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Abstract: Top-k error ratio is a popular performance measure for multi-category classification in which the number
of categories is large. With the aim of obtaining the multi-category classifier minimizing the top-k error, Lapin et al.
has developed the top-k support vector machine (top-k SVM) which is trained with the top-k hinge loss. Although
top-k hinge is designed to be suitable for the top-k error, another loss or the top-k′ hinge loss with k′ � k often yields
a smaller top-k error ratio than the top-k hinge loss. This suggests that the top-k hinge loss is not always the optimal
choice for the top-k error, which motivates us to explore variants of the top-k hinge loss. In this paper, we studied a
weighted variant of the top-k hinge loss, and refer to the learning machine as the weighted top-k SVM. We developed
a new optimization algorithm based on the Frank-Wolfe algorithm that requires no step size, enjoys the clear stopping
criterion, and is never solicitous for computational instability. The Frank-Wolfe algorithm repeats the direction finding
step and the line search step. The discoveries in this study are that both the steps can be given in a closed form. By
smoothing the loss function, geometrical convergence can be achieved. Experimental results reveal that the weighted
top-k SVM often achieved the better pattern recognition performance compared to the unweighted top-k SVM.
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1. Introduction

Top-k error ratio is a popular performance measure for multi-
category classification in many fields including computer vision
and natural language processing in which the number of cate-
gories is large. When using the performance measure, top-k error,
the multi-category classifier of interest is supposed to give top-k

outputs for an unknown output. In evaluation with the top-k er-
ror ratio, the testing examples are counted if the set of the top-k
outputs does not contain the true category. The criterion is more
suitable when the number of categories is larger which makes
heavier the ambiguity of the boundaries among categories.

With the aim of obtaining the multi-category classifier mini-
mizing the top-k error, Lapin et al. [10] has developed the top-k

support vector machine (top-k SVM) which is trained with the
top-k hinge loss. Although top-k hinge is designed to be suitable
for the top-k error, another loss or the top-k′ hinge loss with k′ � k

often yields a smaller top-k error ratio than the top-k hinge loss,
as reported in Ref. [10]. This suggests that the top-k hinge loss is
not always the optimal choice for the top-k error, which motivates
us to explore variants of the top-k hinge loss [1], [3], [16], [17].

In most of modern machine learning methods, the values of
model parameters are determined by empirical risk minimization

(ERM). A shortcoming that many algorithms for ERM suffer is
that insufficient manual tuning of parameters for optimization of-
ten induces an optimization failure. For example, the number of
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epochs and a step size have to be chosen carefully by monitoring
the learning curve in training deep neural networks. Meanwhile,
the framework of stochastic dual coordinate ascent (SDCA) al-
gorithm [15] does not entail any manual tuning. At each itera-
tion of SDCA, an upper bound of the objective gap, which is
the difference between the current primal objective value and the
minimum, can be computed, making the accuracy of the solu-
tion guaranteed by stopping iterations when the upper bound is
small enough. Furthermore, SDCA works without a step size. In
SDCA, a set of the model parameters is divided into many blocks.
At each iteration, one of the blocks is chosen randomly, and the
rest of the blocks are fixed whereas the chosen block is optimized.
Lapin et al. [10] have employed SDCA to train the top-k SVM.
They have attempted to develop a projection algorithm to solve
the sub-problem for optimization of a block of variables in each
iteration of SDCA. Chu et al. [4] have developed a Newton-based
method for SDCA update, and demonstrated that their algorithm
was faster than the projection algorithm in their numerical experi-
ments. Both the algorithms are specialized to the top-k hinge loss,
forcing the applicability to variants of the top-k hinge to be lim-
ited. This is one of the reasons for developing a new optimization
algorithm that can also be applied to a wide class of extensions of
the top-k hinge loss function.

In this paper, we consider a weighted variant of the top-k hinge
loss, and refer to the learning machine as the weighted top-k sup-

port vector machine. The weighted variant is a special case of the
robust top-k hinge loss presented by Chang et al. [3] who have
provided a difference of convex algorithm for learning the robust
top-k SVM. Their algorithm requires careful adjustment of step
size and sometimes fails to converge to the optimum. The new
optimization algorithm developed in this study is based on the
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Frank-Wolfe algorithm [5] that requires no step size, enjoys the
clear stopping criterion, and is never solicitous for computational
instability. Frank-Wolfe algorithm repeats the direction finding

step and the line search step. One of the discoveries in this study
is that both the steps can be given in a closed form, which shall
be presented in Section 5. The proposed algorithm can be ap-
plied not only to the original top-k SVM but also to the weighted
variant, in spite of a much more complicated effective domain
than that for the original top-k hinge loss (Section 4). By smooth-
ing the loss function, some variants of the Frank-Wolfe algorithm
can converge geometrically [8]. The proposed algorithm can be
applied even when smoothing the weighted top-k hinge, which
is described in Section 6. Experimental results reveal that the
weighted top-k SVM outperforms the multi-category classifiers
trained with Lapin et al. [10]’s and Chu et al. [4]’s learning meth-
ods (Section 7). Several fundamental techniques related to con-
vex analysis are used throughout this paper. Readers unfamiliar to
convex optimization may refer to some textbooks such as Ref. [2].
This paper is a journal version of our conference paper [7]. All
the derivations of the proofs are referred to the supplemental ma-
terials of the conference paper [7].

Notation: We denote vectors by bold-faced lower-case letters
and matrices by bold-faced upper-case letters. Entries of vectors
and matrices are not bold-faced. The transposition of a matrix
A is denoted by A�, and the inverse of A is by A−1. We use
ei to denote a unit vector in which (i)-th entry is one and all the
others are zero. The size of ei depends on the context. The n-
dimensional vector all of whose entries are one is denoted by 1n.
We use R and N to denote the set of real numbers and positive
integers. Positive integers are referred to as natural numbers in
this article. Note that 0 � N in this definition. Rn and Nn to de-
note the set of n-dimensional real and natural vectors, and Rm×n

to denote the set of m × n real matrices. For any n ∈ N, we use
[n] to denote the set of natural numbers less than or equal to n.
The set of real nonnegative numbers is denoted by R+. For any
x,y ∈ Rn, define 〈x,y〉 :=

∑n
i=1 xiyi where xi and yi is the i-th

entry of x and y, respectively. For any X ,Y ∈ Rm×n, define
〈X ,Y 〉 :=

∑m
i=1

∑n
j=1 Xi, jYi, j where Xi, j and Yi, j is the (i, j)-th

entry of X and Y , respectively. The notation, given so far, is
standard and used in many literature.

We shall introduce the notation π( j ; s) ∈ [m] which is the in-
dex of the j-th largest component in a vector s ∈ Rm. When
using this notation, the vector s is omitted if there is no dan-
ger of confusion. Namely, for a vector s ∈ Rm, we can write
sπ(1) ≥ sπ(2) ≥ · · · ≥ sπ(m).

2. Empirical Risk Minimization

The linear multi-category classifier discussed in this paper has
a parameter W := [w1, . . . ,wm] ∈ Rd×m, where the number of
categories is m, to predict the category label of an unknown input
x ∈ Rd by choosing the largest one from m prediction scores

〈w1,x〉 , . . . , 〈wm,x〉 . (1)

In order to determine the value of the parameter W , suppose that
we are given n training examples,

(x1, y1), . . . , (xn, yn) ∈ Rd × [m]. (2)

Typical approach is the empirical risk minimization (ERM), in
which the parameter W is set to the value that minimizes the
regularized empirical risk defined as

P(W ) :=
λ

2
‖W ‖2F +

1
n

n∑
i=1

Φ(W �xi ; yi) (3)

where λ > 0 is a regularization constant and Φ(· ; y) : Rm → R is
a convex loss function for a true class y ∈ [m].

Dual methods have been adopted by several studies to find the
minimizer of the regularized empirical risk [4], [6], [9], [10], [15].
The dual methods attempt to find the maximizer of the Fenchel

dual function [2] given by

D(A) := −λ
2
‖W (A)‖2F −

1
n

n∑
i=1

Φ∗(−αi ; yi) (4)

where αi is the i-th column in the m × n matrix A which is the
dual variable; function Φ∗(· ; yi) : Rm → R̄ is the convex conju-
gate of the loss function Φ(· ; yi) where R̄ := R ∪ {+∞}; function
W (·) is defined as

W (A) :=
1
λn

XA� (5)

where X := [x1, . . . ,xn]. One of the strong advantages of dual
methods is that, during the iterations, the duality gap P(W (A))−
D(A) can be monitored (In the literature of optimization, the
term, duality gap, is defined by the minimal gap between the pri-
mal and dual objective values, although the gap at any possible
primal and dual feasible solutions is referred to as the duality gap
in many machine learning literature). The duality gap vanishes
at an optimum for most of the loss functions. When the duality
gap is below a small positive threshold ε, the recovered primal
variable W (A) ensures the ε-accuracy, i.e.,

P(W ) − min
W ′∈Rm×n

P(W ′) ≤ ε, (6)

which allows us to decide when to stop the iterations.

3. Unweighted Top-k Hinge

The learning algorithm for top-k SVM [10] attempts to min-
imize the regularized empirical risk where the empirical risk is
evaluated with the average of the top-k hinge losses for training
examples. The top-k hinge loss suffered for the prediction score
s =W �x is defined as

Φutk(s ; y) := max

⎧⎪⎪⎪⎨⎪⎪⎪⎩0,
1
k

k∑
j=1

(
1m − ey + s − sy1m

)
π( j)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (7)

where W is a matrix of the model parameters. Then, how can
we minimize the regularized empirical risk? Lapin et al. [10]
have employed the stochastic dual coordinate ascent (SDCA) al-
gorithm to find the minimizer in an iterative fashion. One col-
umn in A is selected at random, and updated at each iteration of
SDCA. Lapin et al. [10] have developed an algorithm for updat-
ing a column and plugged it in to the framework of SDCA.

To express the convex conjugate of the top-k loss function,
Lapin et al. [10] introduce the following convex polytope

Δ(k, r) :=

{
β ∈ Rm

+ | 〈1,β〉 ≤ r, β ≤ 1
k
11�β

}
(8)
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and they call it the top-k simplex. Using the convex polytope, the
top-k loss function can be re-expressed as

Φutk(s ; y) = max
β∈Δ(k,1)

〈
β,1m − ey + s − sy1m

〉
. (9)

From the Eq. (10), the convex conjugate can be derived as

Φ∗utk(v ; y) = vy (10)

provided that the value of v satisfies

〈v,1〉 = 0, ∃by ∈ R, v + (by − vy)ey ∈ Δ(k, 1); (11)

otherwise, Φ∗utk(v ; y) goes infinity.

4. Weighted Top-k Hinge

In this section, an extension of the top-k hinge loss function is
described. We use m pre-defined weights ρ :=

[
ρ1, . . . , ρm

]� such
that ρ1 ≥ · · · ≥ ρm ≥ 0. With these weights, we introduce the
following loss function:

Φwtk(s ; y) := max

⎧⎪⎪⎪⎨⎪⎪⎪⎩0,
m∑

j=1

(
1m − ey + s − sy1m

)
π( j)
ρ j

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (12)

This function is referred to as the weighted top-k hinge loss. This
definition is a special case of Chang et al. [3]’s extensions. They
use an upper bound of the loss value, say τ. Their loss function is
no more convex unless τ = +∞.

A sub-gradient of the weighted top-k hinge is given by ∀ j ∈
[m],

Φwtk(s ; y)
∂sk

=
(
ρ j − 〈ρ,1〉 δk,y

)
1[Φwtk(s ; y) > 0] (13)

for k = π( j ; 1m − ey + s − sy1m), where 1[x] = 1 if the argument
x is true; 1[x] = 0, otherwise. We have used δ·,· to denote the
Kronecker’s delta. Equation (13) suggests that O(m log m) cost is
needed for computing the gradient. This fact shall be used in the
next section.

To exploit the duality gap for a stopping criterion, the convex
conjugate of the weighted top-k hinge loss is required. To derive
the convex conjugate, we use the following lemma:

Lemma 1. Let y ∈ [m] and δ ∈ Rm such that δy = 0. With
a non-empty convex polyhedron B ⊆ Rm, define a function
Φ : Rm → R as

Φ(s) := max
β∈B

〈
β, δ + s − 1msy

〉
. (14)

The convex conjugate of Φ is then expressed as

Φ∗(v) =

⎧⎪⎪⎨⎪⎪⎩
− 〈v, δ〉 if v ∈ dom(Φ∗),
+∞ otherwise,

(15)

where dom(Φ∗) is the effective domain of Φ∗ which is given
by

dom(Φ∗) =
{
v ∈ Rm

∣∣∣∣∣ 〈v,1〉 = 0,

∃βy ∈ R, v + (βy − vy)ey ∈ B
}
.

(16)

In the case of the unweighted top-k hinge loss (7), the convex

conjugate (10) and its effective domain (11) are indeed derived by
setting B := Δ(k, 1) and δ = 1 − ey.

The convex conjugate of the weighted top-k hinge loss can also
be derived with the use of Lemma 1 as follows. Preliminary to
application of the lemma, we shall first observe that the weighted
top-k hinge loss can be re-expressed in the form of Eq. (14).
There exist an index set K :=

{
k1, . . . , k|K|

} ⊆ [m] and a trans-
formed weights ρ′ :=

[
ρ′1, . . . , ρ

′
|K|

]�
such that

Φwtk(s ; y) = max

⎧⎪⎪⎨⎪⎪⎩0,
|K|∑

=1

ρ′
g
(s)

⎫⎪⎪⎬⎪⎪⎭ (17)

where

∀
 ∈ |K|, g
(s) :=
k
∑
j=1

(
1m − ey + s − sy1m

)
π( j)
. (18)

If defining a convex polyhedron Bwtk as

Bwtk :=
{
β ∈ Rm

∣∣∣∣∣∃ζ ∈ R, ∀
 ∈ [|K|], ∃λ
 ∈ Δ(k
, ρ
′

k
),

ζ =
〈1,λ
〉

k
ρ′

, β = λ1 + · · · + λ|K|

}
, (19)

the loss function can be re-written as

Φwtk(s ; y) = max
β∈Bwtk

〈
β,1m − ey + s − sy1m

〉
. (20)

Thusly, it has been confirmed that the weighted top-k hinge loss
satisfies the assumption of Lemma 1, which leads to the following
result.

Theorem 2. The convex conjugate of the weighted top-k
hinge loss is expressed as

Φ∗wtk(v ; y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vy if 〈v,1〉 = 0,

∃by ∈ R, v + (by − vy)ey ∈ Bwtk,

+∞ o.w.

(21)

Our goal is the development of optimization algorithms for
ERM based on the weighted top-k hinge loss, in which no step
size is required and the clear stopping criterion is provided like
SDCA. Lapin et al. [10] and Chu et al. [4] have tried to develop
a key ingredient of SDCA which optimizes a chosen column of
the dual variable A for the unweighted top-k hinge loss. For the
weighted extension of the top-k hinge, a serious obstacle against
the development of such an algorithm is a much more compli-
cated effective domain of the dual variables, −dom(Φ∗wtk(· ; yi)).
In the next section, we present a new optimization algorithm to
avoid facing the rather complicated problem directly for updating
a column of A.

5. Learning Algorithm

In this section, a new optimization algorithm for learning
weighted top-k SVM is presented. The algorithm developed in
this study is based on Frank-Wolfe framework [5] which itera-
tively maximizes a function over a convex polyhedron. In the
dual problem for ERM, the polyhedron is the effective domain of
the negative dual objective
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Algorithm 1: General framework of Frank-Wolfe algorithm.

1 begin
2 A(0) ∈ dom(−D);

3 for t := 1 to T do
4 U(t−1) ∈ argmax

U∈dom(−D)

〈
∇D(A(t−1)),U

〉
;

5 ΔA(t−1) := U(t−1) −A(t−1);

6 γ(t−1) ∈ arg maxγ∈[0,1] D(A(t−1) + γΔA(t−1));

7 A(t) :=A(t−1) + γ(t−1)ΔA(t−1);
8 end
9 end

dom(−D) = (−domΦ∗(·; y1)) × · · · × (−domΦ∗(·; yn)). (22)

As presented in Algorithm 1, each iteration of Frank-Wolfe
framework consists of two steps: direction finding step and line

search step.
In the direction finding step, the optimal solution that max-

imizes the linearized objective function over the polyhedron is
searched, where the linearized objective function is given by

〈
∇D(A(t−1)),U −A(t−1)

〉
+ D(A(t−1)) (23)

which is the first-order Taylor expansion of the dual objective
D(·) around the previous solution A(t−1). If denoting the solu-
tion of this linear programming (LP) problem by U (t−1), the new
direction is determined as ΔA(t−1) := U (t−1) −A(t−1).

In the line search step, the optimal point is searched on the line
segment between A(t−1) and A(t−1) + ΔA(t−1). The optimal point
is expressed as A(t) := A(t−1) + γ(t−1)ΔA(t−1) where

γ(t−1) := argmax
γ∈[0,1]

D
(
A(t−1) + γΔA(t−1)

)
. (24)

The line search step can be expressed in a closed form so long
as the convex conjugates of the loss functions are an affine or
quadratic function. For the weighted top-k SVM, this step can be
written as

γ(t−1) = max(0,min(1, γ̂(t−1))), (25)

where

γ̂(t−1) :=
λn

〈
ΔA(t−1),Ey −Z(A(t−1))

〉
〈
ΔA(t−1)K ,ΔA(t−1)

〉 , K :=X�X ,

and Z(A) :=
1
λn

KA�, Ey :=
[
ey1 , . . . ,eyn

]
. (26)

This step requires O(mn min(d, n)) computation.
Then, how to compute the LP solution required in the direction

finding step? Does the LP problem for this step entail the use
of a general-purpose solver in every iteration? The answer is no.
This study has discovered that the direction finding step can be
given in a closed form and takes only O(nm log m) computation.
Below we shall derive the algorithm. From the expressions of
the linearization approximation and the effective domain of the
dual objective, it is seen that the linear programming problem
can be divided into n independent and smaller LP problems: for
i = 1, . . . , n,

max

〈
∂D(A(t−1))
∂αi

,ui

〉
wrt ui ∈ −dom(Φ∗wtk(·; yi)).

(27)

The LP solution for the direction finding step U (t−1) is obtained
by solving each of n smaller LP problems and concatenating these
n optimal solutions u(t−1)

i as U (t−1) := [u(t−1)
1 , . . . ,u(t−1)

n ]. The
gradient with respect to the i-th column in A is expressed as

∂D(A)
∂αi

=
1
n

(zi(A) − eyi ) (28)

where zi(A) is the i-th column of Z(A).
A naı̈ve way to finding the optimal solution u(t−1)

i to each of
n LPs is the use of a general-purpose LP solvers. The variables
to be determined in each LP problem are ui ∈ Rm as well as
βy, ζ ∈ R and λ1, . . . ,λ|K| ∈ Rm in its LP form. The computa-
tional time for solving each LP with a general-purpose solver is
prohibitive if the number of classes is large. In this study, the
following lemma has been found, which brings an O(m log m) al-
gorithm for solving each LP.

Lemma 3. Let φ : Rm → R be a convex function whose
convex conjugate φ∗ is given by −φ∗(−α) = 〈f ,α〉 for
α ∈ −domφ∗, where f ∈ Rm is a constant vector. Then,
it holds that

∀η ∈ R++, argmax
α∈−dom(φ∗)

〈g,α〉 = −∂φ(f − ηg) (29)

where ∂φ(x) is the sub-differential of φ at x ∈ Rm.

By substituting f := eyi , g := (eyi − zi(A(t−1)))/n and η := n

into the result of Lemma 3, a solution optimal to the LP (27) can
be expressed in a closed form as

u(t−1)
i := −∇Φwtk(zi(A

(t−1)) ; yi) (30)

where ∇Φwtk(zi(A(t−1))) is a sub-gradient of the weighted top-k
hinge at zi(A(t−1)). On computing Z(A(t−1)), it takes O(m log m)
time to compute u(t−1)

i , as shown in the previous section. These
results can be summarized in the following theorem.

Theorem 4. Consider the Frank-Wolfe algorithm for max-
imizing D(A) with Φ∗(·; yi) = Φ∗wtk(·; yi) for i = 1, . . . , n.
Every iteration consisting of the direction finding step and
the line search step can be done in O(nm(min(d, n)+ log m))
computational time.

The techniques presented in this section make efficient every
iteration not only of the classical Frank-Wolfe but also of its vari-
ants such as away-step Frank-Wolfe (AFW) and pairwise Frank-

Wolfe (PFW) algorithms. Recently Lacoste-Julien and Jaggi [8]
have proved the linear convergence for some variants of the
Frank-Wolfe algorithm. When employing these variants of the
Frank-Wolfe algorithm, the upper bound of the objective gap
dgap(A) := minW P(W )−D(A) is guaranteed to geometrically
decrease as dgap(A(t)) ≤ exp (−ζt) where ζ is a constant depen-
dent on the optimization problem [8]. Their theories are based
on an assumption that the objective function must be smooth

and strongly convex [12], although −D(·) does not possess the
strongly convex property in the setting discussed so far. In the
next section, we introduce the technique of Moreau envelope [14]
to the weighted top-k hinge, which endows the objective with the
strong convexity.
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6. Optimization for Smoothed Top-k Hinge

The two aforementioned top-k hinge losses, Eqs. (7) and (12),
suffer from the discontinuity in the derivatives. Several Refs. [11],
[13], [15] have considered smoothing loss functions to obtain a
better property for optimization. Following Ref. [11], the Moreau
envelope, which is a typical approach to smoothing, is introduced
for the weighted top-k hinge loss in this study. The smoothed

weighted top-k hinge loss is given by

Φstk(s ; y) := min
z∈Rm

(
Φwtk(z ; y) +

1
2γ
‖s − z‖2

)
(31)

where γ > 0 is a smoothing constant. Here we discuss how to find
W ∈ Rd×m that minimizes the regularized empirical risk based on
the smoothed loss, denoted by Pstk : Rd×m → R, which is given
in (3) with Φ(·; yi) = Φstk(· ; yi) for i = 1, . . . , n. To use dual
methods for learning with this smoothed loss function, the dual
objective, denoted by Dstk : Rm×n → −R̄, must be maximized
with respect to the dual variables A ∈ Rm×n. It can be seen that
the dual objective −Dstk is strongly convex with coefficient γ/n
which is proportional to the constant ζ. It is not straightforward
to develop an efficient Frank-Wolfe iteration again to solve this
dual problem, because the convex conjugate of the smoothed loss
is no longer a linear function which violates the assumption of
Lemma 3. Nonetheless, the Frank-Wolfe framework is re-used in
this study, with the help of the following proposition.

Proposition 5. Let x̃i :=
[
x�i ,
√
γλne�i

]� ∈ Rd+n for
i = 1, . . . , n. Then, the optimization problem for maxi-
mizing Dstk(A) is not only dual to the minimization prob-
lem with the primal objective Pstk : Rd×m → R but also
dual to the minimization problem with the objective func-
tion P̃wtk : R(d+n)×m → R defind as

P̃wtk(W̃ ) :=
λ

2

∥∥∥W̃ ∥∥∥2

F
+

1
n

n∑
i=1

Φwtk(W̃ �x̃i ; yi). (32)

This proposition suggests that the learning problem for the
smoothed loss can be transformed back to that for the non-
smoothed loss. This enables us to re-use the algorithm presented
in Section 5 — the trick for direction finding step, in particular —
with the kernel matrix K replaced to K̃ := X�X + γλnI . The
iterations can be stopped when the following duality gap is small
enough:

Gapstk(A) := P̃wtk(W̃ (A)) − Dstk(A)

=
γ

n
‖A‖2F +

1
λn2

〈
AK − λnEy ,A

〉
(33)

+
1
n

n∑
i=1

Φwtk(zi(A) + γαi).

The above observations suggest that neither the (d + n)-
dimensional vectors x̃1, . . . , x̃n nor the model parameters W̃ ∈
R

(d+n)×m have to be unfolded in the computational memory to im-
plement the Frank-Wolfe algorithm for minimizing P̃utk(W̃ ) and
to monitor the duality gap.

7. Experiments

We shall demonstrate the convergence behaviors of the pro-
posed Frank-Wolfe algorithms for the top-k SVM learning, fol-
lowed by reporting the pattern recognition performances with
top-k accuracies on several datasets for benchmarking multi-class
classifiers. The proposed Frank-Wolfe algorithms were imple-
mented in Python. The Python code is available at https://github.
com/hirohashi/wtopk.

7.1 How Does Smoothing Affect Convergence?
We investigated how the smoothing technique affected the con-

vergence. In Section 6, the smoothed weighted top-k SVM can
be trained again with the Frank-Wolfe algorithm for non-smooth
weighted top-k SVM presented in Section 5. Theoretically, a
faster convergence rate can be achieved if the coefficient of strong
convexity is larger, and the larger coefficient can be generated
with a larger smoothing coefficient γ. In the experiments pre-
sented here, the smoothing coefficient γ is varied with 0, 10−3,
10−2, and 10−1, where the value γ = 0 does not change the non-
smooth loss function. Figure 1 plots the duality gaps against
the number of iterations. The duality gaps produced with Std
FW, AFW, and PFW, respectively, are shown in Fig. 1 (a), (b),
(c). The dataset used here is News20. When using γ = 10−1,
the duality gap felt below 10−3 within only eight iterations. For
γ = 10−3 and γ = 10−2, the dual gaps are decreased quickly
for the first several iterations, although the convergence speeds
slowed down suddenly. This might be the zigzag phenomenon
discussed in Ref. [8]. Meanwhile, such a slowdown was not ob-
served when using AFW and PFW with γ = 10−2. The duality
gaps for γ = 10−3 were decreased almost linearly on the log-log
plots, although, due to the mild slopes, the number of iterations to
attain 10−3 of the duality gap did not differ largely from the ones
of non-smooth loss.

7.2 Convergence Behavior for Weighted Top-k SVM
One advantage of the proposed algorithms is that dual vari-

ables can be optimized within the feasible region that has a much
more complicated shape by having weights for differences in the
prediction scores, as defined in Eq. (12). In the experiments re-
ported here, three types of the weights, called flat, linear and
exp, were examined. The flat, linear and exp weights, re-
spectively, were designed as

ρflat
j :=

1
k
, ρlinear

j :=
2(k + 1 − j)

(k + 1)k
, ρ

exp
j :=

exp(− j/k)∑k
j′=1 exp(− j′/k)

for j ≤ k, and the remaining weights are zero. The flat re-
covers the unweighted top-k hinge, whereas the linear and exp
weights, respectively, decrease the coefficient ρ j linearly and ex-
ponentially as j goes larger. The convergence behaviors for the
three weight types on FMD and News20 were plotted in Fig. 2.
No significant differences amongst the three weight types were
observed despite the effective domains complicated by weighting.

7.3 Pattern Recognition Performance
Finally, the pattern recognition performances of the proposed
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Fig. 1 Convergence behavior for smooth unweighted top-k hinge. The duality gaps against the number
of iterations with three Frank-Wolfe algorithms, Std FW, AFW, and PFW, are plotted in (a), (b),
and (c), respectively. The smoothing parameter γ was varied with 0, 10−3, 10−2, and 10−1. Larger
γ yields smoother loss. The unweighted top-k hinge smoothed with γ = 0 is still non-smooth.
Convergence was faster with larger γ.

Fig. 2 Comparisons of the weighted and unweighted top-k hinges. The flat indicates the unweighted
top-k hinge, whereas the linear and exp represent two types of weighted top-k hinges with the
weights decreasing linearly and exponentially, respectively. In spite of the complicated effective
domains, the convergence behaviors of the weighted top-k hinges resemble those of the unweighted
top-k hinges.

Table 1 Top-k accuracies of the proposed weighted top-k SVMs and the unweighted top-k SVMs trained
with different optimization algorithms. WTk (linear) and WTk (exp), respectively, indicate
the weighted top-k SVMs with weight coefficients decreasing linearly and exponentially. UTk
(ours), UTk (lapin), and UTk (chu) are the unweighted top-k SVMs obtained with the pro-
posed Frank-Wolfe algorithm, Lapin et al. [10]’s algorithm, and Chu et al. [4]’s algorithm. In
most cases, the weighted top-k SVMs and the unweighted one learnt by our algorithm achieved
better pattern recognition performances than the existing learning methods.

(a) ALOI (b) Caltech101
Method Top-1 Top-3 Top-5 Top-10

UTk (ours) 0.841 0.929 0.948 0.973
WTk (linear) 0.842 0.929 0.949 0.973
WTk (exp) 0.841 0.930 0.949 0.974

UTk (Lapin) 0.834 0.929 0.949 0.965
UTk (Chu) 0.825 0.920 0.949 0.972

Method Top-1 Top-3 Top-5 Top-10
UTk (ours) 0.548 0.719 0.777 0.844

WTk (linear) 0.550 0.723 0.774 0.843
WTk (exp) 0.547 0.722 0.775 0.844

UTk (Lapin) 0.544 0.723 0.767 0.827
UTk (Chu) 0.535 0.718 0.773 0.829

(c) CUB (d) Indoor67
Method Top-1 Top-3 Top-5 Top-10

UTk (ours) 0.592 0.777 0.847 0.908
WTk (linear) 0.592 0.780 0.844 0.908
WTk (exp) 0.592 0.778 0.843 0.908

UTk (Lapin) 0.580 0.770 0.834 0.901
UTk (Chu) 0.579 0.768 0.842 0.903

Method Top-1 Top-3 Top-5 Top-10
UTk (ours) 0.697 0.878 0.925 0.969

WTk (linear) 0.697 0.881 0.930 0.968
WTk (exp) 0.697 0.879 0.931 0.968

UTk (Lapin) 0.688 0.877 0.927 0.966
UTk (Chu) 0.683 0.875 0.924 0.968

(e) Letter (f) News20
Method Top-1 Top-3 Top-5 Top-10

UTk (ours) 0.759 0.910 0.961 0.994
WTk (linear) 0.766 0.909 0.955 0.991
WTk (exp) 0.765 0.908 0.957 0.991

UTk (Lapin) 0.761 0.907 0.951 0.988
UTk (Chu) 0.761 0.910 0.960 0.995

Method Top-1 Top-3 Top-5 Top-10
UTk (ours) 0.666 0.876 0.929 0.975

WTk (linear) 0.666 0.872 0.929 0.976
WTk (exp) 0.666 0.875 0.929 0.976

UTk (Lapin) 0.657 0.875 0.926 0.972
UTk (Chu) 0.662 0.865 0.922 0.975

learning methods were investigated. We used the top-k accuracy
for the performance measure for multi-category classifiers, where
the top-k accuracy is the ratio of testing examples each of which
the prediction score of the correct category is in the top-k out-
puts. We chose k = 1, 3, 5, 10. For weighted top-k SVM, three
types of weights, ρflat, ρlinear, and ρexp, were examined. These
are denoted by UTk (ours), WTk (linear), and WTk (exp),

respectively. These three multi-category SVMs were trained
with the standard Frank-Wolfe algorithms presented in Section 5.
The regularization parameter was chosen by λ = 1/(nC) where
C = 10−3, 10−2, . . . , 10+3. The smoothing parameter was chosen
from γ = 0, 10−3, 10−2, 10−1. Three-fold cross-validation within
training dataset was performed to determine the values of these
hyper-parameters. These proposed methods were compared with
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Lapin et al. [10]’s and Chu et al. [4]’s methods for learning the
unweighted top-k SVM.

In Table 1, the top-k accuracies are reported on six bench-
marking datasets, ALOI (n = 10,800, d = 128, m = 1,000),
Caltech101 (n = 6,339, d = 256, m = 101), CUB (n = 6,033,
d = 4,096, m = 200), Indoor67 (n = 15,607, d = 4,096, m = 67),
Letter (n = 15,000, d = 16, m = 26), and News20 (n = 15,935,
d = 1,024, m = 20). For CUB and Indoor67, feature vectors
were extracted by the fc7 layer in the deep structure VGG16
trained on ImageNet. For each of five methods, the highest
among four top-k accuracies corresponding k = 1, 3, 5, 10 were
reported in Table 1. Differences in the top-k accuracies among
three weighting schemes are small, although these weighted top-
k SVM achieved higher accuracies in most cases compared to the
unweighted top-k SVM trained with the algorithms developed by
Refs. [4], [10]. The superiority of top-k accuracies over the previ-
ous studies might be caused due to the success of convergence to
the optimum. As demonstrated in Ref. [7], the two existing meth-
ods always fail to minimize the regularized empirical risk for top-
k SVM. This is due to wrongly smaller feasible regions, which
shall be analyzed in Ref. [7]. These results empirically suggest
that solutions more accurate in optimality are of benefit to better
pattern recognition performance.

8. Conclusions

In this study, a weighted extension of top-k SVM and a novel
learning algorithm based on the Frank-Wolfe algorithm were de-
veloped. The new learning algorithms possess all the favorable
properties of SDCA as well as the applicability not only to the
original top-k SVM but also to the weighted extension. Geomet-
rical convergence is achieved by smoothing the loss functions.
Experimental results suggested that the weighted top-k SVM is a
promising option for multi-category classification.
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