
IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 1

Storage Cache Optimization using Machine Learning Techniques

Maryna Baida2 Hiroki Ohtsuji1 Erika Hayashi1 Eiji Yoshida1

Abstract: This paper describes a method to optimize storage cache mechanisms using machine learning techniques. It is difficult
for conventional algorithms to understand complicated parallel IO patterns. Recent research papers do not highlight the possibility
for the use of machine learning techniques in the storage cache optimization very often. Our approach suggests applying LSTM
networks for this purpose. We also apply different data manipulations and preprocessing techniques to understand how it is possible
to use the result of IO classification and improve IO performance. This paper focuses on the method to detect changes of IO patterns
to change the cache configurations optimally. Further investigation of the application of this paper results in the design of an
effective caching algorithm for storage systems.

Keywords: Storage Systems, Machine learning, Cache parameter optimization

1. Introduction

In the previous years there have been many different articles

published regarding the use of LSTM networks in the different

areas of science [1-9]. But there were very few attempts to use this

technique for the cache related prediction. 00 In this work we show

that this technique is not only possible to use, but also brings

fruitful results. Cache simulation takes quite a long time and is not

fast enough to be used in the runtime environment. While

determining the best cache size ratio policy needs few such

simulations with different configurations to be run together and

evaluated in parallel. The method we propose creates the basis for

the prediction of the change of the optimal cache policy. With this

method system takes much less time to produce the decision

regarding the best cache size percentage during the runtime

operation. Given the circumstances, availability of the storage

resources may be changed according to the optimal solution

calculated with the help of LSTM network running in parallel to

the system and determining the best cache policy accordingly.

LSTM network usage allows the cache simulation to be speed up

with minor accuracy change in the cache hit ratio. Especially on

the large volumes of data.

We thus focus on a generic problem to predict the points at which

the optimal cache policy has changed and include only temporal,

spatial and volume metrics of the traces for the prediction.

In this paper, we address the following questions:

What is the right cache size ratio for the optimal performance of

the system at a each point of time?

Can the machine learning and LSTM network in particular be

faster in the decision making of determining the change of the

optimal parameters in the runtime environment?

We examine arc cache algorithm and four different cache size

ratios with few different kinds of IO traces.

For high load systems, we can apply the proposed approach to

intelligent cache size management.

Fig. 1 shows the overall flow of our approach. Our goal is to

determine optimal cache size strategy and to propose a model that

can later be used to predict the change of the optimal cache size

ratio in the system faster than it is done by the simulation. In this

 1 Fujitsu Laboratories Ltd., Kawasaki, Kanagawa 211-8588, Japan
 2 Budapest University of Technology and Economics, Budapest, 1111, Hungary

Fig. 1 Structure of the workflow

paper, we run the simulation on IO traces with different settings,

while measuring the simulation results at specific points of the

trace. Afterwards we split the IO trace into chunks determined by

the points of measurement and use these chunks in the training of

LSTM model to determine the changing point.

We can include this model in the system and use it in runtime for

monitoring of the optimal use of cache resources.

2. Related Work

Many recent papers describe some different approaches for

caching [8-11]. Few of them focus on the caching strategies in the

network infrastructures [13-16]. Others tried to use machine

learning techniques in prefetchers [20-21]. And few proposed

approaches for use of LSTM networks in caching [12][14]. Also

there are some papers in the IO workflow analysis.

In this paper we analyse the workflow of a MSR Cambridge trace,

and its hm0 (Hardware Monitoring) server in particular in terms of

optimal caching ratio policy change. We have considered other

approaches of workflow analysis, though.

For example, the recent work on IO workflow analysis is focusing

on the pattern identification of different traces. [17] In this work,

first step is to calculate a set of 20 descriptive features of each of

the trace parts of 8000 offset entries each. The resulting “feature”

dataset is then evaluated by means of k-means algorithm and

Vol.2020-OS-150 No.2
2020/7/30

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 2

modified version of backward elimination for determining the

most descriptive features of the dataset. The dataset of features is

repeatedly clustered while determining the silhouette value of each

feature and so the contribution of this particular feature to the

clustering process. The feature which contributes least is then

eliminated from the dataset to repeat the process again until no

other features left. This kind of backward elimination algorithm is

repeated with different number of clusters. In this way, the set of

features and number of clusters with best silhouette value is

determined. Then the resulting feature dataset is evaluated by

means of 9 other clustering algorithms to determine the best

algorithm suitable for the task. The resulting subsets of features in

each cluster gives an idea about the structure of IO patterns. After

that the tree structure is constructed with the feature value as the

determining point for the IO pattern definition. After this the tree

is evaluated on the dataset to determine the speed of the tree

execution in the IO pattern detection. And it gives much faster

result than the Naïve Bayes, K-nearest neighbours, SVM or

Logistic Regression, when used for the same purpose.

Our approach also analyses IO trace pattern, but in terms of cache

simulation, which in fact may be considered as a kind of feature of

the trace. And base on this “feature” of the trace our method

determines the change of the optimal point of the cache size ratio.

Regarding the works in the field of LSTM applications for

caching process, DEEPCACHE [12] shows the ability of LSTM

based models to predict the popularity of content objects. They

evaluated it using two synthetic datasets under multiple settings

out of which one tries to emulate realistic workloads. This work is

using the seq2seq modelling to predict the future object popularity.

They implement it with the help of LSTM Encoder-Decoder model.

The way how it works is that the DEEPCACHE algorithm first

predicts the objects with the help of LSTM model, and then merges

the fake requests for those objects with existing cache replacement

algorithms such as LRU or k-LRU. [12]

In our case we do not have the need for the Encoder-Decoder

model as the possible outputs are only 0 and 1, optimal cache

policy changed and optimal cache policy stayed the same,

respectively.

Another paper which considered LSTM applicable for making

caching more effective [14] is considering the cacheability of the

data as the prediction target in their research. They consider this

under the conditions of using WHD (windows hit density) a

modified version of LHD (least hit density) instead of LRU as their

eviction policy. WHD uses total access times in a window to

replace hit probability based on probability model and uses the

length of window to replace the expected time in cache. The output

of the LSTM layer is designed to be passed into a hidden layer with

softmax function, which finally outputs the cacheability of each

data in the [0, 1] interval. And the model is trained by minimizing

the cross-entropy error between the output of the whole network

and the true value. The LSTM then performs classification, and the

K highest cacheability items are chosen to be cacheable.0

In our case we use sigmoid function and the binary_crossentropy

for training and prediction if the current cache size ratio policy is

optimal or not.

Few other studies discuss the application of LSTM networks in

the hardware prefetchers. These papers focus on the determining

the PC (program counter) of each entry in the trace together with

the offset. In our case the entry to LSTM network is the trace of

100 records in one row. Each record has the Timestamp,

DiskNumber, Type, Offset, Size and ResponseTime properties in

its raw state to determine the changing point of the optimal cache

policy change.

3. Solution Design

 In this paper, we applied LSTM network to extract the feature

from IO traces. The purpose of our method is to detect the point

where the optimal cache policy and configuration changes. The

target performance factor is cache hit ratio. For the data

preparation, we used a cache simulator to calculate the cache hit

ratio of the IO trace files with multiple cache configuration. In the

next step, gathering the set of IO trace and the cache simulation

result to detect the changing point. If the cache hit ratio decreases

rapidly with a certain configuration while the hit ratio with the

other configuration increase at the certain point, we can define the

point as changing point. The proposed design applies this detecting

mechanism to multiple IO traces to generate multiple training

datasets. The training model takes IO traces as the input and the

binary value (changing point or not) as the output. Using the

prediction model, the method can detect the changing point in the

given IO trace file. During the normal operation of storage systems,

when the prediction model finds a changing point, the system can

start to find the process to select a different cache configuration.

Our prediction model is faster than running the cache simulation

so that we can accelerate the process to daily routine of the

performance tuning of storage systems.

3.1 Using LSTM to detect changing points in IO traces

As there are only two options in the inference process: changing

point or not, this problem can be treated as a binary classification

which is simpler than the multiclassification in low-level cache

system. In this paper we analyze some statistical properties of

accessing data including response time, read-write ratio and the

size of data. The input of LSTM prediction model we proposed are

based on these statistical properties.

3.2 Stateful vs stateless LSTM

In our research we applied both stateful and stateless LSTM

versions to determine which one would give better results on our

dataset.

The main difference between stateful and stateless LSTM is that

stateless LSTM puts zeros to all inputs after one batch is processed.

Stateful LSTM in its turn saves the output of the states of the

previous batch to be fed into the next batch. So generally the

stateful LSTM is the LSTM which tries to take into account whole

sequence of the training dataset, while stateless one only takes into

account the sequence inside one batch.

3.3 Software

We use the Keras on TensorFlow for the LSTM model training

and prediction, as well as Numpy, Sklearn, Pandas libraries for the

dataset preprocessing.

Vol.2020-OS-150 No.2
2020/7/30

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 3

For the cache simulation purposes we have modified the

following open-source project. [22] This simulator is capable of

simulating the cache by the arc strategy. The output of cache

simulation contains following fields: Level of the cache, Total

References, Total Reads, Total Writes, Page Read Hit, Page Read

Miss, Block Read Hit, Block Read Miss, Page Write Hit, Page

Write Miss, Block Evict, Cold2Cold, Cold2Hot, DirtyPage,

SeqEviction, LessSeqEviction, Total Seq Evicted Dirty Pages,

Total Non Seq Evicted Dirty Pages, Total Evicted Clean Pages,

Real Total Evicted pages, Page Read Cache Hit Ratio, Page Write

Cache Hit Ratio, Total Cache Hit Ratio. Our modification was to

make the simulator output these statistics after some specified

number of lines pointed in the trace, and not only after all trace was

processed.

4. Details of implementation

We use MSR Cambridge dataset for analysis. The dataset

contains following properties of each trace entry: Timestamp,

Hostname, DiskNumber, Type, Offset, Size, ResponseTime.

For analysis we do not normalize the data, do not apply any

clusterization technique or any other preprocessing, except

excluding the Hostname from the analysis and converting the

“Write” or “Read” Type column into 0 or 1 respectively to prevent

the need for language processing on this matter.

According to the obtained results given that the LSTM-based

model is to be implemented as part of an IO system eventually, we

should not ignore the computational overhead of splitting and pre-

processing the parts of the IO trace. Second issue is that LSTM

network itself does not accept arbitrary number of columns for

processing. To the best of our knowledge it breaks at

approximately 3000 columns representing a part of the trace. To

address this problem, we split the trace into small chunks of the

size 100 which we transpose and feed into the network. With this

method, the network still gives quite good results while the

number of the measurements is still sufficiently low.

The cache percent size is determined from the minimum and

maximum number of the offset, which is considered the overall

size of the volume. From that we calculate the 1, 2, 4 and 8 percent

size of the cache, and generate configuration file for the simulator

with the obtained values as the size of the cache. Using each of

these configurations we run cache simulations. After that we

determine the maximum local cache hit ratio, at each point of

measurement. The point of measurement can be variable, but we

stopped at the number 100, due to difficulties in processing bigger

chunks of data using LSTM network.

As the Cache Hit Ratio in the output of the simulator is calculated

based on the whole simulation done before, to calculate the value

of Local Cache Hit Ratio we use the outputs of the simulator in the

neighbouring steps of measurement (in our case 100 lines of the

trace).

The formula for the definition of the local cache hit ratio is as

follows:

LCHR =
((PWH1 − PWH0) + (PRH1 − PRH0))

((TW1 − TW0) + (TR1 − TR0))
, where

Table 1 LCHR explanation of symbols in formula

LCHR local cache hit ratio (at the point of measurement)

PWH page write hit

PRH page read hit

TR total reads

TW total writes

…1 of current measurement point

…0 of previous measurement point

So, if 1% cache size ratio policy gives best cache hit ratio in the

first 100 records, but in the next 100 records the best cache hit

ratio will be obtained by applying the cache size ratio policy of

2%, then the latter row of 100 records will be marked as changing

point. And so on. Like it is shown in Table 2.

Table 2 Cache size ratio optimal policy changing point definition

trace

part

local

cach

e hit

ratio

with

1%

cach

e

local

cach

e hit

ratio

with

2%

cach

e

local

cach

e hit

ratio

with

4%

cach

e

local

cach

e hit

ratio

with

8%

cach

e

optimal

paramete

r

optimal

cache

size

ratio

policy

change

d

100 12 18 24 40 8 0

200 12 18 24 40 8 1

300 12 12 12 12 1 0

400 12 15 16 16 4 0

500 3 14 14 14 2 0

600 3 14 14 14 2 1

4.1 Details of LSTM network implementation.

We evaluated different types of LSTM network with different

parameters in use in our approach. First, we tried to configure the

network with the categories in mind, and so the classification issue

was the initial point. But, in the end the binary crossentropy and

binary accuracy were chosen as the training parameters. As for the

batch size we keep it at the rate of 1, as it gives better accuracy and

also is easier to find a multiplicator for the higher degree in case of

stateful LSTM network. For now, stateless and stateful LSTM

networks give comparable results with maximum accuracy value

of 61,3%.

Fig. 2 Prediction process

As expected, the proposed method requires the smallest amount

of time to complete the task of determining if the system still works

with the optimum cache strategy in mind. The advantage in

running time obviously comes from the features of LSTM network.

Vol.2020-OS-150 No.2
2020/7/30

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 4

When executed in the real system, the proposed approach would

make the performance estimations of the cache policy without

actually running the cache simulation itself.

Just for notice, the cache simulation program takes hours to run

in the best case scenario, taking a lot of system resources, with the

trained LSTM network optimal cache size ratio changing point is

calculated in few minutes maximum.

The network structure is still in the process of tuning so we

suppose that such accuracy is not the limit of this approach.

5. Evaluation

This section describes the result of the experiment with our

proposed model. The input dataset includes the 600 columns (100

results in one row, each having 6 fields: Timestamp, DiskNumber,

Type, Offset, Size, ResponseTime.) and the label defining if cache

size policy is optimal at the time of processing these 100 trace lines

or not.

For the configurations, the following settings were used: one

layer of LSTM nodes with the number of hidden units of 100, and

the Dense layer of 1 node (as there are only 0s and 1s in label). The

LSTM layer has the tanh activation function, The Dense layer has

sigmoid activation function. Loss function for the model

compilation is binary_crossentropy. We used Adam optimizer for

network training. Batch size is determined by the type of the model

in question. If the model is stateful then the batch_input_shape is

a tuple (1, size_of_one_row,1). If the model is stateless, then the

batch_size is 1. The split to test and train data is performed using

the train_text_split function of the sklearn.model.selection module.

Test size is 0.2.

For the stateful model we used ResetStatesCallback to reset the

states after each sequence of 600 fields processed (number of

columns) and send it to next batch.0

We have run the model on two datasets. For now results are as it

is shown on Fig. 3. The hm0, 1 part contains 2000 rows 600 fields

each. The training accuracy for the stateful and stateless models

are approximately the same level - 0.808. As a baseline we took

the mean value to be sure that the model does not always output

the same number. Mean for this case is 0.7795. For the case with

the bigger chunk of data (hm0 39934 rows, 600 columns) the

accuracy is approximately 0.613, while having mean of 0.6177.

We suppose that the model training could go better if the size of

the LSTM layer was bigger compared to the number of the fields

in one row. But trials on the network with a higher number of

hidden nodes, for example, 876, have not succeeded for the

stateless model on the dataset of hm0. Notice:

Fig. 3 Experimental results

stateless model needs less resources to train, so if Python kernel

fails at stateless model than running the model with stateful

settings is pointless. Possible solutions for this trouble would be to

output the results of a simulation more often than each 100 line of

the trace, and so to split the data and train the LSTM network on

the dataset with fewer columns.

Table 3 Software and hardware specifications

Python 3.7.7

Tensorflow 2.1.0

tensorflow-gpu 2.1.0

cuda toolkit 10.1.243_h74a9793_0

CUDA version 10.2

5.1 Discussion

As for the effectiveness of this approach, the current structure of

the network and the data chunk size may be changed according to

the needs of the system. There is a possibility that adding different

datasets into the network would diversify the applicability of this

method. It is necessary to train the model with various types of

training data sets and we are currently working on extra training

cases.

Possible improvements would include trials to build the network

with different cell structure like GRU or RUM [23] and applying

the error and outlier detection technologies for the rarely

happening changing points in the cache size ratio policy. [25-26]

6. Conclusion and Future Work

In this paper we have proposed the optimal caching size ratio

change problem. We showed that the changing point of the optimal

cache size ratio of the system can be successfully determined by

means of LSTM network algorithm. The result shows that the

proposed method takes at least 2 times less time than the cache

simulation itself. The future work is applying the proposed method

to real storage systems to know the actual advantages on real

workloads.

References
[1] Dmytro Zhelezniakov, Viktor Zaytsev, Olga

Radyvonenko,"Acceleration of Online Recognition of 2D Sequences
Using Deep Bidirectional LSTM and Dynamic Programming",
Springer LNCS, Vol. 11507, 2019

Vol.2020-OS-150 No.2
2020/7/30

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 5

[2] Yaroslav Shkarupa, Robert Mencis, Matthia Sabatelli., “Offline
Handwriting Recognition Using LSTM Recurrent Neural
Networks”, THE 28TH BENELUX CONFERENCE ON
ARTIFICIAL INTELLIGENCE November 10-11, 2016

[3] E. Fedorov, V. Patrushev, O. Patrusheva, “METHOD FOR THE
PROMOTION OF INTERNET ACCOUNT OF THE SHOP ON
THE BASIS OF A COMPLETE LONG-TERM SHORT-MEMORY
MEMORY, TRAINING BY A GENETIC ALGORITHM”, Наукові
праці ДонНТУ №2 (25), 2017 Серія “Інформатика, кібернетика
та обчислювальна техніка”, p 118-125, 2017

[4] Le, Xuan-Hien; Ho, Hung V.; Lee, Giha; Jung, Sungho. 2019.
"Application of Long Short-Term Memory (LSTM) Neural Network
for Flood Forecasting." Water 11, no. 7: 1387.

[5] Mohammed Salah Al-Radhi, Tamás Gábor Csapó, Géza Németh
"Deep Recurrent Neural Networks in Speech Synthesis Using a
Continuous Vocoder" International Conference on Speech and
Computer SPECOM 2017: Speech and Computer pp 282-291, 2017

[6] “Forecasting stock prices with long-short term memory neural
network based on attention mechanism”.
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.02
27222, (accessed 2020-06-25).

[7] “Traffic congestion anomaly detection and prediction using deep
learning”. https://arxiv.org/abs/2006.13215, (accessed 2020-06-25).

[8] “Time Series Analysis and Forecasting of COVID-19 Cases Using
LSTM and ARIMA Models”. https://arxiv.org/abs/2006.13852,
(accessed 2020-06-25).

[9] “Implementing A Neural Cache LSTM”.
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1174/report
s/2760222.pdf, (accessed 2020-06-25).

[10] “Model and Machine Learning based Caching and Routing
Algorithms for Cache-enabled Networks”.
https://arxiv.org/abs/2004.06787, (accessed 2020-06-25).

[11] “Domain-Specialized Cache Management for Graph Analytics”.
https://arxiv.org/abs/2001.09783, (accessed 2020-06-25).

[12] Haibo Wu, Jun Li, Jiang Zhi, Yongmao Ren, Lingling Li, "Edge-
oriented Collaborative Caching in Information-Centric Networking",
IEEE Symposium on Computers and Communications, 2019.

[13] Ying Liu, Ting Zhi, Haidong Xi, Wei Quan, Hongke Zhang, "A
Novel Cache Replacement Scheme against Cache Pollution Attack
in Content-Centric Networks", 2019 IEEE/CIC International
Conference on Communications in China (ICCC), 2019

[14] Arvind Narayanan, Saurabh Verma, Eman Ramadan, Pariya Babaie,
Zhi-Li Zhang "DeepCache: A Deep Learning Based Framework For
Content Caching", NetAI'18: Proceedings of the 2018 Workshop on
Network Meets AI & MLAugust 2018 Pages 48–53, 2018

[15] Seok Won Kang, Kyi Thar, Choong Seon Hong, "Unmanned Aerial
Vehicle Allocation and Deep Learning based Content Caching in
Wireless Network", 2020 International Conference on Information
Networking (ICOIN), 2020

[16] Jiawei Fei, Yang Shi, Mei Wen, Chunyuan Zhang, "SACC:
Configuring Application-Level Cache Intelligently for In-Memory
Database Based on Long Short-Term Memory", 2019 IEEE 21st
International Conference on High Performance Computing and
Communications; IEEE 17th International Conference on Smart
City; IEEE 5th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS), 2019

[17] Kuo Chun Tsai, Li Wang, Zhu Han, "Caching for Mobile Social
Networks with Deep Learning: Twitter Analysis for 2016 U.S.
Election", IEEE Transactions on Network Science and
Engineering (Volume: 7 , Issue: 1 , Jan.-March 1 2020), 2020

[18] Yang You, Yuxiong He, Samyam Rajbhandari, Wenhan Wang, Cho-
Jui Hsieh, Kurt Keutzer, James Demmel, "Fast LSTM Inference by
Dynamic Decomposition on Cloud Systems", 2019 IEEE
International Conference on Data Mining (ICDM), 2019

[19] Bumjoon Seo, Sooyong Kang, Jongmoo Choi, Jaehyuk Cha, Youjip
Won, Sungroh Yoon, "IO Workload Characterization Revisited: A
Data-Mining Approach", IEEE Transactions on Computers
(Volume: 63 , Issue: 12 , Dec. 2014) , 2014

[20] "Long short-term memory".
https://en.wikipedia.org/wiki/Long_short-term_memory, (accessed
2020-06-29).

[21] "Understanding LSTM Networks".
https://colah.github.io/posts/2015-08-Understanding-LSTMs,
(accessed 2020-06-29).

[22] Yuan Zeng, Xiaochen Guo, "Long short term memory based
hardware prefetcher: a case study", MEMSYS '17: Proceedings of
the International Symposium on Memory SystemsOctober 2017
Pages 305–311, 2017

[23] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner
Litz, Jichuan Chang, Christos Kozyrakis, Parthasarathy
Ranganathan, "Learning Memory Access Patterns", Proceedings of
the 35th International Conference on Machine Learning, PMLR
80:1919-1928, 2018

[24] "sim-ideal". https://github.com/arh/sim-ideal, (accessed 2020-07-
01).

[25] Rumen Dangovski, Li Jing, Preslav Nakov, Mićo Tatalović and
Marin Soljačić, "Rotational Unit of Memory: A Novel
Representation Unit for RNNs with Scalable Applications", 2019
Association for Computational Linguistics, The MIT Press
Journals, 2019

[26] “Stateful LSTM in Keras”. http://philipperemy.github.io/keras-
stateful-lstm/, (accessed 2020-07-03).

[27] “Automatic model generation technology for error detection”
https://pr.fujitsu.com/jp/news/2020/03/16.html, (accessed 2020-07-
03).

[28] Oleksandr I. Provotar, Yaroslav M. Linder, Maksym M. Veres,
"Unsupervised Anomaly Detection in Time Series Using LSTM-
Based Autoencoders", 2019 IEEE International Conference on
Advanced Trends in Information Theory (ATIT), 2019

[29] Fahimeh Farahnakian, Jukka Heikkonen, "A deep auto-encoder
based approach for intrusion detection system", 2018 20th
International Conference on Advanced Communication Technology
(ICACT), 2018

Vol.2020-OS-150 No.2
2020/7/30

