
IPSJ SIG Technical Report

A Unified Approach for Designing Succinct Navigational
Oracles for Families of Intersection Graphs on Circle

Hüseyin Acan1,a) Sankardeep Chakraborty2,b) Seungbum Jo3,c) Kei Nakashima4,d)

Kunihiko Sadakane4,e) Srinivasa Rao Satti5,f)

Abstract: We consider the problem of designing succinct navigational oracles i.e., succinct data structures supporting

basic navigational queries such as degree, adjacency and neighborhood efficiently for intersection graphs on a circle,

which include graph classes such as circle, k-polygon-circle, circle-trapezoid, trapezoid graphs. We first prove a gen-

eral lower bound for these intersection graph classes, and then present a uniform approach that lets us obtain matching

lower and upper bounds for representing each of these graph classes. More specifically, our lower bound proofs use

a unified technique to produce tight bounds for all these classes, and this is followed by our data structures which are

also obtained from a unified representation method to achieve succinctness for each class.

Keywords: Succinct Data Structures, Intersection graphs, Counting lower bound

1. Introduction

Intersection graphs of geometric objects are fascinating combi-

natorial objects from the point of view of algorithmic graph the-

ory as many hard (NP-complete in general) optimization prob-

lems become easy, i.e., polynomially solvable when restricted

to various classes of intersection graphs. Thus, they provide us

with clues with respect to the line of demarcation between P and

NP, if there exists such a line. Furthermore, they also have a

broad range of practical applications [26, Chapter 16]. Perhaps

the simplest and most widely studied such objects are the inter-

val graphs, intersection graphs of intervals on a line [14, 15, 17].

Several characterizations of interval graphs [15] including their

linear time recognition algorithms are already known in the liter-

ature [16]. There exist many generalizations of interval graphs,

and we focus particularly in this work on some of these gener-

alizations involving intersection of geometric objects bound to a

1 Drexel University, United States
2 National Institute of Informatics, Japan
3 Chungbuk National University, South Korea
4 The University of Tokyo, Japan
5 Seoul National University, South Korea
a) huseyin.acan@drexel.edu
b) sankardeep.chakraborty@gmail.com
c) sbjo@chungbuk.ac.kr
d) kei nakashima@mist.i.u-tokyo.ac.jp
e) sada@mist.i.u-tokyo.ac.jp
f) ssrao@cse.snu.ac.kr

circle.

More specifically, we study circle graphs, k-polygon-circle

graphs, circle-trapezoid graphs, and trapezoid graphs in this ar-

ticle. A circle graph is defined as the intersection graph of chords

in a circle [5, 8]. Polygon-circle graphs [18] are the intersec-

tion graphs of convex polygons inscribed into a circle, and the

special case, when all the convex polygons have exactly k cor-

ners, we call the intersection graph k-polygon-circle [7]. Circle-

trapezoid graphs are the intersection graph of circle trapezoids on

a common circle, where a circle trapezoid is defined as the con-

vex hull of two disjoint arcs on the circle [11]. Finally, trapezoid

graphs are the intersection graphs of trapezoids between two par-

allel lines which can be regarded as a circle with a sufficiently

large radius. These graphs are not only theoretically interesting

to study but they also show up in important practical application

domains, e.g., in VLSI physical layout [15,26]. In spite of having

such importance and being such basic geometric graphs, we are

not aware of any study of these aforementioned objects using the

lens of succinct data structures [24] where we need to achieve

the following twofold tasks. The first goal is to bound from be-

low the cardinality of a set T consisting of combinatorial objects

with certain property, and this is followed by storing any arbi-

trary member x ∈ T using the information theoretic minimum

of log(|T |) + o(log(|T |)) bits (throughout this paper, log denotes

the logarithm to the base 2) while still being able to support the

1ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.4
2020/9/1

IPSJ SIG Technical Report

relevant set of queries efficiently on x, both the tasks we focus

on here. We assume the usual model of computation, namely a

Θ(log n)-bit word RAM model where n is the size of the input.

This is a standard assumption that implies a vertex can be distin-

guished, in constant time, with a label that fits within a word of

the RAM. Finally all the graphs we deal with in this paper are

simple, undirected, unlabelled and unweighted.

1.1 Related Work

Succinct navigational oracles. There already exists a huge

body of work on representing several classes of graphs suc-

cinctly along with supporting basic navigational queries effi-

ciently. A partial list of such special graph classes would be

arbitrary graphs [10], trees [22], planar graphs [2], chordal

graphs [23], graph with bounded tree-width k (partial k-trees) [9],

etc. Specially, one can consider (i) circular-arc graphs (intersec-

tion graphs on the arcs on a circle), (ii) interval graphs (sub-class

of circular-arc graphs), and (iii) permutation graphs (intersection

graphs of line segments between two parallel lines) as the special

case of the intersection graphs on a circle. For interval graphs and

circular-arc graphs, Gavoille and Paul [13] (and independently,

Acan et al. [1]) showed that n log n − O(n log log n) bits are nec-

essary for representing an interval or a circular-arc graph with n

vertices. In [1], the authors also presented succinct navigation or-

acles for both graph classes. Also for permutation graphs, a lower

bound of (n log n − O(n log log)) bits is known [4, 19].

Algorithmic graph-theoretic results. All the intersection graphs

that we focus in this paper are very well studied in the algo-

rithmic graph theory literature. Circle graphs (which are essen-

tially same as overlap graphs*1) can be recognized in polynomial

time along with admitting polynomial time algorithms for vari-

ous optimization problems like feedback vertex set and indepen-

dent set (see [26] and references therein for more details). These

graphs were first introduced in the early 1970s, under the name

alternance graphs, as a tool used for sorting permutations us-

ing stacks [8]. The introduction of polygon-circle graphs (which

are same as spider graphs [18]) was motivated by the fact that

this class of graphs is closed under taking induced minors. Even

though the problem of recognising polygon-circle and k-polygon-

circle graphs is NP-complete [20, 25], many optimization prob-

lems that are otherwise NP-Complete on general graphs can be

solved in polynomial time given a polygon-circle representation

of a graph (see [26] for more details). Felsner et al. [11] intro-

duced circle-trapezoid graphs as an extension of trapezoid graphs

and devised polynomial time algorithms for maximum weighted

*1 https://www.graphclasses.org/classes/gc˙913.html

Table 1: Lower bounds of families of intersection graphs.

Graph class Space lower bound Reference

(in bits) (this paper)

circle n log n − O(n) Theorem 1.4

k-polygon-circle (k − 1)n log n − O(kn log log n) Theorem 1.1

circle-trapezoid 3n log n − 4 log log n − O(n) Theorem 1.1

trapezoid 3n log n − 4 log log n − O(n) Lemma 1

clique and maximum weighted independent set problems. We re-

fer the reader to [14, 15, 21, 26] for more details on these graph

classes and other related problems.

1.2 Our Results

In this paper, we consider a graph class defined as the intersec-

tion graphs of objects on a circle, where objects are generalized

polygons, polygons whose corners are on the circle and edges

are either chords or arcs of the circle. This contains many graph

classes including (1) interval graphs, (2) permutation graphs, (3)

circular-arc graphs, (4) k-polygon-circle graphs, which are inter-

section graphs of polygons on a circle, where every polygon has

k chords, and (5) circle-trapezoid graphs. Note that these exam-

ple classes correspond to k-polygon circle graphs with a fixed k,

while our upper and lower bounds in fact apply to a more general

case when the graph contains polygons with different number of

corners.

We first show a space lower bound for representing the above

general graph class (Theorem 1.1). These new lower bound re-

sults for representing such graph classes are summarized in Ta-

ble 1. Note that from Theorem 1.1, we can also obtain the space

lower bounds for representing permutation graphs and interval

graphs, which match the current best lower bounds for these

graph classes [1, 4, 13, 19]. Furthermore using a similar idea to

prove the main theorem, we also obtain a space lower bound for

representing trapezoid graphs.

Next, we consider data structures for representing families of

intersection graphs on a circle which support three basic navi-

gation queries efficiently, which are defined as follows. Given a

graph G = (V, E) such that |V |= n and two vertices u, v ∈ V , (i)

degree(v) query returns the number of vertices that are adjacent

to v in G, (ii) adjacent(u, v) query returns true if u and v are adja-

cent in G, and false otherwise, and finally (iii) neighborhood(v)

query returns all the vertices that are adjacent to v in G.

We give a unified representation of families of intersection

graphs of generalized polygons on a circle where generalized

polygon is define as a shape where every pair of consecutive cor-

ners are connected by either an arc or a chord on a circle. We

summarize our result in the following theorems.

Theorem 1.1. Consider a class of intersection graphs on a circle

2ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.4
2020/9/1

IPSJ SIG Technical Report

consisting of n polygons, each of which has at most k chords or

arcs. Let ni be the number of all polygons on the circle with i

corners, n̄ = (n2, n3, . . . , nk), and N =
∑k

i=2 i · ni. Let Pn,k,n̄ denote

the total number of such graphs. Then, the following holds:

log Pn,k,n̄ ≥
k∑

i=2

ni · i log
n
i
− n log n − O(N log log n).

Theorem 1.2. Consider an intersection graph of n (general-

ized) polygons on a circle. Let ni be the number of all poly-

gons on the circle with i corners (2 ≤ i ≤ k), where k is

the maximum number of corners among the polygons on a cir-

cle, and N be the total number of corners of the polygons.

There exist a
(∑k

i=2 ni · i log n
i − n log n + O(N log k)

)
-bit repre-

sentation of the graph that can support adjacent(u, v) query in

O(k log log n) time, and neighborhood(v) and degree(v) queries

in O(k|degree(v)|· log log n) time. Also, the representation is suc-

cinct (i.e., the space usage is (1 + o(1)) log Pn,k,n̄) when k =

o(log n/log log n).

Corollary 1.3. For an intersection graph of n (generalized) poly-

gons with at most k corners on a circle, let N be the total num-

ber of corners of the polygons. There exist an ((N − n) log n +

O(N log k))-bit representation of the graph. For a k-polygon-

circle graphs, there exists a ((k − 1)n log n + O(nk log k))-bit rep-

resentation.

From these results, we can obtain succinct data structures for

all the graphs classes in Table 1 which can support adjacent,

degree, and neighborhood queries efficiently. Note that for the

above mentioned classes of graphs, these are the first succinct

data structures.

Finally, for circle graphs, we show that this lower bound can

be improved to n log n − O(n) bits. Furthermore, for circle

graphs and circle-trapezoid graphs, we present alternative suc-

cinct data structures which support faster degree queries (for ver-

tices whose degree is Ω(log n/log log n)). We summarize the re-

sults in the following theorem and lemma.

Theorem 1.4. Let G be an unlabeled circle (trapezoid resp.)

graph with n vertices. Then

(i) at least n log n−O(n) bits are necessary to represent a circle

graph G; and

(ii) there exists an n log n+o(n log n)-bit (3n log n+o(n log n)-bit

resp.) data structure representing G such that degree(v) and

adjacent(u, v) query can be answered in O(log n/log log n)

time, and neighborhood(v) query can be reported in

O(|degree(v)|· log n/log log n) time.

Lemma 1. Consider a family of intersection graphs made from n

trapezoids on two parallel lines. Let Pn denotes the total number

of such graphs. Then the following holds:

log Pn ≥ 3n log n − 4n log log n − O(n).

Due to lack of space, we omit the proofs of Theorem 1.4,

Lemma 1.

1.3 Paper Organization

After listing preliminary data structures that will be used

throughout our paper in Section 2, we move on to present the

central contributions of our work. In Section 3, we prove all the

lower bound results mentioned in Table 1 and present our general

upper bound result (see Theorem 1.2) that provides succinct data

structures for all these graphs in a unified manner. Finally, we

conclude in Section 4 with some open problems.

2. Preliminaries

In this section, we introduce some data structures that will be

used in the rest of the paper.

Rank, Select and Access queries. Let A[1 . . . , n] be an array of

size n over an alphabet Σ = {0, 1, . . . , σ − 1} of size σ. Then for

1 ≤ i ≤ n and α ∈ Σ, we define the rank, select and access

queries on A as follows.

• rankα(i, A) returns the number of occurrences of α in

A[1 . . . i].

• selectα(i, A) returns the position j where A[j] is the i-th α in

A.

• access(i, A) returns A[i].

Then, the following data structures are known for supporting

the above queries.

Lemma 2 ([6]). Given a bit array B[1 . . . n] of size n, there exists

an n + o(n)-bit data structure which answers rankα, selectα for

α = {0, 1}, and access queries on B in O(1) time.

Lemma 3 ([3]). Given an array A[1 . . . n] over Σ = {0, 1, . . . , σ−
1} for any σ > 1, there exists an nH0 + o(n) · O(H0 + 1)-

bit data structure that answers rankα and access queries in

O(1 + log logσ) time and selectα queries in O(1) time on S , for

any α ∈ Σ, where H0 ≤ logσ is the order-0 entropy of A.

Range minimum and maximum queries. Let A[1 . . . , n] be an

array of size n over a totally ordered set. Then for 1 ≤ i ≤ j ≤ n,

we define the rmq, rMq queries on A as follows.

• rmq(A, i, j): returns the index m of A that attains the min-

imum value A[m] in A[i . . . j]. If there is a tie, returns the

leftmost one.

• rMq(A, i, j): returns the index m of A that attains the max-

imum value A[m] in A[i . . . j]. If there is a tie, returns the

3ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.4
2020/9/1

IPSJ SIG Technical Report

leftmost one.

Lemma 4 ([12]). Given an array A[1 . . . n] of size n over a to-

tally ordered set, there exists a 2n + o(n)-bit data structure which

answers rmq(A, i, j) queries in O(1) time.

Note that the above structure does not access A at query time.

Similarly, one can also obtain a 2n + o(n)-bit data structure sup-

porting range maximum queries in O(1) time.

3. Unified Lower and Upper Bounds

In this section, we give a unified representation of families of

intersection graphs of generalized polygons on a circle. We as-

sume that an arc is adjacent to only chords, otherwise we can

merge two consecutive arcs into one. Note that we define a single

chord (or an arc) as a polygon with two corners. Since there is no

restriction on the number of corners for each polygon, this graph

is a generalization of circle, k-polygon-circle and circle-trapezoid

graphs. We note that a circular-arc graph can be represented by

an intersection graph of generalized polygons with one arc and

one chord on a circle, because if a shape on a circle intersects the

chord, it always intersects the arc.

3.1 General Lower Bounds

We start with proving the Theorem 1.1. Suppose that the circle

polygon graph is given as a polygon circle representation with n

polygons on the circle. We will consider partially-colored circle

polygon graphs obtained from the following construction. Take

m ≤ n (to be determined) non-intersecting polygons A1, . . . , Am

and paint Ai with color i. Let the set of these m polygons be S .

For each of the remaining n − m polygons, we will choose a sub-

set of S , and for each such subset X we will construct a polygon

with |X| corners such that distinct corners lie on distinct poly-

gons from X. Note that each edge of such a polygon intersects

with exactly two colored polygons. This construction gives us a

polygon-circle graph with n vertices, where m of these vertices

are colored and they form an independent set. For 2 ≤ i ≤ k,

let ni and mi (≤ ni) be the number of all polygons and colored

polygons on the circle with i corners respectively, and let M be

the number of total corners on the colored polygons. From the

definition, it is clear that n =
∑k

i=2 ni, m =
∑k

i=2 mi, N =
∑k

i=2 i ·ni,

and M =
∑k

i=2 i · mi. Let m̄ = (m2,m3, . . . ,mk). Let us denote by

Cn,k,n̄,m̄ the number of such colored polygon-circle graphs, and by

Pn,k,n̄ the number of uncolored polygon-circle graphs.

We can first obtain an inequality
(

n2

m2

)(
n3

m3

)
. . .
(

nk
mk

)
· m! ·Pn,k,n̄ ≥

Cn,k,n̄,m̄ since every graph counted in Cn,k,n̄,m̄ can be obtained by

choosing and coloring mi polygons from ni polygons on its poly-

gon circle representation of uncolored one for each 2 ≤ i ≤ k.

Now we will find a lower bound for Cn,k,n̄,m̄, which in turn will

give a lower bound for Pn,k,n̄. Let us denote the collection of i-

subsets of S by S i. Hence |S i|=
(

m
i

)
. Also let S be a set of all

possible k-tuples (Y2, Y3, . . . ,Yk) where Yi is a (ni − mi)-subset of

S i. Then the total number of graphs obtained by the above con-

struction is at least |S|=
(

(m
2)

n2−m2

)(
(m

3)
n3−m3

)
. . .
(

(m
k)

nk−mk

)
by the following

observations:

(i) For any subset of S with cardinality
∑k

i=2(ni − mi) = n − m,

we get at least one graph. (We might get more as the relative

order of the corners of polygons within one colored polygon

matters.)

(ii) If T1 and T2 are subsets of S and T1 � T2, then no matter

how the corners of the polygons in T1 and T2 are chosen, the

graphs corresponding to these two subsets will be different.

Basically, in the graphs obtained from this construction, un-

colored n−m vertices are distinguishable by only looking at

their colored neighbors.

Now we obtain the lower bound of log Pn,k,n̄ as fol-

lows. From the above arguments, we obtain Cn,k,n̄,m̄ ≥(
(m

2)
n2−m2

)(
(m

3)
n3−m3

)
. . .
(

(m
k)

nk−mk

)
. Combining with the upper bound of

Cn,k,n̄,m̄, we obtain

log Pn,k,n̄ ≥
k∑

i=2

log

((m
i

)
ni − mi

)
−

k∑
i=2

log

(
ni

mi

)
− log m!.

We set m = n
log n . For each term of the right-hand side, the fol-

lowing inequalities hold by
(

a
b

)
≥ (a/b)b.

k∑
i =2

log

((m
i

)
ni − mi

)
≥

k∑
i=2

log

⎛⎜⎜⎜⎜⎜⎜⎝
(

m
i

)
ni − mi

⎞⎟⎟⎟⎟⎟⎟⎠
ni−mi

≥
k∑

i=2

ni · i log
n
i
−M log n−N log log n− n log n

k∑
i=2

log

(
ni

mi

)
≤

k∑
i=2

mi log n = m log n ≤ n

Therefore,

log Pn,k,n̄ ≥
k∑

i=2

ni · i log
n
i
−M log n− N log log n− n log n−O(n)

To satisfy M ≤ N/log n, we choose (and color) m polygons

as follows. For 1 ≤ j ≤ n, let dj be the number of corners of

j-th polygon in the representation. Without loss of generality,

we order the polygons to satisfy d1 ≤ d2 ≤ · · · ≤ dn. Now

we claim that M ≤ N/log n if we choose first m polygons to

be colored. To prove the claim, suppose dm+1 ≥ N/n. Then∑n
j=m+1 d j ≥ (n − m) · N/n = N(1 − 1/log n), which implies

M =
∑m

j=1 d j ≤ N/log n. Next, suppose dm+1 < N/n. In this

case, M ≤ N/n · m = N/log n, which proves the claim. Thus,

log Pn,k,n̄ ≥
∑k

i=2 ni · i log n
i − n log n − O(N log log n).

4ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.4
2020/9/1

IPSJ SIG Technical Report

Note that in our lower bound proofs we count only the number

of intersection graphs on a circle which has a point not contained

in any polygon, and therefore it also holds for interval and per-

mutation graphs.

3.2 A Succinct Representation

Now we provide a succinct representation for generalized cir-

cle polygon graph G with n generalized polygons on a circle. Let

N be the total number of corners of the polygons.

Note that the recognition algorithm of general k-polygon-circle

graphs, which is a sub-class of the generalized circle polygon

graphs, is NP-complete [20]. Thus we assume that G is given

as a polygon-circle representation with n polygons, which is de-

fined (for a graph G = (V, E)) as a mapping P of vertices in V to

polygons inscribed into a circle such that (u, v) ∈ E if and only if

P(u) intersects P(v).

Then, a corner-string of a polygon-circle representation is a

string produced by starting at any arbitrary location on the cir-

cle, and proceeding around the circle in clockwise order, adding

a label denoting the vertex represented by a polygon each time a

corner of a polygon encountered (denoted by the array S in Fig-

ure 1). Note that a single polygon-circle representation has many

possible corner-strings, depending on the starting point. As the

naive encoding of S uses N
⌈
log n
⌉

bits, it is not succinct, and does

not support efficient queries. Therefore we convert S into an-

other representation and add auxiliary data structures for efficient

queries. First, we convert S into a bit array F of length N and an-

other integer array S ′ of length N−n. The entry F[i] is 1 if S [i] is

the first occurrence of the value in S , and 0 otherwise. The array

S ′ stores all entries of S except for the first occurrence of each

value in the same order as in S . We store F using the data struc-

ture of Lemma 2, and S ′ using the data structure of Lemma 3.

Then the space becomes (N−n) log n+O(N log n/log log n)) bits,

which is succinct. Using F and S ′, we show how to support

access(i, S) and rankα(i, S) in O(log log n) time and selectα(i, S)

in O(1) time.

• access(i, S)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
rank1(i, F) (access(i, F) = 1)

access(rank0(i, F), S ′) (otherwise)

• rankα(i, S)

= rankα(rank0(i, F), S
′
) +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 (rank1(i, F) ≥ S [i])

0 (otherwise)

• selectα(i, S)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
select1(α, F) (i = 1)

select0(selectα(i − 1, S ′), F) (otherwise)

We can regard as if the array S were stored and access to S

were done in O(log log n) time. Therefore below we describe our

algorithms using S .

We prove the space bound of Theorem 1.2. We compress the

corner-string S , in which a character 2 ≤ i ≤ k appears ni times

in S . The length of S is N =
∑k

i=2 ni · i. For each character i, its

first occurrence in S is encoded in a bit-vector of length N. Other

characters are stored in a string S ′ of length N − n. Each charac-

ter i appears ni − 1 times in S ′. We compress S ′ into its order-0

entropy. Then the total space is

k∑
i =2

ni(i − 1) log
N − n
i − 1

+ O(N) ≤
k∑

i=2

ni(i − 1) log
nk
i/2
+ O(N)

≤
k∑

i=2

ni · i log
n
i
− n log n

+ O(N log k).

If k = o(log n/log log n), the lower bound of Theorem 1.1 is

log Pn,k,n̄ ≥
k∑

i=2

ni · i log
n
i
− n log n − O(N log log n)

≥
k∑

i=2

ni · i log
n
i
− n log n − o(n log n).

On the other hand, the upper bound is

k∑
i =2

ni · i log
n
i
− n log n + O(N log k)

≤
k∑

i=2

ni · i log
n
i
− n log n + o(n log n).

Therefore this upper bound matches the lower bound.

3.3 Query Algorithms

Our basic idea for queries is as follows. Consider a vertex u

in G. Assume the vertex u corresponds to a k-polygon, which is

represented by k many integers u in S . The polygon has k edges,

for i-th edge (1 ≤ i ≤ k − 1), we consider an interval of S be-

tween i-th occurrence of u and (i + 1)-st occurrence of u, that

is, [selectu(i, S), selectu(i+ 1, S)]. Let I(u, i) denote this interval.

For k-th edge, the interval becomes the union of [selectu(k, S),N]

and [1, selectu(1, S)].

Consider two polygons u and v. We check for each side e of

u if e intersects with a side f of v. Let I(u, i) = [�, r] be the in-

terval of e and I(v, j) = [s, t] be the interval of f . There are four

cases. (1) e is a chord and f is a chord. Then e and f intersect iff

[�, r] ∩ [s, t] � ∅, [s, t] � [�, r], and [�, r] � [s, t]. (2) e is an arc

and f is a chord. This case is the same as (1) in addition the case

when [s, t] ⊂ [�, r]. (3) e is a chord and f is an arc. This case is

the same as (1) in addition to the case when [�, r] ⊂ [s, t]. (4) e is

an arc and f is an arc. Then e and f intersect iff [�, r]∩ [s, t] � ∅.

5ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.4
2020/9/1

IPSJ SIG Technical Report

We add new data structures N, Na, Pa, Nc, Pc, and A defined as

follows. Let I(u, i) = [�i, ri] denote the i-th interval of S , defined

above, and du be the number of corners of u. Then A is a bit ar-

ray of length N where A[�i] = 1 if and only if [�i, ri] corresponds

to an arc of u. The arrays N, Na, Pa, Nc, and Pc are defined as

follows where u = S [i].

N[i] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
selectu(ranku(i, S) + 1, S) (if ranku(i, S) < du)

∞ (otherwise)

Na[i] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

selectu(ranku(i, S) + 1, S)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
if A[i] = 1 and

ranku(i, S) < du

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∞

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
if A[i] = 1 and

ranku(i, S) = du

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
0 (otherwise)

Pa[i] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

selectu(ranku(i, S) − 1, S)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

if the side ending at

S [i] is an arc and

ranku(i, S) > 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

if the side ending at

S [i] is an arc and

ranku(i, S) = 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∞ (otherwise)

Nc[i] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
selectu(ranku(i, S) + 1, S)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
if A[i] = 0 and

ranku(i, S) < du

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
0 (otherwise)

Pc[i] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

selectu(ranku(i, S) − 1, S)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

if the side ending at

S [i] is a chord and

ranku(i, S) > 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∞ (otherwise)

The array Na[i] (Nc[i]) stores the other endpoint of an arc (a

chord) starting from S [i]. The difference between Na and Nc is

that in Nc, we do not store the last side of a polygon. We do not

store these arrays explicitly; we store only the range maximum

data structures for N, Na and Nc, and the range minimum data

structure for Pa and Pc. We can obtain any entry of the arrays

in O(log log n) time using the above formula. This completes the

proof.

Lemma 5. If generalized polygons u and v intersect, there exists

a side e of u with interval [�, r] and a side f of v with interval

[s, t] satisfying at least one of the following.

(1) Both e and f are chords, neither e or f is the last side,

and (� < s < r and r < t(= Nc[s])) or (� < t < r and

1

2

3 4
5
6

7

8
9

Fig. 1: A circle-trapezoid graph with n = 3 given as polygon-

circle representation, and graph form. The array S encodes the

corner-string starting from the marked location s on the circle.

The arrays S ,Na, Pa,Nc, Pc are not stored; we store only F, S ′,

A, range max data structures for N,Na,Nc, and range min data

structures for Pa, Pc.

� > s(= Pc[t])).

(2) e is an arc and f is a chord, f is not the last side, and

� < t(= Na[s]) < r or � < s(= Pa[t]) < r.

(3) e is a chord and f is an arc, e is not the last side, and

s < r < t(= Na[s]) or s(= Pa[t]) < � < t.

(4) Both e and f are arcs, and s < r and � < t(= Na[s]).

Note that for an arc e that is the last side of u, the interval is

divided into two. We regard as if e is divided into two arcs and

apply the lemma to each of them.

Figure 1 shows an example of our representation. For an arc

of polygon 2 whose interval is [2, 4], polygons 3 intersect with

the chord because Nc[3] = 5 > 4. For a chord of polygon 3

whose interval is [6, 8], polygon 1 intersects with chords because

Pc[7] = 1 < 6 and Nc[7] = 9 > 8.

Using this idea, we obtain an algorithm for adjacent query.

adjacent(u, v) query: Consider the intervals I(u, 1),

I(u, 2), . . ., I(u, du) and I(v, 1), I(v, 2), . . ., I(v, dv). We scan these

intervals in the clockwise order on the circle, and for each end-

point of an interval, we check the condition of Lemma 5. For

each interval, checking this condition takes O(log log n) time, and

since we need to check at most du + dv intervals, the time com-

plexity is O(k log log n).

Next we consider neighborhood(u) query. For each side

(chord or arc) of u, we want to enumerate all generalized poly-

gons v satisfying the conditions of Lemma 5. For each chord e of

u, we can find all chords which intersects with u as follows. Let

[�, r] be the interval of e. First we obtain m = rMq(Nc, �, r). If

Nc[m] ≤ r, all entries of Nc in [�, r] are less than r, and there are

no polygons intersecting e. Therefore we stop enumeration. If

Nc[m] > r, the polygon S [m] intersects with u. To check if there

6ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.4
2020/9/1

IPSJ SIG Technical Report

is another such polygon, we recursively search for [�,m − 1] and

[m + 1, r]. The time complexity is O(d log log n) where d is the

number of entries m such that Nc[m] > r. We also process Pc

analogously.

For an arc e of u, we can enumerate all chords of the other gen-

eralized polygons which intersects with e is obtained by finding

all S [m] such that � < m < r. Such distinct m can be obtained

by finding all m such that (i) � < m < r, and (ii) � < Nc[m] or

Pc[m] < r using the range maximum data structure.

For a chord e of u, we can enumerate all arcs of other gener-

alized polygons which intersects with e is obtained by finding all

S [m] such that 1 ≤ m < r and Na[m] > r, or � < m ≤ N and

Pa[m] < �.

For an arc e of u, we can enumerate all arcs of other general-

ized polygons which intersects with e is obtained by finding all

S [m] such that 1 ≤ m < r and Na[m] > �, or � < m ≤ N and

Pa[m] < r.

neighborhood(u) query: For each interval I(u, i) = [�, r], we

output all polygons S [m] satisfying one of the above conditions.

However there may exist duplicates. To avoid outputting the same

polygon twice, we use a bit array D[1 . . . , n] to mark which poly-

gon is already output. The bit array is initialized by 0 when we

create the data structure. At a query process, before outputting

a polygon v, we check if D[v] = 1. If it is, v is already output

and we do not output again. If not, we output v and set D[v] = 1.

After processing all intervals of u, we have to clean D. To do so,

we run the same algorithm again. But this time we output noth-

ing and set D[v] = 0 for all v found by the algorithm. The time

complexity is O(|degree(v)|·k log log n) where k is the maximum

number of sides in each generalized polygon.

degree(v) query: The degree(v) can be answered by re-

turning the size of the output of the neighborhood(u) query,

in O(|degree(v)|·k log log n) time. Note that by adding an inte-

ger array of length n storing the degree of each vertex explicitly,

degree(v) can be supported in O(1) time. The whole data struc-

ture is still succinct if k = ω(1), but it is not if k = O(1).

Finally, we show how one can represent various classes of in-

tersection graphs by our representation. Generalized polygons in

each class are represented as follows.

• k-polygon-circle: set all A[i] = 0 for all i (all sides are

chords).

• circle-trapezoid: the number of sides is 4 and arcs and chords

appear alternately.

• trapezoid: we split a circle in half equally (upper and lower

part), and both upper and lower part have 2 corners. Now

arcs and chords appear alternately, from the arcs on the up-

per part.

• circle and permutation: the number of sides is 2 and all sides

are chords.

• circular-arc and interval: the number of sides is 2 and there

are an arc and a chord. Set all the entries of Nc to be 0 and

Pc to be ∞ so that the query algorithms do not output any

chord.

Note that for circle and trapezoid graphs, we have alternative

succinct representations which can answer degree(v) queries in-

dependent of |degree(v)|, but takes more time for the other two

queries compared to the representation of Theorem 1.2.

4. Conclusion Remarks

In this article we proved a unified space lower bound for several

classes of intersection graphs on a circle. Subsequently, we de-

signed succinct navigational oracles for these classes of graphs in

a uniform manner, along with efficient support for queries such

as degree, adjacency and neighborhood. We conclude with the

following an open problem: can we improve the query times of

our data structures, possibly to constant time?

References
[1] H. Acan, S. Chakraborty, S. Jo, and S. R. Satti. Succinct data struc-

tures for families of interval graphs. In WADS, volume 11646 of LNCS,
pages 1–13. Springer, 2019.

[2] L. C. Aleardi, O. Devillers, and G. Schaeffer. Succinct representations
of planar maps. Theor. Comput. Sci., 408(2-3):174–187, 2008.

[3] J. Barbay, F. Claude, T. Gagie, G. Navarro, and Y. Nekrich. Efficient
fully-compressed sequence representations. Algorithmica, 69(1):232–
268, 2014.

[4] F. Bazzaro and C. Gavoille. Localized and compact data-structure
for comparability graphs. Discrete Mathematics, 309(11):3465–3484,
2009.

[5] A. Bouchet. Characterizing and recognizing circle graphs. Graph the-
ory, Proc. 6th Yugosl. Semin., 1986.

[6] D. R. Clark and J. I Munro. Efficient suffix trees on secondary storage.
SODA ’96, pages 383–391, 1996.

[7] J. Enright and S. Kitaev. Polygon-circle and word-representable
graphs. Electronic Notes in Discrete Mathematics, 71:3–8, 2019.

[8] S. Even and A. Itai. Queues, stacks and graphs. Theory of Machines
and Computations, pages 71–86, 1971.

[9] A. Farzan and S. Kamali. Compact navigation and distance oracles for
graphs with small treewidth. Algorithmica, 69(1):92–116, 2014.

[10] A. Farzan and J. I. Munro. Succinct encoding of arbitrary graphs.
Theor. Comput. Sci., 513:38–52, 2013.

[11] S. Felsner, R. Müller, and L. Wernisch. Trapezoid graphs and gener-
alizations, geometry and algorithms. Discrete Applied Mathematics,
74(1):13–32, 1997.

[12] J. Fischer and V. Heun. Space-efficient preprocessing schemes for
range minimum queries on static arrays. SIAM J. Comput., 40(2):465–
492, 2011.

[13] C. Gavoille and C. Paul. Optimal distance labeling for interval graphs
and related graph families. SIAM J. Discrete Math., 22(3):1239–1258,
2008.

[14] M. C. Golumbic. Interval graphs and related topics. Discrete Mathe-
matics, 55(2):113–121, 1985.

[15] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Aca-
demic Press, 2004.

[16] M. Habib, R. M. McConnell, C. Paul, and L. Viennot. Lex-bfs and
partition refinement, with applications to transitive orientation, inter-
val graph recognition and consecutive ones testing. Theor. Comput.

7ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.4
2020/9/1

IPSJ SIG Technical Report

Sci., 234(1-2):59–84, 2000.

[17] G. Hajós. Über eine art von graphen. Int. Math. Nachr., 11:1607–1620,
1957.

[18] M. Koebe. On a new class of intersection graphs. Ann. Discrete Math-
ematics, pages 141–143, 1992.

[19] Y. Koh and S. Ree. Connected permutation graphs. Discrete Mathe-
matics, 307(21):2628–2635, 2007.

[20] J. Kratochvı́l and M. Pergel. Two results on intersection graphs of
polygons. In GD, pages 59–70, 2003.

[21] T. A. McKee and F. R. McMorris. Topics in Intersection Graph The-
ory. SIAM Monographs on Discrete Mathematics and Applications,
1999.

[22] J. I. Munro and V. Raman. Succinct representation of balanced paren-
theses and static trees. SIAM J. Comput., 31(3):762–776, 2001.

[23] J. I. Munro and K. Wu. Succinct data structures for chordal graphs. In
ISAAC, pages 67:1–67:12, 2018.

[24] G. Navarro. Compact Data Structures - A Practical Approach. Cam-
bridge University Press, 2016.

[25] M. Pergel. Recognition of polygon-circle graphs and graphs of interval
filaments is NP-complete. In WG, pages 238–247, 2007.

[26] J. P. Spinrad. Efficient graph representations, volume 19 of Fields In-
stitute monographs. American Mathematical Society, 2003.

8ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-179 No.4
2020/9/1

