global and local
rewards.

After conducting several numerical experiments, our best re-
sult arrived from the architecture shown on the right-hand side in
Fig. 1, which had the distinguishing feature of allocating rewards
to each branch.

Our proposed agent can be considered as one of the multi-agent
reinforcement learning approaches; i.e., each agent controls only
one item independently. Our proposed agent and general multi-
agent reinforcement learning are same in that an action for each
item is taken independently. The difference lies in that our pro-
posed agent has the shared representation, which can be regarded
as a constraint from multi-agent perspective that all the agents

have same parameters for the shared part in the Q-value func-
tion approximation, whereas each agent has completely separate
parameters in general multi-agent reinforcement learning setting.
In JRP, for some cases, even if the inventory of an item is large
enough at particular time step, simultaneous order with other
items would decrease the total costs. We assumed that the shared
representation would enable for our agent to learn the aforemen-
tioned coordinated replenishment policy.

Since there are several ways for the reward allocation, and the
appropriate reward allocation is not obvious, we examined the
two reward allocation strategies; equal allocation strategy and
quantity-based allocation strategy.
3.3.1 Reward Allocation

Unlike [13], we modified our temporal difference target equa-
tion as follows:

yi,t = ri,t+1 + γQ
−
i

⎛⎜⎜⎜⎜⎜⎝st+1, arg max
a′i∈Ai

Qi
(
st+1, a

′
i
)⎞⎟⎟⎟⎟⎟⎠ , (19)

where ri,t+1 refers to the immediate reward for item i after taking
an action at time t. Note that we use the item number i to rep-
resent the branch index. The transportation costs depend on the
number of containers, and the remaining costs can be separately
calculated for each product. There are several options available
for the allocation of the total transportation cost to each product.

The most natural approach for the allocation of the transporta-
tion cost is proportionate to the order quantity of each product,
which we call quantity-based allocation strategy, and is defined
as follows:

ri,t+1 = −
(
Chold

i,t +Cpel
i,t +Ctrans

t × xi,t∑
i xi,t

)
. (20)

However, the best results arrive from the following equal allo-
cation strategy by which the total transportation cost is allocated
equally to all the products even if a specific product is not or-
dered:

ri,t+1 = −
(
Chold

i,t +Cpel
i,t +

Ctrans
t

N

)
. (21)

Intuitively, this allocation method would encourage each branch
to put an order simultaneously.

Thus, the loss function should be defined for each branch, and
all the back-propagation gradients of the branches are rescaled by
1/N for the shared part of our architecture.

Li = E(s,ai ,ri ,s′)∼D
[
Lδ (yi,Qi (s, ai))

]
, (22)

where Lδ is the Huber loss function.
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3.3.2 n-step TD Method
n-step TD method was devised to combine the merits of both

the Monte Carlo and TD methods. The target in Monte Carlo
backups is the return; whereas, the target in the one-step TD
method is the first reward plus the discounted estimated value of
the next state.

In our problem setting, there is obviously a reward delay be-
cause of the lead time from the supplier to the retailer. Finally,
our target is defined as follows:

yi,t = Ri,t+1 + γ
nQ−i

⎛⎜⎜⎜⎜⎜⎝st+n, arg max
a′i∈Ai

Qi
(
st+n, a

′
i
)⎞⎟⎟⎟⎟⎟⎠ , (23)

where

Ri,t+1 =

n−1∑
k=0

γ(k)ri,t+k+1. (24)

Here, we let the step size n be the lead time LT .
3.3.3 State-value Estimator

As mentioned in Section 2, BDQN has a common state-value
estimator. It is natural to set the branch-independent state-value
estimator as an adaptation of dueling network into our proposed
agent with reward allocation. Thus, the branch independent state
value and advantage can simply be defined as follows:

Qi (s, ai) = Vi(s) + Ai(s, ai), (25)

where Vi(s) denotes the branch independent state-value and
Ai (s, ai) denotes the corresponding sub-action advantage.

4. Experiments

4.1 Experimental Setting
We conducted several numerical experiments to answer the fol-

lowing questions:
1) Can the proposed agent learn the coordinated order policy

across multiple products?
2) Can the proposed agent converge with a large number of prod-

ucts?
3) Can the proposed agent converge with a non-stationary de-

mand?
4) Can the proposed agent find an optimal policy as compared to

the benchmark policy?
5) How the reward allocation strategy affect the agent’s behavior?

For validation, we used the standard dueling double DQN,
which we simply call DQN in this paper, and two benchmark
policies, called a forecast-based economic order policy (F-EOP)
and SIMPLE. DQN was employed to validate the learning con-
vergence of the proposed agent as a RL-based approach, whereas
two benchmark policies were employed to compare the result ob-
tained by employing this proposed agent. Each episode consisted
of 200 time steps, and the initial 20 steps were ignored from the
evaluation so as to exclude the effect of initial inventory setting.

We tried three types of agents with respect to the branching ar-
chitecture: BDQNs (BDQN with state-value estimator, proposed
in Ref. [13]), BDQN-RA (BDQN with reward allocation), and
BDQN-RAs (BDQN with reward allocation and state-value esti-
mator).

In order to validate the abovementioned questions, we con-
ducted four experiments by varying the number of products and
the demand stationarity. Detailed explanations on experiments
are provided in Section 4.6.

4.2 Benchmark Methodology
There has been no established JRP under the non-stationary

demand and demand forecast; therefore, we selected a non-
coordinated order policy based on Ref. [3] as our benchmark pol-
icy, which consisted of forecast-based order-point and an eco-
nomic replenishment quantity based on Wagner-Whitin dynamic
lot size model with extension to incorporate the demand forecasts.
4.2.1 Forecast-based Economic Order Policy

Based on the availability of demand forecasts, a replenishment
order takes place when the forecasted inventory position at time
t + LT drops to the order-point or lower than that. Assuming that
the forecast error follows a normal distribution, the order-point
can be defined as s = k × σ√LT where k is the safety factor and
σ is the standard deviation of forecast error.

At each time step, we choose the order quantity xi,t ∈ Xi. When
x ∈ Xi is selected at time t, the expected unit time cost from t+LT

to the next replenishment timing is calculated by dividing the sum
of the expected holding cost and the transportation cost by T :

C(x) =
U trans × � x

CAP � + Uhold ×∑t+LT+T
t̂=t+LT Îi,t,t̂

T
, (26)

where T is determined by estimating the timing for which the
forecasted inventory position drops to or lower than the order-
point on condition that x is replenished at time t + LT . Thus, the
economic replenishment quantity with the demand forecasts can
be derived by arg minx(C(x)).
4.2.2 Simple Heuristics

Since with F-EOP, each product tries to enhance the fill-rate
of container independently of other product order quantities, the
order quantity would become too large and lead to the large inven-
tory cost when the total demand per one time step is equal to or
above the container capacity. Therefore, we also used the simple
heuristic order policy, which we call it SIMPLE, as our bench-
mark policy, where each product puts an order with the minimum
lot size when the inventory position drops to or lower than the
order-point in F-EOP.
4.2.3 RL Agent Benchmark

In the BDQNs, the temporal difference target is defined as fol-
lows:

yi,t = Rt+1 + γ
nQ−i

⎛⎜⎜⎜⎜⎜⎝st+n, arg max
a′i∈Ai

Qi
(
st+n, a

′
i
)⎞⎟⎟⎟⎟⎟⎠ , (27)

where

Qi (s, ai) = V(s) +

⎛⎜⎜⎜⎜⎜⎜⎜⎝Ai (s, ai) − 1
|Ai|

∑
a′i∈Ai

Ai
(
s, a′i

)⎞⎟⎟⎟⎟⎟⎟⎟⎠ , (28)

Rt+1 =

n−1∑
k=0

γ(k)rt+k+1, (29)

rt+1 = −
⎛⎜⎜⎜⎜⎜⎝
∑

i

Chold
i,t +

∑
i

Cpel
i,t +Ctrans

t

⎞⎟⎟⎟⎟⎟⎠ . (30)
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Table 2 Summary of experiment settings and results.

ID No. of Products Demand Stationarity F-EOP SIMPLE DQN BDQNs BDQN-RA BDQN-RAs Improved(%)
1 2 Stationary (*) 133.2 141.4 105.3 108.0 (*) 106.7 107.3 19.9%
2 2 Upward Trend (*) 216.5 237.6 205.2 266.3 (*) 192.0 195.2 11.3%
3 10 Upward Trend 447.8 (*) 376.7 - 817.2 346.8 (*) 341.3 9.4%
4 50 Upward Trend 1890.9 (*) 1580.9 - - (*) 1400.5 1404.1 11.4%

Results for DQN and BDQN families were derived by calculating the averaged total cost with a greedy policy using the trained model after 10,000 episodes over

six runs. Improved(%) represents the decrease in total cost compared with the benchmark policy, and (*) denotes the item used for calculating Improved(%).

Fig. 2 Performance in total cost (multiplied by −1) during evaluation on the y-axis and training episodes
on the x-axis. The solid lines represent the average over six runs with initialization seeds and the
shaded areas represent the standard deviation. With the application of the greedy policy, evalua-
tions were conducted every 50 episodes.

As shown, the immediate reward for branch i in the BDQNs is
the total cost of all items incurred at particular time step.

4.3 Experiment Results
Table 2 and Fig. 2 summarize the results and the learning

curves of our experiments. Our proposed agent did perform better
than did the benchmark policies. With the increase in the num-
ber of products, DQN and BDQNs (without reward allocation)
did not converge whereas our proposed agent, BDQN-RA(s), per-
formed well even with 50 products. DQN suffered from its com-
binatorial increase in the action space for a large number of prod-
ucts. When the number of products were equal to 10, its ac-
tion space was around 106. As for BDQNs, the use of a single
global reward made the convergence difficult because the feed-
back signal to each branch was considered too noisy. As shown
in Eq. (30), each branch received the reward which is not only the
transportation costs but also the inventory and penalty costs of
other branches.

For the proposed agent, the reward allocation strategy worked
better in stable learning while achieving the coordinated orders.
In this case, as shown in Eq. (21), each branch received the re-
ward which is branch independent holding and penalty costs plus

allocated transportation cost. Thus, our proposed agent did not
receive the irrelevant feedback to modify the replenishment pol-
icy for each item. The state-value estimator in the proposed agent
did not demonstrate a considerable effect on the results.

We can see that with the increase in the number of products,
the total cost from the benchmark SIMPLE is lower than another
benchmark F-EOP as expected.
4.3.1 Experiment 1: Two-products with a Stationary De-

mand
One of the most important validation items about the action

branching agent in JRP is to ascertain whether or not the coordi-
nated order is possible across multiple products. We conducted a
simple experiment to examine this possibility. In this setting, the
total demand per unit time was much less than the transportation
capacity, thus allowing room for coordinated orders to minimize
the total cost.

As the learning process proceeded, our proposed agent learned
to order these two products simultaneously, thereby minimizing
the transportation cost. The left part of Fig. 4 shows the result of
the time series. Even if the inventory position of one item was
relatively high (i.e., immediate order did not need to take place),
the order took place in accordance with the other order. Through-
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Fig. 3 Performance comparison in total costs of the reward allocation strategies : learning curve from
BDQN-RA and BDQN-RA(QTY) agent. The solid lines represent an average over six runs with
initialization seeds, and the shaded areas represent standard deviation. With the application of the
greedy policy, evaluations were conducted every 50 episodes.

out these 200 time steps, most of the total order quantities per unit
time equaled 16, whereas the order quantity of each product per
unit time was 8. Considering the lot size of both products being
8, the coordinated orders occurred despite the fact that our pro-
posed agent decided the order for each item independently. By
doing so, our proposed agent achieved a low level of inventory
while maintaining a high fill-rate for maritime transportation. As
a result, the total cost decreased by 19.9% as compared with the
benchmark result where the coordinated order did not take place,
and the inventory level remained high as a result of independently
minimizing the cost. The DQN agent performed best and it can
be considered near the optimal JRP because the action space is
small. Compared with DQN, our proposed agent demonstrated
a slightly lower performance but still showed a considerable im-
provement over F-EOP. Despite this simple experimental setting,
these results demonstrate the possibility of learning a coordinated
ordering policy across multiple products with our branching ar-
chitecture.
4.3.2 Experiment 2: Two-products with an Upward De-

mand
With upward demands, we expected that the ordering fre-

quency should change from time to time with the increase in
the total average demand per unit time. The bottom-right side
of Fig. 4 shows the result of BDQN-RA and we see that the or-
der timing is aligned between these two products in most of the
time, with its frequency becoming smaller with increase in the
average demand. On the contrary, the learning of the BDQNs
agent was improper, which can be considered as the result of the
agent been affected by the noisy joint-action selection under un-
certain future demands. Although our agent performed better, a

slight drop in performance and instability during the latter part of
the training process was noticed. The agent is considered to have
suffered from a non-stationary environment caused by branch-
independent action selection, as observed in the general multi-
agent RL setting.
4.3.3 Experiment 3: 10 Products with an Upward Demand

We extended our experiments to a more complicated setting
with ten products, with the average unit time demand being much
lower than the container capacity. The BDQNs agent failed to
converge, whereas our proposed agent exhibited an efficient and
stable learning process. The BDQN-RAs agent achieved a 9.4%
cost reduction as compared to the benchmark policy.
4.3.4 Experiment 4: 50 Products with an Upward Demand

With 50 products, the BDQNs agent completely failed to con-
verge (we have omitted the result for simplicity), whereas our
proposed agent performed better than the benchmark policy. In
this experiment, the average unit time demand is more than 38
palettes, which is far more than the container capacity (20 palettes
per container). This means that we can ship products at every
replenishment opportunity, and the resulting trade-off between
the inventory costs and the transportation costs will be relatively
small. Consequently, the learning process was more stable than
the other three experiments.

4.4 Comparison of the Reward Allocation Strategy
Here we examined the reward allocation strategy. Let BDQN-

RA(QTY) denote the agent with the order quantity-based alloca-
tion strategy, in which the transportation cost is allocated to each
product in proportion to the order quantity as defined in Eq. (20).
The rest of the setting is completely same as that of the BDQN-
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Fig. 4 Example of time series movement of each product derived from the validation results of bench-
mark (top) and BDQN-RA (bottom) for Experiments 1 (left) and 2 (right). Each figure represents
the results of products 1 and 2, as well as the total replenishment quantity of both products (top
to bottom). Orange, blue, green, and red lines represent demand, inventory, unsatisfied demand
(stock-out), and replenishment quantity, respectively.

RA agent. Figure 3 shows the learning curve from the BDQN-
RA and BDQN-RA(QTY) agents. In all these experiments except
for the Experiment 4, the BDQN-RA agent outperformed BDQN-
RA(QTY).

The difference in performance may seem insignificant for the
Experiment 1, but the resulting order behavior is quite differ-
ent between these two agents. Figure 5 shows the cost break-
down and the fill-rate of containers (on the left) and the aver-
age order quantity (on the right side) during the evaluation, and
Fig. 6 shows the example of time series movement. We observed
that the inventory level from BDQN-RA is lower than that of
BDQN-RA(QTY), whereas the fill-rate from BDQN-RA(QTY)
is slightly higher. The BDQN-RA agent learned to order eight
quantities every time, which is the minimum order quantity,
whereas the average order quantity of BDQN-RA(QTY) agent is
larger than eight. This considered to be affected by the reward
allocation strategy: with order quantity-based allocation, each
branch learned to enhance the fill-rate independently, whereas
with equal allocation, each branch learned to order simultane-
ously with other branches.

The performance gap has been widened in the Experiment 3.
Figure 7 shows the cost breakdown and the fill-rate of containers
during the evaluation, and Fig. 8 shows the example time series
movement. Note that the lot size of each product is 1, 1, 1, 1,
2, 2, 3, 3, 3, and 3, respectively and the demand has seen an up-
ward trend in this setting. We see that the order quantity made by
the BDQN-RA agent equaled the lot size (meaning the minimum
order quantity) at almost every particular time and the inventory
level was kept low, just by adjusting the order frequency with the
increase in demand. On the other hand, the order quantity made
by the BDQN-RA(QTY) agent was larger in the first half of the
experiment. As a result, the inventory level was kept high.

On the other hand, if we look at the total order quantity (see
the last row in Fig. 8), we can see that there are timings where
no order has been put in the first half of the result from BDQN-
RA(QTY) agent. By considering Eq. (20), we can interpret the
result as follows: with quantity-based allocation, if the order for
an item does not take place, no transportation cost is incurred
for the item. Thus, during the training process, if the other item
decides not to put an order, the incurred cost for an ordered item

c© 2020 Information Processing Society of Japan 44



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 36–49 (Aug. 2020)

Fig. 5 Comparison of the reward allocation strategies for Experiment 1. The top part of the figure shows
one of the results from the BDQN-RA. The bottom part of the figure shows one of the results
from the BDQN-RA(QTY). Cost breakdown (on the left axis) and the fill-rate of containers (on
the right axis) during evaluation (left part of the figure). Evaluations using the greedy policy were
conducted every 50 episodes. Penalty cost is omitted for simplicity. Average replenishment quan-
tity of each product during the evaluation (right part of the figure).

Fig. 6 Example of the time series movement of each product derived from the validation result of BDQN-
RA (on the left) and BDQN-RA(QTY) (on the right) for Experiment 1. Each figure represents the
result of product 1 and 2 as well as the total replenishment quantity of these two products, from
top to bottom. Orange, blue, green, and red lines represent demand, inventory, unsatisfied demand
(stock-out), and replenishment quantity, respectively.

increases even if the order quantity remains the same. This would
eventually encourage all the items not to put an order simultane-
ously under some states. From these results, we can see that the
reward allocation strategy had a large impact on the agent’s be-
havior.

In the Experiment 4, the performance of the BDQN-RA(QTY)

was slightly higher than the BDQN-RA agent. From Fig. 7, we
can see that the transportation costs have not changed and the fill-
rate is kept high during the training process. This implies a little
room for improvement in the fill-rate, and the coordination among
products is not required in this case. Therefore, quantity-based al-
location strategy is considered effective in obtaining a more direct
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Fig. 7 Comparison of the reward allocation strategies for Experiments 2, 3, and 4. The left side of the
figure shows one of the results from BDQN-RA, whereas the right side of the figure shows one of
the results from BDQN-RA(QTY). Costs breakdown (on the left axis) and the fill-rate of contain-
ers (on the right axis) during evaluation are also shown. Evaluations using the greedy policy were
conducted every 50 episodes. Penalty cost is omitted for simplicity.

feedback to optimize the inventory cost for each product.

4.5 Additional Experiments on Different Parameters
Based on the Experiment 3, i.e., the number of products is fixed

to 10, we conducted additional experiments by considering the
following situations: 1) higher/lower transportation unit cost, 2)
different lot sizes. As shown in Table 3, BDQNs failed to con-
verge for all cases, whereas our proposed agent outperformed the
benchmark policy SIMPLE. In terms of the comparison between

the two reward allocation functions, although the equal alloca-
tion outperformed the quantity-based allocation on average, we
can see that the difference is not significant for cases on different
U trans settings. From these observations, the superiority of the re-
ward allocation strategy may vary depending on the cost balance
between the transportation and inventory costs along with other
logistics conditions.
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Fig. 8 Example time series movement of each product derived from the validation result of BDQN-RA
(on the left) and BDQN-RA(QTY) (on the right) for Experiment 3. Each figure represents the re-
sult of product 1,2. . . 10, and total replenishment quantity of all the products, from top to bottom.
Orange, blue, green, and red lines represent demand, inventory, unsatisfied demand (stock-out),
and replenishment quantity respectively.

4.6 Experiment Detail
4.6.1 Cost, Demand and Demand Forecast Setting

On the basis of the logistic condition described in Section 3,
we let the cost parameters Uhold, Upel, and U trans be 0.02, 1.0,
and 1, respectively. The demand and lot size of each product are

presented in Table 4. The stationary demand was generated fol-
lowing N(μ, σ) and we let σ

μ
be 0.4. Non-stationary data were

generated by the simple addition of the linear upward trends until
the tripling of demand at the end of the 200 time steps, defined by;
di,t = d̂i,t + 2μi(t/200) where d̂i,t denotes the stationary demand.

c© 2020 Information Processing Society of Japan 47



IPSJ Transactions on Mathematical Modeling and Its Applications Vol.13 No.2 36–49 (Aug. 2020)

Table 3 Experiment results on different parameters.

Parameter SIMPLE BDQNs BDQN-RA (QTY)
U trans 0.5 262.2 2,482.2 (*) 230.0 234.3

(1,909.9) (3.6) (1.7)
2 593.7 1,284.4 (*) 581.2 592.5

(366.0) (9.4) (13.7)
Lot size 2 365.1 2,199.7 (*) 347.8 371.8

(for all items) (1,007.5) (3.1) (10.0)
3 408.5 1,806.0 (*) 379.6 397.3

(969.4) (4.3) (2.8)

Results for BDQN families were derived by calculating the averaged total

cost with a greedy policy using the trained model after 3,000 episodes over

six runs. The value in (·) represents the standard deviation. F-EOP is omitted

as the performance of SIMPLE is better for all cases. (*) represents the

lowest cost.

Table 4 Demand and lot size settings in each experiment.

ID μ Lot size
1 [2, 2] [8, 8]
2 [2, 2] [8, 8]

3
[.3, .4, .5, .5, .7,

.9, 1., 1., 1.2, 1.2]
[1, 1, 1, 1, 2,
2, 3, 3, 3, 3]

4
[.3, .4, .5, .5, .7,

.9, 1., 1., 1.2, 1.2] ×5
[1, 1, 1, 1, 2,

2, 3, 3, 3, 3] ×5

Demand forecasts were generated so that the proportion of the
standard deviation of the forecast error to the standard deviation
of the demand itself equaled 0.5.
4.6.2 BDQNs and BDQN-RA(s)

The network had two hidden layers with 512 and 256 units for
the Experiments 1, 2, and 3, whereas it had two hidden layers
with 2048 and 1024 units for the Experiment 4 in the shared net-
work module and one hidden layer per branch with 128 units. A
gradient clipping of size 0.25 was applied. We used the Adam
optimizer with a learning rate of 10−4, β1 = 0.9 and β2 = 0.999.
The target network was updated every ten episodes. A mini-batch
size was 32 and a discount factor was 0.995. We used ReLu for
all hidden layers and linear activation on the output layers. We
adopted the ε-greedy policy with linear annealing.
4.6.3 DQN

We used the same parameters as for BDQN-family regarding
gradient clipping, optimizer, learning rate, discount factor, mini-
batch size, and ε-greedy policy.

5. Conclusion

We introduced the extended branching Q-learning agent with
function approximation designed for combinatorial action dimen-
sion with global and local reward based on the cost structure of
multi-product inventory system.

Our numerical experiments showed that with the increase in the
number of products, both DQN and BDQNs failed to converge;
however, our proposed agent performed better as compared with
the benchmark policies. We also demonstrated that the reward
allocation strategy played a key role in learning cooperative be-
havior with our branching agent.

Through our numerical experiments, although the equal allo-
cation strategy outperformed the quantity-based allocation for all
the experiments, we see that the reward allocation strategy can
stand further improvement, and this should be investigated in fu-
ture studies.

Our proposed agent only needed the demand forecast, which is

usual in the real business setting; this result expands the possibil-
ity to adapt our approach in the real-world situations.

In this study, we used the same demand parameter μ for train-
ing and validation process; however, in practice, we need to pre-
pare the unexpected demand level fluctuation. This generaliza-
tion problem is one of the biggest challenges in the RL context,
and we believe that this problem should be resolved for RL to be
deployed in the real business applications. Future studies need
to investigate the methods to enhance the generalization perfor-
mance with our proposed agent.
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