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Abstract: Neural machine translation (NMT) is a deep learning based approach for machine translation, which out-
performs traditional statistical machine translation (SMT) and yields the state-of-the-art translation performance in
scenarios where large-scale parallel corpora are available. Although a high-quality and domain-specific translation is
crucial in the real world, domain-specific corpora are usually scarce or nonexistent, and thus vanilla NMT performs
poorly in such scenarios. Domain adaptation that leverages both out-of-domain parallel corpora as well as mono-
lingual corpora for in-domain translation, is very important for domain-specific translation. In this paper, we give a
comprehensive survey of the state-of-the-art domain adaptation techniques for MT. Because of the current dominance
of NMT in MT research, we give a brief review of domain adaptation for SMT, but put most of our effort into the
survey of domain adaptation for NMT. We hope that this paper will be both a starting point and a source of new ideas
for researchers and engineers who are interested in domain adaptation for MT.
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1. Introduction

Neural machine translation (NMT) [5], [16], [117] allows for
end-to-end training of a translation system without the need to
deal with explicit word alignments, translation rules, and com-
plicated decoding algorithms, which are characteristics of tradi-
tional statistical machine translation (SMT) systems [72]. NMT
yields a state-of-the-art translation performance in resource rich
scenarios [41], [91]. However, currently, high quality parallel cor-
pora of sufficient size are only available for a few language pairs
such as the languages paired with English and other widely-used
European language pairs. Furthermore, for each language pair
the sizes of the domain specific corpora and the number of do-
mains available are limited. As such, for the majority of lan-
guage pairs and domains, only few or no parallel corpora are
available. It has been known that both vanilla SMT and NMT
perform poorly for domain specific translation in low resource
scenarios [33], [73], [108], [149].

High quality domain specific machine translation (MT) sys-
tems are in high demand whereas general purpose MT has lim-
ited applications. In addition, general purpose translation sys-
tems usually perform poorly and hence it is important to develop
translation systems for specific domains [73]. Leveraging out-
of-domain parallel corpora and in-domain monolingual corpora
to improve in-domain translation is known as domain adaptation
for MT [22]. For example, the Chinese-English patent domain
parallel corpus has 1M sentence pairs [45], but for the spoken
language domain parallel corpus there are only 200 k sentences
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available [12]. MT typically performs poorly in a resource poor
or domain mismatching scenario and thus it is important to lever-
age the spoken language domain data with the patent domain
data [20]. Furthermore, there are monolingual corpora contain-
ing millions of sentences for the spoken language domain, which
can also be leveraged [106].

There are many studies of domain adaptation for SMT, which
can be mainly divided into two categories: data centric and model
centric. Data centric methods focus on either selecting training
data from out-of-domain parallel corpora based on a language
model (LM) [4], [14], [33], [34], [52], [90] or generating pseudo
parallel data [17], [84], [123], [131], [132]. Model centric meth-
ods interpolate in-domain and out-of-domain models in either a
model level [34], [55], [108] or an instance level [42], [85], [103],
[110], [148]. However, due to the different characteristics of SMT
and NMT, many methods developed for SMT cannot be applied
to NMT directly.

Domain adaptation for NMT is rather new and has attracted
plenty of attention in the research community. In the past four
years, NMT has become the most popular MT approach and
many domain adaptation techniques have been proposed and
evaluated for NMT. These studies either borrow ideas from pre-
vious SMT studies and apply these ideas for NMT, or develop
unique methods for NMT. Despite the rapid development in do-
main adaptation for NMT, there lacks a single up-to-date compi-
lation that summarizes and categorizes all approaches. As such a
study will greatly benefit the community, we present in this paper
a survey of all prominent domain adaptation techniques for NMT.
There are survey papers for NMT [70], [92]; however, they fo-
cus on general NMT and more diverse topics. Domain adaptation
surveys have been done in the perspective of computer vision [23]
and machine learning [96], [136].

In this paper, similar to SMT, we categorize domain adapta-
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Fig. 1 Overview of domain adaptation for NMT.

tion for NMT into two main categories: data centric and model
centric. The data centric category focuses on the data being
used rather than specialized models for domain adaptation. The
data used can be either in-domain monolingual corpora [15], [24],
[30], [47], [144], synthetic corpora [36], [53], [94], [97], [106],
[107], [144], [147], or parallel corpora [10], [20], [29], [48], [69],
[80], [89], [101], [102], [104], [118], [124], [128]. On the other
hand, the model centric category focuses on NMT models that are
specialized for domain adaptation, which can be either the train-
ing objective [13], [20], [27], [28], [44], [64], [65], [67], [71],
[77], [81], [86], [106], [109], [113], [119], [120], [125], [130],
[134], [140], [141], [145], [146], the NMT architecture [10], [19],
[31], [32], [46], [47], [59], [68], [87], [100], [115], [135], [137],
[142] or the decoding algorithm [28], [32], [47], [66], [98]. An
overview of these two categories is shown in Fig. 1. Note that
as model centric methods also use either monolingual or parallel
corpora, there are overlaps between these two categories.

We previously conduct a survey of domain adaptation for
NMT [22] in about two years ago. However, due to the rapid
development of this field, the state-of-the-art NMT model and re-
search trends have changed, and many newly appeared studies
are not covered in our previous survey. This paper extends our
previous survey paper [22] as follows:
• We update the formulation of NMT by adding the state-of-

the-art Transformer based model [126]. In addition, we for-
mulate and optimize the categorization of training objective
centric approaches.

• We add and categorize dozens of new studies appearing after
our previous survey. We also newly discuss incremental do-
main adaptation, multilingual, and multi-domain adaptation
as specific scenarios.

• We introduce datasets and resources that are useful for NMT
domain adaptation studies. In addition, we update future di-
rections of domain adaptation for NMT considering the new
trend after our previous survey.

These extension and updates make our paper more comprehen-
sive, and up-to-date.

The remainder of this paper is structured as follows: We first
give a brief introduction of NMT, and describe the reason for the
difficulty of low resource domains and languages in NMT (Sec-

tion 2); Next, we introduce the background of domain adaptation
and briefly review the historical domain adaptation techniques
being developed for SMT (Section 3); Under this background
knowledge, we then present and compare the domain adaptation
methods for NMT in detail (Section 4); After that, we introduce
domain adaptation for NMT in specific scenarios that are crucial
for the practical use of MT (Section 5) and the commonly used
datasets and resources in research (Section 6); Finally, we give
our opinions of future research directions in this field (Section 7)
and conclude this paper (Section 8).

2. Neural Machine Translation

NMT is an end-to-end approach for translating from one lan-
guage to another, which relies on deep learning to train a trans-
lation model [5], [16], [117]. NMT takes in an input sentence
x = {x1, ..., xn} and its translation y = {y1, ..., ym}. The translation
is generated as:

p(y|x; θ) =
m∏

j=1

p(y j|y< j, x; θ),

where θ is a set of parameters, m is the entire number of words
in y, y j is the current predicted word, and y< j are the previously
predicted words. Suppose we have a parallel corpus C consisting
of a set of parallel sentence pairs (x, y). The training object is to
maximize the log-likelihood L w.r.t θ:

Lθ =
∑

(x,y)∈C
log p(y|x; θ). (1)

RNN based Model The encoder-decoder model with atten-
tion [5] is the most commonly used NMT architecture. Figure 2
shows an overview of this model. It consists of three main parts,
namely, the encoder, decoder and attention model. The encoder
uses an embedding mechanism to convert words into their contin-
uous space representations. These embeddings by themselves do
not contain information about relationships between words and
their positions in the sentence. Using a recurrent neural net-
work (RNN) layer such as gated recurrent unit and long short-
term memory, this can be accomplished. An RNN maintains a
hidden state (also called a memory or history), which allows it
to generate a continuous space representation for a word given
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Fig. 2 The architecture of the RNN based NMT system with attention.

all past words that have been seen. There are two RNN layers
which encode forward and backward information. Each word xi

is represented by concatenating the forward hidden state
−→
hi and

the backward one
←−
hi as hi = [

−→
hi;
←−
hi]. In this way, the source sen-

tence x = {x1, ..., xn} can be represented as h = {h1, ..., hn}. By
using both forward and backward recurrent information, one ob-
tains a continuous space representation for a word given all words
before as well as after it.

The decoder is conceptually an RNN language model
(RNNLM) with its own embedding mechanism, an RNN layer
to remember previously generated words and a softmax layer to
predict a target word. The encoder and decoder are coupled by us-
ing an attention mechanism, which computes a weighted average
vector of the recurrent representations generated by the encoder
thereby acting as a soft alignment mechanism. This weighted av-
eraged vector, also known as the context or attention vector, is
fed to the decoder RNN along with the previously predicted word
to produce a representation that is passed to the softmax layer to
predict the next word. In equation, an RNN hidden state sj for
time j of the decoder is computed by:

sj = g(sj−1, yj−1, cj),

where g is an activation function of RNN, sj−1 is the previous
RNN hidden state, yj−1 is the embedding of the previous word,
cj is the context vector. cj is computed as a weighted sum of the
encoder hidden states h = {h1, ..., hn}, by using alignment weight
a ji:

cj =

n∑

i=1

a jihi, (2)

where

a ji =
exp(e ji)∑n

k=1 exp(e jk)
,

e ji = align(sj−1,hi),

where align is an alignment model that scores the match level of
the inputs around position i and the output at position j. The soft-
max layer contains a feedforward layer f . The feedforward layer
takes the recurrent hidden state generated by the decoder RNN,
the previous word and the context vector to compute a final rep-
resentation, which is fed to the softmax layer:

Fig. 3 The architecture of the Transformer based NMT system with self-
attention.

P(y j|y< j, x) = softmax( f (sj, yj−1, cj)). (3)

Transformer based Model relies on self-attention networks
(SANs), and has become the dominant model in the MT commu-
nity. SANs are neural networks with no recurrent or convolution
operations, and fully reliant on a self-attention mechanism [126]
to learn the source representation for the NMT as shown in Fig. 3.
Specifically, the H0 for source input is first packed into a query
matrix Q0, a key matrix K0, and a value matrix V0. The multi-
head self-attention is performed over the Q0, K0, and V0:

MultiHead(Q0,K0,V0) = Concat(Q1
1 : · · · : Q1

H)WO,

Q1
h = softmax

⎛⎜⎜⎜⎜⎜⎜⎝
Q0

hK0
h

T

√
dmodel

⎞⎟⎟⎟⎟⎟⎟⎠V0
h,

Q0
h,K

0
h,V

0
h = Q0WQ

h ,K
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h ,

where Q0
h, K0

h, and K0
h are respective the query, key, and value

matrices of the h-th head. {WQ
h ,W

K
h ,W

V
h } ∈ Rdmodel×dk denote pa-

rameter matrices, dmodel and dk represent the dimensions of the
model and the head. For example, if there are H=8 heads and
dmodel is 512, dk=512/8=64. A position-wise feedforward neural
network (FFNN), which is a fully connected network with ReLU
activation function, is then applied to each position separately and
identically:

Q1 = FFNN(MultiHead(Q0,K0,V0)) + Q0,
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where Q1 is the source representation with global feature infor-
mation.

Similarly, this processing sequence is formally denoted as the
function fSANs to learn the source representation Q1:

Q1 = fSANs(Q0,K0,V0).

According to Vaswani [126]’s work, SANs use a stack of N-
identical layers to learn the source representation:

[
Qn = f n

SANs(Q
n−1,Kn−1,Vn−1)

]
N
,

where [· · · ]N denotes a stack of N-identical layers for the en-
coder; and n takes each of the values {1, 2, · · · ,N} in turn. As
a result, the output QN of the N-th SANs layer is the final source
representation to be fed into the decoder to learn a translation
context vector for predicting the target word.

An abundance of parallel corpora are required to train an NMT
system to avoid overfitting, due to the large amounts of parame-
ters in the encoder, decoder, attention model, and SANs. This is
the main bottleneck of NMT for low resource domains and lan-
guages.

3. Domain Adaptation

Transfer learning is a research problem in machine learning
that focuses on solving one problem and applying it to a different
but related problem. Specifically, transfer learning is using source
domain Ds and source task Ts to improve the effect of target do-
main Dt and target task Tt [95], [121]. The information of Ds and
Ts is transferred to Dt and Tt. Domain adaptation can be consid-
ered as a type of isomorphic transfer learning where Ts = Tt.

3.1 Domain Adaptation for NLP and MT
Domain adaptation is an important problem in natural language

processing (NLP) due to the lack of labeled data in novel do-
mains [60]. As Jiang et al. [60] mentioned, the domain adapta-
tion problem is commonly encountered in NLP. For example, in
part-of-speech tagging, the source domain may be tagged WSJ
articles, and the target domain may be scientific literature that
contains scientific terminology. In named entity recognition, the
source domain may be annotated news articles, and the target do-
main may be personal blogs.

Most of the NLP tasks only have a vocabulary with limited
size, such as most tagging tasks and classification tasks. In com-
parison, MT is a classic language generation task and its vocab-
ulary is quite large. Typically, the vocabulary usually contains
30 k∼50 k words or sub-words. Therefore, the domain adaptation
problem in MT is also more complicated than other NLP tasks.

Formally, given a small in-domain parallel corpus Cin, the
problem of domain adaptation for MT is how to improve in-
domain translation using either large out-of-domain parallel cor-
pora Cout or monolingual in-domain corpora Min. Note that Min

can be either in the source or target language.

3.2 Domain Adaptation for SMT
In SMT, many domain adaptation methods have been proposed

to overcome the problem of the lack of substantial data in specific

domains and languages. Most SMT domain adaptation methods
can be broken down broadly into two main categories.
Data Centric This category focuses on selecting or generating
the domain-related data using existing in-domain data.

i) When there are sufficient parallel corpora from other do-
mains, the main idea is to score the out-domain data using mod-
els trained from the in-domain and out-of-domain data and select
training data from the out-of-domain data using a cut-off thresh-
old on the resulting scores. LMs [4], [33], [90], as well as joint
models [34], [52], and more recently convolutional neural net-
work (CNN) models [14] can be used to score sentences.

ii) When there are not enough parallel corpora, there are also
studies that generate pseudo-parallel sentences using informa-
tion retrieval [123], self-enhancing [75] or parallel word embed-
dings [84]. Besides sentence generation, there are also stud-
ies that generate monolingual n-grams [131] and parallel phrase
pairs [17], [132].

Most of the data centric-based methods in SMT can be directly
applied to NMT. However, most of these methods adopt the cri-
teria of data selection or generation that are not related to NMT.
Therefore, these methods can only achieve modest improvements
in NMT [128].
Model Centric This category focuses on interpolating the models
from different domains.

i) Model level interpolation. Several SMT models, such as
LMs, translation models, and reordering models, individually
corresponding to each corpus, are trained. These models are then
combined to achieve the best performance [9], [34], [43], [55],
[93], [108].

ii) Instance level interpolation. Instance weighting has been
applied to several NLP domain adaptation tasks [60], especially
SMT [42], [83], [85], [111], [148]. They firstly score each sen-
tence pair/domain by using rules or statistical methods as a
weight, and then train SMT models by giving each sentence
pair/domain the weight. An alternative way is to weight the cor-
pora by data re-sampling [103], [110].

For NMT, several methods have been proposed to interpolate
model/data as SMT does. For model-level interpolation, the most
related NMT technique is model ensemble [58]. For instance-
level interpolation, the most related method is to assign a weight
in NMT objective function [13], [130]. However, the model struc-
tures of SMT and NMT are quite different. SMT is a combination
of several independent models; in comparison, NMT is an end-
to-end model itself. Therefore, most of these methods cannot be
directly applied to NMT.

4. Domain Adaptation for NMT

4.1 Data Centric
4.1.1 Using Monolingual Corpora Directly

Unlike SMT, in-domain monolingual data cannot be used as
an LM for conventional NMT directly, and many studies have
been conducted for this. Gülçehre et al. [47] train an RNNLM
on monolingual data, and fuse the RNNLM and NMT models.
Currey et al. [24] copy the target monolingual data to the source
side and use the copied data for training NMT. Domhan and
Hieber [30] propose using target monolingual data for the decoder
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Fig. 4 Synthetic data generation for NMT.

with LM and NMT multitask learning. Zhang and Zong [144] use
source side monolingual data to strengthen the NMT encoder via
multitask learning for predicting both translation and reordered
source sentences. Cheng et al. [15] use both source and target
monolingual data for NMT through reconstructing the monolin-
gual data by using NMT as an autoencoder.
4.1.2 Synthetic Parallel Corpora Generation

As NMT itself has the ability of learning LMs, target mono-
lingual data also can be used for the NMT system to strengthen
the decoder after back translating target sentences to generate
a synthetic parallel corpus [106]. The method of back transla-
tion is crucial, and it has been investigated that back translation
via sampling or noised beam outputs performs better than pure
beam search [36]. It has also been shown that synthetic data gen-
eration is very effective for domain adaptation using either the
target side monolingual data [107], the source side monolingual
data [144], or both [94], [97]. Different from studies that generate
a synthetic parallel corpus by MT systems, Hu et al. [53] per-
form lexicon induction to first obtain an in-domain lexicon and
then use the lexicon to generate a synthetic parallel corpus via
word-to-word translation. They show that their method is effec-
tive for in-domain unseen word translation. Zheng et al. [147] use
clear and noisy tags appending to the target sentences to generate
social-media-style synthetic sentences for the robust translation
task [88]. Figure 4 summarizes the synthetic data generation ap-
proach for NMT.
4.1.3 Using Out-of-Domain Parallel Corpora

With both in-domain and out-of-domain parallel corpora, it is
ideal to train a mixed domain MT system that can improve in-
domain translation while do not decrease the quality of out-of-
domain translation. We categorize these efforts as multi-domain

methods, which have been successfully developed for NMT. In
addition, the idea of data selection from SMT also have been de-
veloped for NMT.
Multi-Domain The multi-domain method in Chu et al. [20] is
originally motivated by Sennrich et al. [105], which uses tags to
control the politeness of NMT. The overview of this method is
shown in the dotted section in Fig. 7. In this method, the corpora
of multiple domains are concatenated with two small modifica-
tions:
• Appending the domain tag “<2domain>” to the source sen-

tences of the respective corpora. This primes the NMT de-
coder to generate sentences for the specific domain.

• Oversampling the smaller corpus so that the training proce-
dure pays equal attention to each domain.

Kocmi et al. [69] show that simple concatenation of out-of-
domain and in-domain data can be harmful for in-domain trans-
lation. Luo et al. [80] apply the multi-domain method to translate
financial listing documents. Mino et al. [89] use the multi-domain
method for the newswire Japanese-English task at WAT 2019.
Sajjad et al. [104] further compare different methods for training a
multi-domain system. In particular, they compare concatenation

that simply concatenates the multi-domain corpora, staking that
iteratively trains the NMT system on each domain corpus, selec-

tion that selects a set of out-of-domain data which is close to the
in-domain data, and ensemble that ensembles the multiple NMT
models trained independently. They find that fine tuning the con-
catenation system on in-domain data shows the best performance.
Britz et al. [10] compare the multi-domain method with a discrim-
inative method (see Section 4.2.2 for details). They show that
the discriminative method performs better than the multi-domain

method. Tars and Fishel [118] further study the multi-domain

method on the setting that the domains are unknown, which auto-
matically clusters parallel sentences into different domains during
training and testing. He et al. [48] go to the same direction that
treat domains as latent variables, which are learned via optimiz-
ing the marginal log-likelihood.
Data Selection As mentioned in the SMT section (Section 3.2),
the data selection methods in SMT can improve NMT perfor-
mance modestly, because their criteria of data selection are not
very related to NMT [128]. To address this problem, Wang
et al. [128] exploit the internal embedding of the source sentence
in NMT, and use the sentence embedding similarity to select the
sentences that are close to in-domain data from out-of-domain
data (Fig. 5). Van der Wees et al. [124] propose a dynamic data
selection method, in which they change the selected subset of
training data among different training epochs for NMT. They
show that gradually decreasing the training data based on the in-
domain similarity gives the best performance. Ding et al. [29] la-
bel sentences with domain information, and then select sentences
based on the labels. Poncelas et al. [101], [102] use a feature de-
cay algorithm that selects sentences most relevant to the source
sentences in the test set. They show that the translation perfor-
mance on the selected subset outperforms that on the full training
corpus.

Although all the data centric methods for NMT are comple-
mentary to each other in principle, there are few studies that try
to combine these methods, which could be further studied.

4.2 Model Centric
4.2.1 Training Objective Centric

The methods in this section change the training functions or
procedures for obtaining an optimal in-domain training objective.
Instance/Cost Weighting The main challenge for instance
weighting in NMT is that NMT is not a linear model or a combi-
nation of linear models, which means the instance weight cannot
be integrated into NMT directly. Instead, we have to change the
training object in Eq. (1) as:

Lθ =
∑

(x,y)∈Cin

log λin p(y|x; θ) +
∑

(x′ ,y′)∈Cout

log p(y′|x′; θ),

where Cin and Cout denote the in-domain and out-of-domain cor-
pora, respectively, λin is the in-domain instance weight. Wang
et al. [130] set an in-domain weight for the objective function,
and this weight is learned from the cross-entropy by an in-domain
LM and an out-of-domain LM [4] (Fig. 6). The in-domain weight
can be set in either instance, corpus or batch level. Zhang and
Xiong [145] learn the similarity of a sentence to the in-domain
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Fig. 5 Data selection for NMT [128].

Fig. 6 Instance weighting for NMT [130].

Fig. 7 Mixed fine tuning with domain tags for domain adaptation [20]. The section in the dotted rectangle
denotes the multi-domain method.

corpus and use the similarity for the objective function. Yan
et al. [140] further compute the word weights in out-of-domain
datasets based on an in-domain LM and an out-of-domain LM,
which gives higher weights to in-domain words. Instead of in-
stance weighting, Chen et al. [13] modify the NMT cost function
with a domain classifier. The output probability of the domain
classifier is transferred into the domain weight. This classifier is
trained using development data. Wang et al. [129] propose a joint
framework of sentence selection and weighting for NMT.
Fine Tuning Fine tuning is the conventional way for domain
adaptation [44], [81], [106], [109]. In this method, an NMT sys-
tem on a resource rich out-of-domain corpus is trained until con-
vergence with the training objective:

Lθout =
∑

(x′ ,y′)∈Cout

log p(y′|x′; θout),

and then its parameters θout are used for initializing θin during
in-domain training and fine tuned on a resource poor in-domain
corpus as:

Lθin =
∑

(x,y)∈Cin

log p(y|x; θin),

Conventionally, fine tuning is applied on in-domain parallel cor-
pora. Varga et al. [125] apply it on parallel sentences extracted
from comparable corpora. Comparable corpora have been widely
used for SMT by extracting parallel data from them [17]. Khan
et al. [65] study a setting that there are multiple in-domain data,
and fine tune the model on the multiple in-domain data in order.
Thompson et al. [120] study the effect of the encoder, decoder,

word embedding, and softmax components by freezing them in-
dividually during fine tuning, and find that any single component
has little impact on the performance. Vilar [127] applies learning
hidden unit contribution to amplify the contribution of the hid-
den states during fine tuning. Li et al. [77] split the parameters
into model and meta ones, and only update the meta parameters
during fine tuning for fast domain adaptation.
Prevent Overfitting. Due to the small-scale of in-domain data, fine
tuning tends to overfit very quickly. Chu et al. [20] propose mixed
fine tuning to address this problem, which is a combination of the
multi-domain and fine tuning methods (Fig. 7). The training pro-
cedure is as follows:
( 1 ) Train an NMT model on out-of-domain data until conver-

gence.
( 2 ) Resume training the NMT model from step 1 on a mix of

in-domain and out-of-domain data (by oversampling the in-
domain data) until convergence.

Chu et al. [20] show that mixed fine tuning works better than both
multi-domain and pure fine tuning. In addition, mixed fine tun-
ing has a similar effect as the ensembling method in Dakw and
Monz [28], which does not decrease the out-of-domain transla-
tion performance. Kawara et al. [64] and Dabre et al. [27] ap-
ply the mixed fine tuning method for the low resource Myanmar-
English translation task at WAT 2018. Sostaric et al. [113] apply
mixed fine tuning on a low resource language pair of English-
Croatian. Barone et al. [86] address this problem by exploring
regularization techniques such as dropout and L2-regularization.
In addition, they also propose tuneout that is a variant of dropout
for regularization. Unlike dropout that drops columns of the
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weight matrices and sets them to zero, tuneout sets them to the
corresponding out-of-domain parameter columns. We think that
mixed fine tuning and regularization techniques are complemen-
tary to each other.
Prevent Out-of-domain Degradation. As fine tuning is applied on
the in-domain data, it tends to decrease the out-of-domain per-
formance. To prevent degradation of out-of-domain translation
after fine tuning on in-domain data, several studies have been
conducted. Dakwale and Monz [28] propose an extension of fine
tuning that keeps the distribution of the out-of-domain model
based on knowledge distillation [50]. Zeng et al. [141] further
use knowledge distillation in a bi-directional (both out-of-domain
to in-domain, and in-domain to out-of-domain) way iteratively.
Khayrallah et al. [67] add an additional term that minimizes the
cross-entropy between the in-domain and out-of-domain’s out-
put word distribution to the NMT training objective. Thompson
et al. [119] adapt elastic weight consolidation aiming to learn a
new task without forgetting previous tasks.
Curriculum Learning. Fine tuning can also be applied on the sen-
tences selected from out-of-domain data by data selection, which
are relevant to in-domain data and thus can boost the perfor-
mance [71]. Wang et al. [134] use small trusted data to mea-
sure noise in selected sentences and sort sentences by their noise
level, making fine tuning perform on gradually noise-reduced
data batches. Zhang et al. [146] apply curriculum learning in this
direction in that they use the similarity scores given by data se-
lection to rearrange the order of the selected sentences, making
sentences more similar to in-domain data being seen earlier and
used more frequently during fine tuning.
4.2.2 Architecture Centric

The methods in this section change the NMT architecture for
domain adaptation.
Deep Fusion One technique of adaptation with in-domain mono-
lingual data is to train an in-domain RNNLM for the NMT
decoder and combine it (also known as fusion) with an NMT
model [47]. Fusion can either be shallow or deep. Formally,
deep fusion indicates that the LM and NMT are integrated as a
single decoder (i.e., integrating the RNNLM into the NMT ar-
chitecture). Shallow fusion indicates that the scores of the LM
and NMT are considered together (i.e., rescoring the NMT model
with the RNNLM model, and more details are presented in Sec-
tion 4.2.3).

In deep fusion, the RNNLM and the decoder of the NMT are
integrated by concatenating their hidden states. When computing
the output probability of the next word, the model is fine tuned
to use the hidden states of both the RNNLM and NMT models.
With the RNN based NMT output probability Eq. (3), deep fusion
can be formulated as follows:

P(y j|y< j, x) = softmax( f (sMT
j , s

LM
j , yj−1, cj)),

where sMT
j and sLM

j are the hidden states for NMT and RNNLM,
respectively. Domhan and Hieber [30] propose a method sim-
ilar to the deep fusion method [47]. However, unlike train-
ing the RNNLM and NMT model separately [47], Domhan
and Hieber [30] train RNNLM and NMT models jointly. Dou
et al. [32] improves the deep fusion method by using both an in-

Fig. 8 Domain discriminator [10].

domain and out-of-domain LMs to simulate the difference be-
tween in-domain and out-of-domain NMT.
Domain Discriminator To leverage the diversity of information
in multi-domain corpora, Britz et al. [10] propose a discrimina-
tive method. In their discriminative method, they add an FFNN
as a discriminator on top of the encoder that uses the sum of con-
text vector at each position in Eq. (2) to predict the domain of the
source sentence, namely:

c =
m∑

j=1

cj,

p(d|c) = g(c),

where d is domain class label, and g is an FFNN. The discrimina-
tor is optimized jointly with the NMT network. Figure 8 shows
an overview of this method.

Zeng et al. [142] propose to discriminate word-level domain-
specific and domain-shared context for improving multi-domain
NMT. Word-level domain-specific and domain-shared context
are learned from source sentences in the encoder with domain
classifiers and then used for decoding. In addition, a domain
classifier on the decoder side is learned to weight words dur-
ing decoding. Su et al. [115] extend the work of Ref. [142] by
using a source-side context gate to better incorporate domain-
specific and domain-shared context, and they also experiment
on the Transformer. Pham et al. [100] assign domain-shared
and domain-specific dimensions in the word embeddings to dis-
criminate word-level domain context. Chu and Dabre [19] learn
domain-shared and domain-specific decoder hidden state repre-
sentations for multi-domain NMT. Wu et al. [137] mimic the at-
tention mechanism in RNN based NMT for soft domain adap-
tation, which learns domain context by calculating attention
scores on multiple domain representations. Gu et al. [46] fur-
ther use multiple encoders and decoders for domain-specific and
domain-shared translations. Dou et al. [31] design a network to
learn domain- and task-specific embeddings via training language
modeling and NMT on in- and out-of-domain monolingual data
and out-of-domain parallel data sequentially. Wang et al. [135]
propose a domain transformation network to transform general
embeddings to domain-specific embeddings. The network is su-
pervised by domain distillation that is guided by domain teach-
ers, and domain discrimination that distinguishes general and
domain-specific embeddings.
Domain Control Besides using domain tokens to control the do-
mains, Kobus et al. [68] propose to append word-level features
to the embedding layer of NMT to control the domains. In par-
ticular, they append a domain tag to each word. They also pro-
pose a term frequency - inverse document frequency (tf-idf) based
method to predict the domain tag for input sentences. Jehl and
Riezler [59] extend the work of Kobus et al. [68] in that instead
of domain tokens, they propose to use document categories for
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Fig. 9 LM shallow fusion [47].

patent translation. Michel and Neubig [87] propose to add a bias
vector to the softmax layer in Eq. (3) to control the domain as:

P(y j|y< j, x) = softmax( f (sj, yj−1, cj) + b),

where b is a bias vector. They experiment their method on a per-
sonalized domain adaptation setting that adapts for speakers in
the TED talks.
4.2.3 Decoding Centric

Different from architecture centric methods that changes the
entire NMT architecture, decoding centric methods focus on the
decoding algorithm for domain adaptation, which are essentially
complementary to the other model centric methods.
Shallow Fusion Shallow fusion is an approach where LMs are
trained on large monolingual corpora, following which they are
combined with a previously trained NMT model [47]. In the shal-
low fusion [47], the next word hypotheses generated by an NMT
model is rescored by the weighted sum of the NMT and RNNLM
probabilities (see Fig. 9) as:

p(y j = k) = pMT (y j = k) + λpLM(y j = k),

where k is a candidate target word being output at y j, and λ is
the weight to be tuned. Dou et al. [32] also improves this shallow
fusion method by using both in-domain and out-of-domain LMs.
Ensembling Freitag and Al-Onaizan [44] propose to ensemble
the out-of-domain and the fine tuned in-domain models as:

p(y j = k) = ens(pin(y j = k), pout(y j = k)),

where ens is a ensemble function that usually uses either a ma-
jority voting or consensus building scheme, pin and pout are the
output probabilities for the in-domain and out-of-domain models,
respectively. Their motivation is exactly the same as the work of
Dakwale and Monz [28], which is preventing degradation of out-
of-domain translation after fine tuning on in-domain data. Peng
et al. [98] apply ensembling for the biomedical translation task at
WMT 2019.
Neural Lattice Search Khayrallah et al. [66] propose a stack-
based decoding algorithm over word lattices, while the lattices are
generated by SMT [35]. In their domain adaptation experiments,
they show that stack-based decoding is better than conventional
decoding.

5. Domain Adaptation in Specific Scenarios

A domain adaptation method should be adopted according to
certain scenarios. For example, when there are some pseudo par-
allel in-domain data in the out-of-domain data, sentence selec-
tion is preferred; when only additional monolingual data is avail-
able, LM and NMT fusion can be adopted. In many cases, both
out-of-domain parallel data and monolingual in-domain data are
available, making the combination of different methods possible.

Fig. 10 Domain adaptation in an input domain unknown scenario.

Chu et al. [21] conduct a study that applies mixed fine tuning [20]
on synthetic parallel data [106], which shows better performance
than either method. Therefore, we do not recommend any partic-
ular techniques in this paper but recommend readers to choose the
best method for their own scenarios. In addition, in this section
we discuss three specific scenarios, which have not been covered
in Section 4.

5.1 Input Domain Unknown
Most of the above domain adaptation studies assume that the

domain of the data is given. However, in a practical view such
as an online translation engine, the domain of the sentences in-
put by the users are not given. For such a scenario, predicting
the domains of the input sentences is crucial for good translation.
To address this problem, a common method in SMT is to firstly
classify the domains and then translate input sentences in clas-
sified domains using corresponding models [54]. Xu et al. [139]
perform domain classification for a Chinese-English translation
task. The classifiers operate on whole documents rather than on
individual sentences, using LM interpolation and vocabulary sim-
ilarities. Huck et al. [54] extend the work of Xu et al. [139] on
the sentence level. They use LMs and maximum entropy classi-
fiers to predict the target domain. Banerjee et al. [6] build a sup-
port vector machine classifier using tf-idf features over bigrams
of stemmed content words. Classification is carried out on the
level of individual sentences. Wang et al. [133] rely on averaged
perceptron classifiers with various phrase-based features.

For NMT, Kobus et al. [68] propose an NMT domain con-
trol method, by appending either domain tags or features to the
word embedding layer of NMT. They adopt an in-house clas-
sifier to distinguish the domain information. Li et al. [78] pro-
pose to search similar sentences in the training data using the
test sentence as a query, and then fine tune the NMT model us-
ing the retrieved training sentences for translating the test sen-
tence. This method also has been used when the domain of in-
put sentences is known [51]. Farajian et al. [39] follow the strat-
egy of Li et al. [78], but propose to dynamically set the hyperpa-
rameters (i.e., learning rate and number of epochs) of the learn-
ing algorithm based on the similarity of the input sentence and
the retrieved sentences for updating the NMT model. Farajian
et al. [37] further report that the method of Ref. [39] can boost
in-domain terminology translation. Tars and Fishel [118] cluster
parallel sentences into different domains during training and test-
ing. Figure 10 shows an overview of domain adaptation for MT
in the input domain unknown scenario.

5.2 Incremental Domain Adaptation
Another scenario is applying domain adaptation in an interac-

tive translation environment where the model is adapted to the
translation post-edited by human translators incrementally. In-
cremental domain adaptation has been shown to be useful for
computer aided translation in NMT. Kothur et al. [74] apply
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Fig. 11 Incremental domain adaptation.

fine tuning in an incremental manner, where the sentence al-
ready post-edited by a human translator is used to fine tune the
model to translate the next sentence in a document. They show
that incremental fine tuning can correctly translate novel vocabu-
lary items and adapt to document-specific terminology usage and
style. Turchi et al. [122] study different ways of incremental do-
main adaptation, including fine tuning on the current post-edited
sentences, or similar sentences retrieved from the training and
previously post-edited sentences based on the current source sen-
tence, and both. Peris and Casacuberta [99] find the importance
of the learning rate during fine tuning based incremental domain
adaptation. Wuebker et al. [138] apply group lasso regularization
in incremental domain adaptation, which freezes most of the pa-
rameters and thus makes the adapted model compact. Karimova
et al. [63] conduct a user study for incremental domain adapta-
tion, and find that it can significantly reduce the human post-
editing cost. Simianer et al. [112] address the evaluation problem
in incremental domain adaptation. They propose three content
word based metrics to measure zero- and one-shot vocabulary
acquisition in incremental adaptation and compare several fine
tuning based domain adaptation methods. Figure 11 shows an
overview of incremental domain adaptation.

5.3 Multilingual and Multi-Domain Adaptation
It may not always be possible to use an out-of-domain parallel

corpus in the same language pair and thus it is important to use
data from other languages [62]. This approach is known as cross-
lingual transfer learning, which transfers NMT model parameters
among multiple languages [25]. It is known that a multilingual
model, which relies on parameter sharing, helps in improving the
translation quality for low resource languages especially when
the target language is the same [149]. Even if out-of-domain data
in the same language pair exists, it is possible that using both
multilingual and multi-domain data can boost the translation per-
formance. There are studies where either multilingual [40], [61]
or multi-domain models [104] are trained. Recently, many studies
also have been conducted on using multilingual and multi-domain
data for in-domain data adaptation.

Chu and Dabre [18] conduct a preliminary study for this topic,
where they apply mixed fine tuning using out-of-domain data
from language pairs different from the in-domain data. Chu
and Dabre [19] focus on training a single translation model for
multiple domains by either learning domain-specific hidden state
representations or predictor biases for each domain, and incor-
porate multilingualism into the domain adaptation framework.
Imankulova et al. [56] use out-of-domain data from other lan-
guages to train a multilingual NMT model, and then fine tune it
on in-domain parallel and back-translated pseudo-parallel data.
Dabre et al. [26] apply multi-stage fine tuning using out-of-
domain data from other languages to improve one-to-many in-
domain translation in a N-way corpus setting. They find that

multi-stage fine tuning performs better than single-stage fine tun-
ing in that setting. Bapna and Firat [7] improve the scalability
of fine-tuning for both domain adaptation and multilingual NMT.
Instead of fine-tuning the entire NMT system, they propose using
light-weight adapter layers that are suitable for the target task.

6. Datasets and Resources

Supervised MT is usually evaluated on several typical datasets,
such as the WMT English to French and English to German
shared tasks, the NIST Chinese to English shared task, and the
WAT Japanese to English shared task. In this section, we sum-
marize the mostly used datasets and resources for domain adap-
tation in MT. As shown in Table 1, IWSLT is used as a typ-
ical in-domain dataset and WMT is used as a typical out-of-
domain dataset. The reason is that IWSLT contains TED talks
and speeches, which contain approximately 100−200 k domain-
specific sentences and are quite different from other corpora.
WMT contains more than 10 million sentences and the domains
are quite general; therefore, it is usually used as the out-of-
domain or general-domain corpus.

There are also many domain specific parallel corpora such as
restaurant reviews [8], clinical [114], civil engineering [49] and
crisis-related texts [11], which could be good resources for study-
ing NMT domain adaptation.

7. Future Directions

Through this survey, we see various studies trying to address
domain adaptation for NMT. However, there are still unaddressed
problems that need further investigation.
Universal Domain Adaptation Model. Based on different data
scenarios, we have summarized different approaches for domain
adaptation. However, most of these approaches are independent
from others. Can we develop a model that is universal and robust
for all data scenarios? Achieving this will significantly reduce the
deployment footprint for domain-specific translation.
Error Tracking in Domain Adaptation. When apply a domain
adaptation approach but get unsatisfied performance, how to track
the errors remains an unclear problem. Are they coming from the
out-of-domain model or the domain adaptation approach? There
is no easy way to analyze this. For instance, although fine tun-
ing is a very promising in domain adaptation, it is unclear how
the errors in the out-of-domain model will affect the performance
in the in-domain model. Therefore, studying an error tracking
mechanism in domain adaptation is important.
Domain Specific Dictionary Incorporation. How to use ex-
ternal knowledge such as dictionaries and knowledge bases for
NMT remains a big research question. In domain adaptation, the
use of domain specific dictionaries is a very crucial problem. In
the practical perspective, many translation companies have cre-
ated domain specific dictionaries but not domain specific corpora.
If we can study a good way to use domain specific dictionaries,
it will significantly promote the practical use of MT. There are
some studies that try to use dictionaries for NMT, but the usage
is limited to help low frequent or rare word translation [3], [143].
Arcan and Buitelaar [1] use a domain specific dictionary for ter-
minology translation, but they simply apply the unknown word
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Table 1 The corpora used for domain adaptation in NMT.

Studies Language pairs In-domain corpora Out-of-domain corpora
[128], [129], [130] En-De & En-Fr IWSLT WMT
[20] Zh-En IWSLT NTCIR

Zh-Ja WIKI-CJ ASPEC
[13] Zh-En Dev data of NIST Training data of NIST

En-Fr Dev data of WMT Training data of WMT
[87] En-Fr & En-De & En-Es Certain speaker of IWSLT IWSLT
[124] En-De Dev data of TED & WMT & Training data of TED & WMT &

Movie dialogues & EMEA medical Movie dialogues & EMEA medical
[146] En-De & Ru-En IWSLT & Patents Paracrawl
[38] En-Fr Multi-domain Multi-domain
[146] Ru-En & En-De IWSLT & Patent Web-crawled
[46] En-Zh Laws LDC

En-De News Commentary WMT (NEWS)

replacement method proposed by Luong et al. [82], which suffers
from noisy attention.
Domain Generation. Most of the existing methods focus on
adapting from a general domain into a specific domain. In many
scenarios, training data and test data have different distributions
and the target domains are sometimes unseen. Irvine et al. [57]
analyze the translation errors in such scenarios. Domain general-
ization aims to apply knowledge gained from labeled source do-
mains to unseen target domains [79]. It provides a way to match
the distribution of training data and test data in MT, which may
be a future trend of domain adaptation for NMT.
Unsupervised NMT. Unsupervised NMT [2], [76] has achieved
remarkable success. Because unsupervised NMT only uses
monolingual data for training, the data scenarios differ from su-
pervised NMT in domain adaptation. Sun et al. [116] summarize
the different domain data scenarios for unsupervised NMT. Un-
der such scenarios, how to conduct domain adaptation could be
an interesting future direction.

8. Conclusion

Domain adaptation for NMT is a rather new but very important
research topic to promote MT for practical use. In this paper, we
gave a comprehensive survey of the techniques mainly being de-
veloped in the last four years. We compared domain adaptation
techniques for NMT with the techniques being studied in SMT,
which has been the main research area in the last two decades. In
addition, we outlooked the future research directions. Connecting
domain adaptation techniques in MT to the techniques in general
NLP, computer vision and machine learning in detail is our future
work. We hope that this survey paper could significantly promote
research in domain adaptation for MT.
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