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A parareal-based parallel-in-time method for
explicit time-marching schemes

Yen-Chen Chen1,a) Kengo Nakajima1,b)

Abstract: Renowned Parallel-in-Space/Time (PinST) methods such as the parareal method and the
MGRIT method are compelling with implicit time-marching schemes. However, PinST methods
with explicit time-marching have been challenging due to the restriction of the Courant-Friedrichs-
Lewy (CFL) condition. Moreover, explicit schemes are highly scalable in the space dimension, which
is more efficient than existing PinST methods. In this research, we propose a method based on
the parareal algorithm, which is highly scalable and complies with the CFL condition. We also
demonstrate the performance utilizing two explicit time-marching models.
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1. Introduction
Parallel-in-time methods have been a hot topic in recent

years. As the performance of supercomputers grows expo-
nentially, spatial parallelization is reaching its limit and is
no longer enough. Thus, researchers turn to the time di-
mension for more parallelization. Renowned methods such
as the parareal method[2] and the MGRIT method[1] has
been used on various of applications such as heat transfer
and parabolic model. In recent studies[5], even hyperbolic
equations such as one-dimensional advection have been ac-
celerated with the MGRIT method.

Despite the active researches in parallel-in-time method,
not many methods for direct, explicit time-marching
schemes are proposed. Since explicit schemes are not time-
dependent, one can efficiently distribute computing nodes
into separate processors, and boundary values are exchanged
through communication. Thus, explicit schemes are highly
scalable in the spatial dimension, and we usually prefer
parallel-in-space than parallel-in-time when it comes to par-
allelizing explicit schemes, however, for applications such as
weather simulation, which has an enormous amount of time
steps, the performance of spatial parallelization is limited,
and the bottleneck becomes the time dimension. Therefore
parallel-in-time methods for explicit schemes could still be
useful for such applications with many time steps, which is
the target of this paper.

In Section 2, we will first give a short overview of the
parareal method, which is the base algorithm of our pro-
posed method. Then, in Section 3, we will talk about what
are the challenges for developing a parallel-in-time and then
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introduce the proposed multilevel parareal method in Sec-
tion 3.2. In Section 4 we will analyze the result and perfor-
mance of the proposed method and finally in Section 5 and
6 the conclusion and future work.

2. The Parareal Method[2]

The parareal method[2] is an iterative two-level parallel-
in-time method. The parareal method is composed of a
high-precision solver and a low precision solver. First, the
whole timeline is divided into segments by the number of
processors. The main concept of the parareal method is to
update the difference between high and low precision solver
in each segment with a sequential low precision solver. After
sufficient iterations, the result at the last time step would
converge to the high precision result.

Before iteration, we perform a sequential solve with the
low precision solver to get an initial value.

y0j+1 = G(y0j , tj , tj+1) ∀j = 0, . . . , P

From this initial value, we then perform iterative parareal
algorithm until the result converges to the high precision
result. In each iteration, we first compute results by both
high and low precision in each time segment.

ykf,j = F(ykj , tj , tj+1), ykc,j = G(ykj , tj , tj+1)

Then, we use the low precision solver to pass down the dif-
ference of the high and low solver sequentially to the last
time step.

yk+1
j+1 = G(yk+1

j , tj , tj+1) + F(ykj , tj , tj+1)− G(ykj , tj , tj+1)

Figure 1 shows a simple example of solving a parabola line
by the parareal method. Assume that eight processors are
available, the timeline is first divided into eight segments.
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Fig. 1: Illustration for solving a parabola line by the parareal
method.

In each processor, we solve the results with a high preci-
sion solver and a low precision solver. In each time segment,
the red line shows the results of the low precision, and the
blue line shows that of the high precision solver. Then, we
update the differences between the two results in each pro-
cessor from the first processor to the last one. Repeat the
process iteratively, and we would get the desired parabola
result as the black line.

As we could see from the algorithm, the parareal method
works faster if the low precision solver is a lot cheaper than
the high precision solver. Given a different application, the
iteration number until convergence would also widely differ.
Linear equations converge with a single iteration. However,
non-linear equations such as hyperbolic equations are proven
to converge slow using the parareal algorithm[7]. The iter-
ation number required to converge for the parareal method
changes according to the number of processors. As the num-
ber of processors grows, the iteration number also grows.
Thus, depending on the application, the parareal method
could be very costly with many processors.

3. Proposed Method

We propose a multilevel parareal method that parallelizes
explicit schemes in the time dimension. In Section 4, we
show the performance of the proposed algorithm with a one-
dimensional advection problem.

3.1 Challenges
Despite various developments of parallel-in-time meth-

ods[1], [2], there is not yet a efficient one for explicit schemes.
Explicit time-marching schemes are very efficient ways to
solve PDE problems. For specific applications, we tend to
use explicit schemes rather than implicit ones. However,
since explicit schemes are highly scalable in the spatial di-
mension, there is not yet an efficient parallel-in-time method
that could reach better or even similar scalability at the par-
allelization in the time dimension. Due to its high scalabil-
ity, there are not many pieces of research on parallel-in-time
methods for explicit time-marching schemes either. One
goal of the research is to develop a parallel-in-time method
which provides greater scalability in the time dimension par-
allelization.

While using explicit schemes, one has to satisfy the
Courant-Friedrichs-Lewy (CFL) condition[3]. The CFL con-

dition is the necessary condition for convergence. For exam-
ple, the CFL condition for one-dimensional problems has the
following form:

C =
u∆t

∆x
≤ Cmax

where C is called the Courant number, u is the wave veloc-
ity, ∆x is the mesh size, and ∆t is the time step. For explicit
schemes, Cmax is typically 1.

As most parallel-in-time methods involve coarse time
grids, coarser time step ∆t directly leads to larger Courant
number. Thus, direct coarsening in the time step would re-
sult in a convergence problem. A direct solution is to coarsen
the x mesh-size at the same time, which is also what we are
going to use. However, the coarser x grid also leads to less
accuracy in the coarse grid and therefore affects the conver-
gence speed. This is the second challenge, and trade-off we
have to overcome.

At last, we choose a hyperbolic equation, the advection
problem, as our numerical experiment. Hyperbolic equa-
tions are known to have convergence trouble with parallel-
in-time problems[7], which is our third challenge.

3.2 A Multilevel Parareal Method
We propose a multilevel parareal method, which is a

parallel-in-time method for explicit time-marching schemes.
Similar to the parareal method, we also divide the timeline
into segments by the number of processors. Each processor is
in charge of a time segment. We then further construct mul-
tiple levels of coarser time grids. In the coarse time grids,
to prevent the violation of the CFL-condition, we coarsen
the space grid at the same time. For a one-dimension ex-
plicit scheme, as long as we coarsen the time grid and the
space grid in the same ratio, the Courant number stays the
same, and therefore the algorithm does not violate the CFL-
condition on each coarse level.

C =
v∆t

∆x

C′ =
v(r∆t)

r∆x
=
v∆t

∆x
= C

In order to move results between levels, we have to define
restriction and prolongation operations. Since only want the
result of the last time step. As long as the last time step is
included in every level, we do not have to define restriction
and prolongation for the time dimension. However, since we
are also coarsening the space grid, and we want the result

Coarse grid

Fine grid

Restriction Prolongation

x time

Parallelization

Fig. 2: Out proposed method extract coarse grid by coars-
ening both the time grid and the x grid.
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on the whole space grid, we have to define restriction and
prolongation for the space dimension. Here we assume that
the coarsen ratio between two levels is 2 for each level.

Assume that yi represents the point results on a specific
time step. We restrict it to a coarser level with a restriction
operator. Here, we take values from every other point.

y′i = y2i−1

fine

coarse

Fig. 3: Restriction takes coarse grid values direct from the
fine grid.

To move values from a coarse level to a fine level, we de-
fine the following prolongation operator. The center point,
which is not on the coarse grid, is updated by the average
update value of its neighbor points.

y′i = yi +
(y′i−1 − yi−1) + (y′i+1 − yi+1)

2

fine

coarse

Fig. 4: Prolongation at fine points takes average update
value from tow neighbor coarse points.

We choose a non-linear prolongation method here since
linear interpolation has been shown to provide weak conver-
gence in previous research[6].

Figure 2 shows the multilevel structure with two levels.
We first use restriction

The main idea of the proposed multilevel parareal method
is to start from the coarsest level and performance the
parareal algorithm to get an initial for the next level such
that with smaller computation, we could get a better initial
value and therefore reduce iteration number. The algorithm
is shown in the following Algorithm 1.

Algorithm 1: Multilevel parareal (MPI parallelized)
Explicit time-marching on the coarsest level L.
for level l = L-1 to 1 do

for iterate until residual tolerance do
On current processor:
Solve on the current level
yf = Fl(yj , tj , tj+1).

Solve on the coarsest level yc = G(yj , tj , tj+1).
for Processor p = 1 to P do

Solve on the coarsest level
yk+1
j+1 = G(yk+1

j , tj , tj+1) +

Fl(y
k
j , tj , tj+1)− G(ykj , tj , tj+1)

Update values to level l with prolongation
y′i = yi +

(y′i−1−yi−1)+(y′i+1−yi+1)

2

end
end

end

Similar to the parareal method, we start by computing an
initial value on the coarsest level. Then, we start from coarse
to fine, use explicit solver on each level as the high preci-
sion solver compare to the coarsest grid as the low precision
solver, and perform the parareal method until convergence.
Then, we use the results as the initial values for the next
level. Different from the MGRIT method, we have separate
iteration numbers on each level, and we move to a finer level
only when the convergence criteria is reached.

In order to reduce the number of computations, we want
to reduce the iteration numbers at finer levels as much as
possible. Thus, we set smaller tolerance (stricter criteria) in
coarser levels.

3.3 Computation and Communication Costs
Before moving into the numerical result, we would like

first to analyze the computation and communication costs of
our method compared to the spatial parallelization method.
The following computation cost is the parallelized compu-
tation cost. In the parallel part, only computation cost on
one processor would be counted, and in the sequential part,
all computation costs will be computed.

Assume that we are using the Lax-Wendroff method as
the target explicit time-marching scheme. For simplifica-
tion, we say that the full computation cost of a sequential
Lax-Wendroff method is O(LW ). Also, assume that we have
P processors, and we make full use of them, the number of
space points is N , and the number of time steps is T . We
then note the iteration number of the multilevel parareal
method in each level as ml, l = L− 1, . . . , 0 from coarse to
fine. The computation cost for the spatial parallelization is

1

P
O(LW )

and the computation cost for the multilevel parareal method
is

1

P
(mL−1 ×

1

2n−1
O(LW ) + . . .+m0 ×O(LW ))
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+
1

2L
O(LW )× (1 +mL−1 + . . .+m0)

We can easily see that the multilevel parareal method has
a much higher computation complexity than straightforward
spatial parallelization. However, if we could reduce the iter-
ation in the fine levels, especially m0, then the computation
complexity would not differ so much. As we can see in the
numerical result at Section 4, with our method m0 iteration
number is typically 1 with enough levels.

Similarly, we could also estimate the communication cost
of both the spatial parallelization method and the multi-
level parareal method. Lax-Wendroff only takes values of
itself and its neighbor points from the previous time step.
Thus, only two values are exchanged between each neighbor
processor. The communication cost is as the following:

2(P − 1)× T

For the multilevel parareal method, for each iteration, and
between each processor, we pass a whole space grid of the
current level to the next processor. The communication cost
is the following:

(m0
1

2
N +m1

1

22
N + . . .+mL−1

1

2n
N)× (P − 1)

For a generally large one-dimensional problem with simi-
lar number of space grid and time grid, we could write the
following inequation.

mi ≤ P � N ≈ T ∀i

We could see that theoretically, the communication cost
is also larger with the parallel-in-time method. However,
another critical factor that affects the runtime for parallel
computation is the number of synchronizations. The total
synchronization number required for spatial parallelization
is:

T

and the total synchronization number for the multilevel
parareal method is:

L−1∑
i=0

mi

We see that for large problems, the multilevel parareal
method clearly has fewer synchronization numbers. This im-
plicates that the multilevel parareal method might achieve
higher scalability than spatial parallelization, assuming that
the iteration numbermis does not overgrow according to the
number of processors.

4. Numerical Results
For the numerical experiment, we choose the one-

dimensional advection problem, which is a hyperbolic PDE
problem. As mentioned in Section 3.1, hyperbolic problems
are harder to converge than other problems while applying
parallel-in-time methods.

Fig. 5: Initial condition for the advection problem.

4.1 One-Dimensional Advection Problem
We apply our method to the following one-dimensional

advection problem.

∂u

∂t
= −1× ∂u

∂x

This advection function represents a wave moving towards
the +x direction with a velocity of 1. We set the initial
condition as the following sine wave, as shown in Figure 5.

u(x, 0) =

{
0 0 ≤ x ≤ 50, 110 ≤ x ≤ 300

100[sin(π x−50
60 )] 50 ≤ x ≤ 110

We choose the Lax-Wendroff method as the explicit time-
marching scheme to solve the advection problem.

un+1
i = uni +

∂u

∂x
∆t+

∂2u

∂x2
∆t2

2!
+O(∆t3)

un+1
i = uni −

∆t

2∆x
(uni+1 − uni−1) +

∆t2

2∆x2
(uni+1 − 2uni + uni−1)

For the multilevel parareal method, we apply the Lax-
Wendroff method on the target grid level as low and high
precision solvers.

We compare the result of our multilevel parareal method
to the sequential Lax-Wendroff method after 128 time steps.
With average error tolerance 0.3, as shown in Figure 6a, we
can see that we achieve very similar results for the sequential
Lax-Wendroff method and the multilevel parareal method.
Most error, as shown in Figure 6b concentrates on the dis-
continuous points of the sine wave, which is inevitable due
to the Gibbs phenomenon. Overall, the proposed method
serves as a decent approximating parallelization method.
Furthermore, the multilevel parareal method is very scalable
and efficient, which we will discuss in the following sections.

4.2 Convergence and Iteration Number
We also observe that with a sufficient number of levels, the

iteration number of the finest level could be reduced to just
one iteration. Table 1 shows the iteration required to con-
verge to a reasonable result with a different number of levels
and different error tolerance. We could see that overall, with
deeper levels, the numbers of iteration required to converge
on the finest level are fewer. Of course, too many levels
would also cause redundant computations. Thus, choosing
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the right number of levels is essential for this method.
The result we show in Figure 6a uses three levels, eight

processors, and with average tolerance 0.3. The tolerance on
the table is the tolerance of the finest level. As described in
Section 3, we use smaller tolerance in coarser levels. There-
fore, the tolerance on level 1 would be 0.15, so on so forth.
The tolerance values are relatively large, but as we could
see from the result, most error cams from the discontinuous
points and on fine grids that are computed by prolongation.

4.3 Runtime Comparison
In order to get the scalability of the multilevel parareal

method, we texted on a huge example with 214 + 1 x grid
points and 214 number of time steps. We construct a mul-
tilevel parareal method with seven levels and compare the
runtime result to that of the spatial parallelization.

We record results with the number of processors from 1
to 64. The tests are run on Oakbridge-CX. Oakbridge-CX
is an Intel Xeon Platinum 8280 system with 28 CPUs per

(a) Result comparison

(b) Error comparison

Fig. 6: (a)Result and (b)error comparison of the multilevel
parareal method to the sequential Lax-Wendroff method.

Error tol 1.0 0.5 0.3 0.2
level 3 8 8 8 8
level 2 4 8 6 8 7 8 7 8
level 1 3 3 1 3 5 5 4 6 8 4 8 8
level 0 1 1 1 1 1 1 2 2 1 2 4 1

Table 1: Required iteration to converge with different error
tolerance and with different number of levels.

Fig. 7: Runtime comparison of spatial parallelization and
parallel-in-time (our method) with different number of MPI
processors.

node and two cores per CPU. The memory size is 96 GB,
and the memory bandwidth 101 GB/s.

We could see that the multilevel parareal method has
higher scalability than the spatial parallelization of the Lax-
Wendroff method. As discussed in Section 3.3, spatial par-
allelization synchronizes T times, much larger than

∑
mi

times for the multilevel parareal method. The huge differ-
ence in synchronization number is what causes the multilevel
parareal method to scale better than spatial parallelization.

We could also observe that the scalability for the multi-
level parareal method decreases after 16 processors. This is
because we are using a 7 level structure. With more than 16
processors, the number of data points at the coarsest level in
each processor is too less that it affects the convergence rate.
However, if we have a larger example, the higher scalability
should be maintained even with more than 16 processors.

5. Conclusion
We propose a multilevel parareal method to perform

parallel-in-time for explicit time-marching schemes. The
multilevel parareal method is mainly based on the parareal
method but has a hierarchy similar to the MGRIT method.
We coarsen both space and time grid at the same time to
prevent the violation of the CFL-condition and to improve
the convergence of the method. We also use a non-linear pro-
longation operation to increase the convergence rate. With
not so small tolerance, we could achieve similar results with
a small iteration number, which leads to less computation
time.

The proposed method has higher scalability compare to
spatial parallelization because it has much less synchroniza-
tion to perform. We have also shown the previous results
with a one-dimensional advection example, which is hyper-
bolic.

Despite that the method has high scalability, the accuracy
is yet to be improved. Errors occur on discontinuous points,
and fine points suggest that we might have to use a bet-
ter prolongation method. We have also not yet tested out
the method on sufficiently enough number of examples, or
higher dimension examples. So the versatility of the method
is yet to be proven.

5ⓒ 2020 Information Processing Society of Japan

Vol.2020-HPC-175 No.20
2020/7/31



IPSJ SIG Technical Report

Fig. 8: Two dimension compressible fluid CFD with a obsti-
cle in the center.

6. Future Work
As shown in the numerical result, the result of our mul-

tilevel parareal method could not perfectly fit that of the
sequential Lax-Wendroff method. We are currently taking a
larger tolerance and use the method as a fast approximation
method. For future work, we would like to improve the ac-
curacy of the method. One direct idea is to use higher-order
prolongation methods.

Another problem with our current method is that since
we have a deep level structure, there are no enough points
at the coarsest level, which causes iteration to grow rapidly
with the number of processors at coarse levels. This could
be solved by changing the number of levels or by improving
the convergence, which is our future work.

Since parallel-in-time and parallel-in-space each has its
limits and advantages, it would be reasonable to apply both
at the same time and find out the best parallel strategy with
a given computation resource.

We are also working on applying our method on
two-dimension compressible computational fluid dynamics
(CFD) problems. CFD simulation, especially shock wave
simulation, are important applications of explicit time-
marching schemes. Apart from that, a parallel-in-time
method for complicated systems such as CFD has not yet
been tried because of its huge complexity. As our method
is relatively simple and highly scalable, it would be critical
if we could apply our multilevel parareal method on CFD
problems.
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