
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

When the Virtual Machine Wins over the Container:
DBMS Performance and Isolation in Virtualized

Environments

Asraa Abdulrazak AliMardan1,a) Kenji Kono1,b)

Received: September 10, 2019, Accepted: April 8, 2020

Abstract: Database management systems (DBMSs) are a common service in the cloud. Cloud providers employ
virtualization to consolidate DBMSs for efficient resource utilization and to isolate collocated DBMS workloads. To
guarantee the service-level agreement (SLA), the disk I/O performance and its isolation are critical in DBMSs because
they are inherently disk I/O intensive. This paper investigates the disk I/O performance and its isolation of MySQL
on two major virtualization platforms, KVM and LXC. KVM provides the hypervisor-based virtualization (virtual
machines) while LXC provides the operating-system-level virtualization (containers). Containers are widely believed
to outperform virtual machines because of negligible virtualization overheads, while virtual machines are to provide
stronger performance isolation. Contrary to the general belief, our results show that KVM outperforms LXC by up to
95% in MySQL throughput without compromising the isolation. Furthermore, LXC violates the performance isolation;
a container given 30% share of the disk bandwidth consumes the 70% share. Our analysis reveals that the file system
journaling, which is mandatory to maintain file system consistency, has negative impact on both the performance and
its isolation in the container. Because of the sharing of the journaling module in containers, the journaling activities
are serialized and bundled with each other, resulting in poor performance and violation of the performance isolation.

Keywords: virtualization, container, DBMS, journaling file system.

1. Introduction

Virtualization technologies are the building block of cloud dat-
acenters. They are widely used in today’s datacenters to achieve
server consolidation for efficient resource usage, less power
conusumption, and to isolate collocated applications on a single
machine. There are two virtualization approaches: operating sys-

tem (OS)- and hypervisor-based virtualization. Hypervisor-based
virtualization virtualizes hardware resources to provide the ab-
straction of virtual machines (VMs). This allows multiple OSes
to co-exist on a single machine. OS-based virtualization also
known as containerization creates multiple virtual units in the
userspace, known as containers in which processes run directly
on the host OS. Containers share the same host kernel in oppo-
site of VMs but are isolated from each other through abstraction
mechanisms of Linux namespaces and Cgroup resource control
at the OS level.

Containers are lightweight and bring the performance advan-
tage over VMs. However, these advantages have some shortcom-
ings. Since containers share the same kernel components like
“buffer caches” and other the data structures, the performance iso-
lation among containers becomes weak and hard to accomplish.
For example, if one container accesses many files to increase the
pressure on a shared buffer cache, other containers suffer from

1 Keio University, Yokohama, Kanagawa 223–8522, Japan
a) asraaiteng@sslab.ics.keio.ac.jp
b) kono@sslab.ics.keio.ac.jp

performance degradation because less cache is allocated for them.
On the other hand, VMs have stronger performance isolation be-
cause no kernel components are shared among VMs.

The performance and isolation are important in virtualized en-
vironments, where multiple users’ workloads are consolidated
on the same machine. Users expect their workloads run in iso-
lated manner and to get the performance they pay for. Failing to
achieve isolation results in performance degradation. This leads
to SLA violation which ultimately results in financial loss for the
cloud providers [1], [2].

This work investigates disk I/O performance and isolation in
LXC [3] and KVM [4], which are representatives of OS- and
hypervisor-based virtualization, respectively. Disk I/O perfor-
mance and isolation are critical in database management sys-
tems (DBMSs) which are a common service in the cloud. Many
cloud-based services such as Dropbox [5], Facebook [6] and
Saleforce [7] make use of DBMS. Microsoft’s SQL Azure [8]
and Google Cloud SQL [9] provide DBMS as a cloud service.
DBMS makes excessive use of disk resource by orchestrating a
large number of I/O operations and causing journaling updates
to ensure consistency. Journaling is indispensable for recovering
from unexpected crashes in file systems, and can not be turned off
in DBMS.

This paper presents an updated and extended DBMS perfor-
mance and isolation comparison of LXC and KVM. Our previous
work [10] examines MySQL performance and isolation under the
old function of Cgroup disk I/O control [11]. This work adopts

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

the newer fuction of Cgroupv2 [12] for disk I/O control, and con-
siders the up-to-date software version of KVM, LXC, and Linux
kernel.

We have extended the previous paper by first, examining how
the Cgroup in general achieves the disk I/O control in a sepa-
rate experiment. Second, invistigating DBMS performance and
isolation under Cgroupv2, a newer version of Cgroup with new
I/O controllers, new unified groups, and new implementation that
overcome many of Cgroup implemetation problems [13]. One
of the most important difference between the new and the old
Cgroup, is the support of buffered write along side non-buffered
disk write when applying I/O control [12]. This new feature sup-
poses to make the I/O control stronger and may affects the previ-
ous results. Regardless of a newer developed linux kernel, KVM,
and LXC software version, it was important to compare DBMS
performance isolation under these new circumstances. Finally,
considering the latency metric in our experiments for a better ex-
planation and details of the underlying problem.

The key finding of our work is that VMs outperform containers
in both I/O performance and isolation in DBMS. This finding is
contrary to the general belief. The container is widely believed
to beat VM in performance because container does not suffer
from virtualization overheads. However, according to our results,
KVM outperforms LXC with up to 94% in MySQL throughput.
Furthermore, LXC fails to achieve isolation; a container given
30% share of disk bandwidth consumes 70% share although the
resource control mechanism, cgroupv2, enforces disk I/O limits.

Our contributions consist of analyzing DBMS performance
and performance isolation in the container. The sharing of a
journaling module among containers degrades I/O performance
in DBMS. To guarantee the consistency, existing file systems
typically use journaling with transactions. A journaling module
batches updates from multiple containers into a transaction and
commits the transaction to disk periodically or when fsync is
invoked. DBMS application invokes a lot of fsync() to ensure
consistency and to write all updates to disk. If a single transaction
contains updates from multiple containers, each container has to
wait until the data belonging to other containers is flushed. Jour-
naling also interferes with performance isolation among contain-
ers. When an update-intensive container commits a transaction, it
adversely affects the performance of other containers. An update
from the container is likely to be batched together with updates
from other containers. Even if each transaction contains updates
solely from one container, the transactions are serialized in the
journaling module and cannot be committed in parallel. In ad-
dition, the journaling interferes with disk I/O control of Cgroup.
Since a journaling module is running outside of containers, I/O
requests from the module are not accounted for containers that
initiate the commits.

The rest of this paper is organized as follows. Section 2 de-
scribes the background of virtual machine and container architec-
tures and the overview of disk I/O control in them. Section 3 high-
lights the motivation by showing that containers are not suitable
for DBMS consolidation despite outperform VM in I/O through-
put. The DBMS performance and its isolation are analyzed in
Sections 4. Section 5 discusses our findings, while Section 6

presents the work related to ours. Finally Section 7 concludes
the paper.

2. Background

Hypervisors and containers have different architectures and
properties. Section 2.1 overviews the internal design of
hypervisor-based and container-based virtualization using KVM
and LXC, with highlighting the I/O performance and perfor-
mance isolation. Section 2.2 presents the disk I/O control by
cgroup in KVM and LXC, and analyzes the drawbacks with it.

2.1 Virtual machine and Container
In hypervisor-based virtualization, a hypervisor runs on top of

a physical machine and virtualizes the underlying hardware re-
sources onto which a guest OS is installed, resulting in multiple
virtual machines running on the same physical machine. On the
other hand, containers shift the layer of virtualization from the
hardware level to the OS level. Containers rely on mechanisms
provided by the host OS; namespaces to separate containers log-
ically and Cgroup to control resources among containers.

Figure 1 (a) and (b) show the architecture of KVM and LXC,
respectively. In KVM, a guest OS runs on top of a host OS. Hard-
ware devices such as disk drives are virtualized with QEMU de-
vice emulator [14]. A disk I/O request is handled in a guest OS,
passed to a device emulator, and then processed by a host OS.
In LXC, user processes run directly on a host OS without any
virtualization overheads. A disk I/O request from a container is
handled in the same way as ordinary processes on the host.

In exchange for the performance advantage, LXC provides
weaker isolation of performance. Since containers share buffer
caches and other data structures at the OS-level, the activity in-
side one container is likely to affect the performance of other
containers through the shared kernel components. Even though
the resource controlling mechanism Cgroupv2 enforces resource
limits on containers, it can be bypassed as it will be shown in
Section 4.1.

2.2 Disk I/O Control by Cgroup
Both of LXC and KVM rely on Cgroup to enforce disk I/O

control. Cgroup supports two policies for controlling disk I/O:
1) I/O throttling and 2) proportional-weight. I/O throttling caps
the maximum usage of I/O bandwidth or I/O request rates. In I/O
throttling, a container/VM cannot make use of an idle resource

Fig. 1 Architectures and I/O pathes of KVM virtual machine and LXC con-
tainer.

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 2 Proportional-weight policy in cgroup fails to control disk I/O band-
width. High-priority VM/container (I/O request rate is 70%) gets
less bandwidth than a low-priority VM/container (I/O request rate is
30%).

even if there is no contention over the resource; it wastes the
idle resource. Proportional-weight enforces the resource limits
only when there is contention over the resource. For example,
a container given 30% share of disk time can consume as much
I/O bandwidth as possible if there is no contention over disk re-
source. More precisely, the Cgroup controls “disk time”. This
leads to the control over disk I/O bandwidth and thus we use the
term “I/O bandwidth”. Needless to say, if there is contention over
disk I/O bandwidth, the container can use up to 30% share of disk
I/O bandwidth.

Similarly to old Cgroup, the new version of control group
Cgroupv2 uses disk time to apply the proportional-weights I/O
control. These time-based weight controls the I/O requests but do
not consider the size of I/O each request takes. In the case, the
amount of disk I/O that each I/O request incurs is not taken into
consideration when applying the desired share. If a container/VM
issues a single I/O request that incurs the huge amount of disk I/O,
it can monopolize the disk bandwidth. This problem is amplified
in DBMS in which direct I/O is employed. Direct I/O has been
introduced for DBMS. It allows DBMS to manage file cache by
itself because direct I/O bypasses the buffer cache inside the OS.

We perform an experiment consisting of running two collo-
cated containers/VMs and we used Cgroup proportional-weights
policy for disk I/O control. The experimental environment is de-
scribed in Section 3.1. One container/VM is given given 30%
share of disk I/O and the other container/VM is given 70% share
of disk I/O. Both of these two container/VM are performing se-
quential writes using FIO workload but with different I/O sizes.
Here, the low-priority container/VM (given 30% share) issues
64 KB-disk I/Os while the high-priority container/VM (given
70% share) issues 16 KB-disk I/Os. Figure 2 shows a con-
tainer/VM with a low disk I/O priority (given 30% share of I/O
request rate) can consume more bandwidth than a container/VM
with a high disk I/O priority (given 70% share of I/O request rate).
The graph shows that despite of high-priority container/VM is
given 70% share of disk I/O request rates, the low-priority con-
tainer/VM consumes more disk bandwidth than the high-priority
container/VM.

3. Motivation

This section examines DBMS performance and the perfor-
mance isolation in containers and reveals that despite showing
better performance than KVM in disk I/O benchmarks, LXC
is worse in performance and isolation in DBMS benchmarks.

Section 3.1 describes the experimental setup and the testbed.
Section 3.2 shows the benchmark results of the disk I/O perfor-
mance and isolation in KVM and LXC. Section 3.3 shows the
DBMS performance and the isolation in LXC and KVM.

3.1 Experimental Environment
The testbed consists of dell powerEdge T610 with Xeon

2.8 GHz CPU, 4 cores and 32 GB RAM as a host machine.
Ubuntu 18.04.1 LTS 64 bit Linux distribution with 4.18.0-25-
generic kernel is installed. SAS hard disk of 1 TB is formatted
with ext4 file system with the default journaling mode; i.e., only
the metadata are journaled. Disk resource control is enforced
through the kernel new version of control group “Cgroupv2”
which is lately supported by LXC and can be with KVM.
LXC 3.0.4 is used for Linux containers. KVM-qemu 2.11.1 is
installed on the host and the guest environments are exactly the
same as the host. Each VM is allocated one virtual CPU that pins
to a one CPU core and 1 GB RAM with a raw disk partition allo-
cated as secondary storage. The same configuration is applied to
LXC containers.

To examine the performance and isolation in DBMS, MySQL
ver. 5.7.27 is installed in each container/VM with InnoDB as a
storage engine. MySQL is configured to use direct I/O since it
is the common setting in DBMS to avoid the well-known prob-
lem of double caching. The transaction model is the default
autocommit, in which MySQL performs a commit after each
SQL statement. Sysbench OLTP benchmark [15] generates work-
loads, which runs in a separated machine connected via Cisco
1 Gbit Ethernet switch. Sysbench is configured to use the non-
transactional mode so that each query is automatically commit-
ted. The workload generates INSERT queries to 10 database ta-
bles each with 100,000 rows of records. The number of clients is
increased until I/O operations are saturated.

3.2 Disk I/O Performance and Isolation
Container are supposed to outperform VMs since KVM causes

additional overhead due to an extra layer of virtualization. Past
studies [14], [16], [17], [18], [19], [20], [21] have shown that
traditional hypervisors such as Xen [22], VMware [23], and
KVM [4] have high overheads. From the viewpoint of perfor-
mance isolation, VM promises to provide better isolation be-
cause each VM runs a stand-alone OS without sharing kernel data
structures.

To confirm this general belief, we compare I/O performance
and performance isolation of LXC and KVM. Figure 3 shows
the I/O bandwidth of KVM and LXC. In this experiment, one
instance of a container or a VM is running Flexible I/O (FIO)
benchmark [24] is used to generate four types of I/O workloads:
16 KB random read/write and 64 KB sequential read/write. Di-
rect I/O mode is turned on. As we can see from Fig. 3, LXC
outperforms KVM in all types of I/O workloads.

LXC shows better performance than KVM in consolidation
case, when two VMs/containers are consolidated on a single
physical machine. The one VM/container is given 30% share
of I/O requests and the other is given 70% share. Figure 4
shows the throughput of one container/VM (the one with 70%

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 3 Disk I/O throughput in KVM and LXC. LXC beats KVM in all
workloads.

Fig. 4 Disk I/O throughput in KVM and LXC in consolidation case when
two I/O workloads are collocated togather. LXC outperform KVM
in all workloads.

Fig. 5 Performance isolation in KVM and LXC where the one
VM/container is given 30% share of disk I/O and the other is given
70%. Both KVM and LXC respect the given shares of disk I/O.

disk share) when the same I/O workloads in Fig. 3 are run in two
VMs/containers. As this figure shows LXC beats KVM in all
cases.

Figure 5 (a) and (b) show the performance isolation of KVM
and LXC, respectively. The one VM/container is given 30% share
of I/O requests and the other is given 70% share. The workload
used is the sequential write from FIO benchmark. Figure 5 shows
both KVM and LXC respect the shares of I/O bandwidth grace-
fully. The VM/container with 30% share consumes around 30%
share, and the VM/container with 70% share consumes around
70% share. LXC enforces the resource limit successfully and
shows comparable performance isolation to VM.

3.3 DBMS Performance and Isolation
From the results obtained in Section 3.2, it is expected that

LXC is more appropriate than KVM for consolidating DBMSes.
LXC outperforms KVM in disk I/O throughput and shows isola-
tion comparable with KVM.

To confirm these expectations, we compared the MySQL per-
formance and isolation in LXC and KVM. Figure 6 shows
MySQL throughput in KVM and LXC. In this experiment, two

Fig. 6 MySQL throughput in KVM and LXC. MySQL is consolidated with
the FIO sequential-write workload. KVM outperforms LXC.

Fig. 7 Performance Isolation in LXC and KVM. MySQL is consolidated
with the FIO sequential-write workload.

VMs/containers are launched. The one VM/container executes
MySQL and the other executes the sequential write workload of
the FIO benchmark. The VM/container running MySQL is given
30% share of disk I/O and the other is given 70% share.

As seen from Fig. 6, KVM beats LXC in MySQL throughput.
Container performance is 42% worse than VM performance. Fig-
ure 7 compares the performance isolation between VMs and con-
tainers in the MySQL workload. The X-axis shows the elapsed
time and the Y-axis shows the percentage of the disk I/O band-
width consumed by each VM/container. Figure 7 (a) indicates
that KVM respects the resource limit because the VM with 30%
share consumes 30–38% of disk bandwidth and the other VM
with 70% share does 62–70%. On the other hand, Fig. 7 (b) in-
dicates that LXC violates the resource limit; the bandwidth con-
sumption of the container with 30% share fluctuates and ranges
from 5% to 20%. The other container with 70% share consumes
70–95% bandwidth.

4. Analyzing Performance and Isolation
Anomaly in DBMS

To understand the performance results of DBMS that are con-
trary to our expectations, this section investigates the perfor-
mance and the performance isolation of DBMS. Section 4.1 sug-
gests fsync calls issued at a high rate can slow down disk I/O
in container and that really matters in MySQL performance. In
Section 4.2, the analysis of how a journaling module interferes
with the DBMS performance isolation in containers is presented.

4.1 Impact of fsync on MySQL Performance
Although LXC outperforms KVM in disk I/O performance as

shown in Section 3.2, MySQL performance is better in KVM than
LXC. A major difference in the MySQL and FIO workloads is
that the MySQL issues fsync frequently to ensure that all up-
dates are written to the final destination on disk. In the MySQL
workload, fsync is issued at the rate of 27 times/sec in KVM
and 14 times/sec in LXC. On the other hand, the FIO workload

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 8 Throughput of disk I/O in KVM and LXC. A container/VM is
running high-fsync workload and is collocated with either 1) no-,
2) low-, or 3) high-fsync workload. LXC performance degrades as
fsync intensity increases in the collocated workload.

does not issue fsync explicitly. In this case, updates are flushed
to disk at the rate of 0.2 times/sec (every 5 seconds).

To confirm that the high rate of fsync has significant impact on
I/O performance, we have prepared three I/O workloads: 1) no-,
2) low-, and 3) high-fsync workload. The no-fsync workload is
the same as the FIO sequential-write workload. The low- and
high-fsync benchmarks are based on the no-fsync workload but
set to issue fsync calls more frequently. The low- and high-fsync
workload issue fsync every 20 I/O operations (at the rate of 3–5
times/sec) and 5 I/O operations (at the rate of 10–15 times/sec),
respectively.

Figure 8 shows the throughput of the high-fsync workload
when it is collocated with a VM/container running either 1) no-,
2) low-, or 3) high-fsync workload. For comparison, the figure
shows the throughput of the no-fsync collocated with the no-
fsync workload. LXC outperforms KVM only when both con-
tainers/VMs are running the no-fsync workload. If one work-
load is changed to the high-fsync, KVM always beats LXC. The
throughput in LXC degrades when the collocated workload is-
sues fsync more frequently. While KVM shows a stable and
constant throughput (around 2.5 MB/sec) regardless of collocated
workload. This result suggests that a high rate of fsync calls is
relevant in disk I/O performance in LXC but not in KVM.

The fsync is closely related to file system journaling. A stan-
dard Linux file system, Ext4, uses journaling to guarantee the file
system consistency. Containers share the same journaling module
of the host OS. A journaling module batches updates from mul-
tiple containers into a transaction and commits the transaction
periodically or when fsync is invoked. If a single transaction
contains updates from multiple containers, each container has to
wait until the updates coming from other containers to be flushed
to disk. Ideally, calling fsync in a container should flush only the
dirty data belonging to that particular container. Unfortunately,
calling fsync causes unrelated data to be flushed as well. Even
if a single transaction contains updates solely from one container,
transactions are serialized and cannot be committed in parallel be-
cause two different transactions may update a global shared data
structure on disk (for instance, inode bitmap).

To verify the above observation, we measure the latency of
fsync in KVM and LXC in the previous experiment. Table 1
shows the fsync latency of the high-fsync workload when it col-
located with either 1) no-, 2) low-, or 3) high-fsync workload.

Table 1 Average fsync latency of the high-fsync workload when collocated
with either 1) no-, 2) low-, or 3) high-fsync workload in KVM and
LXC.

Collocated workload KVM LXC
No-fsync 18.58 ms 33.81 ms

Low-fsync 18.94 ms 38.86 ms
High-fsync 18.27 ms 44.09 ms

Fig. 9 MySQL throughput in LXC and KVM with either 1) no-, 2) low-, or
3) high-fsync workloads. MySQL is given 70% share of disk I/O.

Table 2 Average fsync latency of MySQL when collocated with no-, low-,
high-fsync workload. MySQL VM/container is given 70% share.

Collocated workload KVM LXC
No-fsync 26.87 ms 72.51 ms

Low-fsync 27.28 ms 85.09 ms
High-fsync 26.12 ms 74.08 ms

For KVM, the average latency is about 18.5 ms regardless of the
collocated workloads. While the fsync latency increases in LXC
as fsync intensity increases in the collocated workload. This in-
crease of fsync latency degrades the I/O performance of the high-
fsync workload in LXC.

Figure 9 confirms that MySQL performance is largely affected
by fsync calls. The throughput of MySQL is measured when
container/VM is collocated with either 1) no-, 2) low-, or 3) high-
fsync workload. A container/VM running MySQL is given 70%
share of disk I/O while the other is given 30% share. Since
each VM has its standalone OS with its own journaling mod-
ule, it gets rid of all the journal-related problems. KVM always
shows better performance than LXC. KVM outperfoms LXC
up to 95%. The MySQL throughput in KVM is almost con-
stant (around 420 requests/sec) in all the cases. On the other
hand, the MySQL throughput in LXC degrades from 230 to 209
req/sec when the collocated workload is changed from no-fsync
to low-fsync. Since the low-fsync workload issues fsync more
frequently than no-fsync, the fsync latency increases in MySQL.

Table 2 shows the fsync latency of MySQL increases from
72.51 ms to 85.09 ms in LXC when the collocated workload is
changed from no-fsync to low-fsync.

The same behavior is observed in Fig. 10 which shows MySQL
throughput when VM/container is given 30% instead of 70%
share. LXC outperforms KVM in the no-fsync and low-fsync
workloads although it is beaten in the high-fsync workload. This
improvement in MySQL performance happens for two reasons.
First, the performance isolation is violated in LXC and thus
MySQL is allocated more disk I/Os than its given share. The
details are discussed in Section 4.2. Second, as the collocated
workload issues more fsync, it causes more journaling updates.
Thus, some of MySQL updates are flushed as well due to sharing

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 11 Disk I/O usage in MySQL in LXC. Collocated with no-, low-, high-fsync workloads. MySQL is
given 70% share.

Fig. 12 Disk I/O usage in MySQL in KVM. Collocated with no-, low-, high-fsync workloads. MySQL
is given 70% share.

Fig. 10 MySQL throughput in LXC and KVM with either 1) no-, 2) low-,
or 3) high-fsync workloads. MySQL is given 30% share of disk
I/O.

of the same journaling transaction among containers.

4.2 Journaling Influence on MySQL Isolation
MySQL performance isolation in containers is terrible as

shown in Fig. 7. The sharing of a journaling module in containers
has a negative impact on disk I/O isolation. The journaling mod-
ule causes performance dependencies across collocated contain-
ers. This happens as updates from multiple containers are bun-
dled in a single journaling transaction. Hence, one container can
affect another because each container has to wait until the data
belonging to other containers are flushed. Even if a transaction
consists solely of updates from one container, the transactions are
serialized in the journaling module and cannot be committed in
parallel. Thus, fsync calls from other containers are suspended
causing a longer blocking time of further I/O operations. In this
case, the disk isolation mechanism of Cgroup judges the con-

tainer as not issuing I/O operations and hands its disk share to
other containers. Also, I/O operations from the journaling mod-
ule are overlooked by Cgroup and not accounted for containers
that initiate them as the journaling module is running outside of
controlled containers.

To confirm that isolation in containers is violated due to the
journaling, the disk I/O usage of MySQL is compared when it is
collocated with no-, low- and high-fsync workload. Figures 11
shows the disk I/O usage of MySQL container when it is collo-
cated with no-, low-, high-fsync workload. Figure 12 shows that
of MySQL VM.

MySQL is given 70% disk share while the other collocated
VM/container is given 30%. Since MySQL is update-intensive,
the I/O usage of the journaling is around 18% in LXC even when
it is collocated with no-fsync workload. But cgroup overlooks
these journaling I/Os and judges the MySQL container as not
I/O-intensive. As a result, cgroup allocates more disk I/O to the
collocating container while the MySQL container is given around
20% disk share instead of 70% share.

When the collocated workload is changed to the low- or high-
fsync workload, the MySQL container consumes more share of
the disk I/O. This is because the low- or high-fsync container
issues more fsync calls which compete with fsync from the
MySQL container and are suspended in the journaling module
due to the contention. Hence, the I/Os from low- or high-fsync
container are reduced and cgroup allocates more disk I/Os to the
MySQL container. This results in the improved performance of

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 13 Disk I/O usage in MySQL in LXC. Collocated with no-, low-, high-fsync workloads. MySQL is
given 30% share.

Fig. 14 Disk I/O usage in MySQL in KVM. Collocated with no-, low-, high-fsync workloads. MySQL
is given 30% share.

MySQL container in Fig. 9.
Figures 13 and 14 shows the percentages of disk I/O in LXC

and KVM where MySQL is given 30% share. As shown in the
figure, the MySQL container is given less than 30% share when
collocated with the no-fsync, but it is given around 30% share
when collocated with the high-fsync. When fsync-intensive con-
tainer is collocated with MySQL, it slows down due to severe
contention over the journaling with MySQL and hands over its
disk I/O share to MySQL. This explains the performance mystery
in Fig. 10 when the performance of MySQL container improves
if it is collocated with more fsync-intensive workloads. But this
improvement happens with sacrificing the performance isolation.
KVM gracefully respects the I/O control of cgroup and divides
the disk I/O into 30% and 70% share between VMs.

5. Discussion

There is a trade-off between performance and isolation in the
VM and the container. Our experimental results suggests the use
of VM is preferable in update-intensive application like DBMS
at least with current implementation of LXC. The file-system
journaling, which is mandatory to guarantee the consistency of
file-system, is the root cause of the poor I/O performance and
its isolation in containers. Since the journaling module is shared
among containers, it becomes a bottleneck in performance and in-
terferes with disk I/O control of Cgroup in containers. Even with
the new Cgroupv2 disk I/O control, journaling I/O is still be-
ing overlooked. Disabling the file system journaling to overcome

journaling-related problems in containers is unpractical and not
acceptable in DBMS because it risks loosing user data and file
system consistency. The kernel Cgroup should provide a higher
isolation for disk I/O. Journaling I/O should be taken into consid-
eration when applying the disk I/O control among containers. It
may be possible to estimate the amount of journaling I/Os of each
container by observing non-journaling I/O behaviors of each con-
tainer. This estimate could be used to adjust the weight of disk
I/Os for each container by the Cgroup. Another possible solution
is to present each container with its own block device to put it’s
container file system in it so that each container can have its own
journaling module. This will avoid the journaling related prob-
lems like the KVM does.

6. Related Work

The performance of OS- and hypervisor-based virtualization is
compared in Refs. [25], [26], [27], [28], [29]. According to them,
the container and VM achieve near-native performance in CPU-
intensive workloads, but KVM incurs the overheads larger than
Xen or containers in I/O-intensive workloads. Sharma et al. [30]
and Zhang et al. [31] show that VMs are not as scalable and
resource-efficient as the container. Surya et al. [32] compare the
performance of KVM and the docker container in E-commerce
applications. They show that the container has a better CPU and
disk utilization than VM, but suffers from contention in memory
and network I/O. All of these previous works focus only on the
performance; the performance isolation is not addressed.

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Performance isolation is discussed in Xavier et al. [33]. It
compares Xen with Linux VServer [34], OpenVZ [35] and LXC
containers in the context of high performance computing. Re-
garding the performance, all the containers show near-native per-
formance. Regarding the performance isolation, VServer and
OpenVZ show better memory isolation than LXC. For disk
I/O, Xen shows better isolation of the performance than any of
the container implementations but the underlying causes are not
investigated. Matthews et al. [36] study performance isolation
among VMware, Xen, Solaris containers and OpenVZ. VMware
imposes stronger isolation than Xen and the containers. Both
of OpenVZ and Solaris containers show good isolation in CPU
performance while suffering from poor isolation in memory and
I/O benchmarks. However, the underlying mechanism that causes
performance interference in containers is not investigated.

Soltesz et al. [37] compare performance isolation of VServer
with Xen, using database applications as target. A VServer
container running a database application severely suffers from
other containers running I/O-intensive workloads. Their anal-
ysis shows that I/O-intensive containers monopolize the buffer
cache to degrade the database applications. Our investigation re-
veals that the file-system journaling disturbs I/O operations in the
container even if the buffer cache is not shared. In our experi-
ments, the direct I/O is used to bypass the buffer cache. Mizusawa
et al. [38] present an evaluation of file operations of OverlayFS
which is a widely recognized method for improving I/O perfor-
mance in docker. According to their results, the performance of
file writing is severely low because of the synchronization of data
in the memory and the storage. They suggest disabling this syn-
chronization to improve the I/O performance which is not accept-
able for an application like DBMS. Xavier et al. [39] compare
LXC and KVM in terms of the performance interference in I/O-
intensive workloads. According to their study, LXC suffers more
severely from interference than KVM when a database is col-
located with I/O-intensive workloads. However, no analysis is
conducted to understand how performance interference occurs in
LXC. Our investigation shows that KVM beats LXC not only in
isolation but also in database performance as we consider the case
of journaling-intensive workloads.

Some works propose new file systems such as IceFS [40] and
SpanFS [41] to provide logically separated units for independent
journaling among containers. MultiLanes [42] provides a vir-
tualized storage device for each container on top of which an
isolated I/O stack is built. These novel file systems can over-
come the problems of the shared journaling among containers,
but the existing file systems or I/O stacks must be replaced to uti-
lize them. Park et al. [43] propose a new journaling technique
called iJournaling, which limits the journaling updates on the
metadata of fsynched file. These techniques improve the perfor-
mance of update-intensive containers but do not overcome all the
journaling-related problems. For example, fsync call serialization
and uncounted journaling I/Os are not addressed.

7. Conclusion

This paper investigates the DBMS performance and perfor-
mance isolation in KVM and LXC. Our key finding is that KVM

outperforms LXC in both I/O performance and its isolation in
DBMS. This finding is contrary to the general belief that the
container is better than the VM in performance because of no vir-
tualization overheads. Furthermore, LXC fails to achieve the per-
formance isolation among containers although a resource-control
mechanism called cgroup enforces disk I/O limits.

Our analysis shows that the file-system journaling, which is
mandatory to guarantee the consistency of file-system especially
in database applications, is the root cause of the poor I/O per-
formance and its isolation in LXC. Since the journaling module
is shared among containers, it becomes a bottleneck in perfor-
mance and causes a serious problem on update-intensive appli-
cations such as DBMS. The paper identifies journaling-related
problems that cause performance dependencies among containers
and the violation of performance isolation. Journaling interferes
with disk I/O control of cgroup in containers. Since the journaling
module is running outside of the container, I/O operations from
the module are not accounted for containers that initiate them.

In contrast, KVM avoids the journal-related problems because
each VM has its own journaling module due to the complete sep-
aration of kernel components. We conclude that VM is a better
choice than the container for DBMS consolidation.

Acknowledgments This work is partially supported by JST,
CREST, JPMJCR19F3 and Keio Gijuku Academic Development
Funds.

References

[1] Verghese, B., Gupta, A. and Rosenblum, M.: Performance isola-
tion: sharing and isolation in shared-memory multiprocessors, ACM
SIGPLAN Notices, Vol.33, No.11, pp.181–192, ACM (1998).

[2] Gupta, D., Cherkasova, L., Gardner, R. and Vahdat, A.: Enforcing per-
formance isolation across virtual machines in Xen, Middleware 2006,
pp.342–362, Springer (2006).

[3] Linux container (LXC): Infrastructure for container projects, A WEB
page, available from 〈https://linuxcontainers.org/〉 (accessed 2019-10-
07).

[4] Kivity, A., Kamay, Y., Laor, D., Lublin, U. and Liguori, A.: KVM:
The Linux virtual machine monitor, Proc. Linux Symposium, Vol.1,
pp.225–230 (2007).

[5] SQLite: Well-Known Users of SQLite, A WEB page, available from
〈https://www.sqlite.org/famous.html〉 (accessed 2019-10-07).

[6] Facebook: The Facebook Data Center, A WEB page, avail-
able from 〈http://www.datacenterknowledge.com/the-facebook-data-
center-faq-page-2/〉 (accessed 2019-10-07).

[7] Salesforce: The salesforce.com Multitenant Architecture, A WEB
page, available from 〈https://developer.salesforce.com/page/Multi-
Tenant-Architecture〉 (accessed 2019-10-07).

[8] AzureSQL: Microsoft Azure SQL Databaser, A WEB page, avail-
able from 〈https://azure.microsoft.com/en-us/services/sql-database〉
(accessed 2019-10-07).

[9] CloudSQL: Google Cloud SQL, A WEB page, available from
〈https://cloud.google.com/sql/〉 (accessed 2019-10-07).

[10] Abdulrazak, A.M.A. and Kenji, K.: Containers or Hypervisors: Which
Is Better for Database Consolidation?, Proc. International Conference
on Cloud Computing Technology and Science (CloudCom), pp.564–
571, IEEE (2016).

[11] Menage, P.: Linux Cgroup resource managment, A WEB page,
available from 〈https://www.kernel.org/doc/Documentation/cgroup-
v1/cgroups.txt〉 (accessed 2020-10-01).

[12] Cgroup-v2: New version of Cgroup, A WEB page, available from
〈https://www.kernel.org/doc/Documentation/-cgroup-v2.txt〉
(accessed 2020-10-01).

[13] CGROUP: Linux Programmer’s Manual, A WEB page, http://man7.
org/linux/man-pages/man7/cgroups.7.html (accessed 2020-10-01).

[14] Zhang, B., Wang, X., Lai, R., Yang, L., Wang, Z., Luo, Y. and Li, X.:
Evaluating and optimizing I/O virtualization in kernel-based virtual
machine (KVM), Network and Parallel Computing, Lecture Notes in
Computer Science, Vol.6289, pp.220–231, Springer (2010).

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

[15] SQLite: Sysbench benchmark suite, A WEB page, available from
〈https://github.com/akopytov/sysbench〉 (accessed 2019-10-07).

[16] Menon, A., Santos, J.R., Turner, Y., Janakiraman, G. and Zwaenepoel,
W.: Diagnosing Performance Overheads in the Xen VirtualMachine
Environment, Proc. 1st ACM/USENIX International Conference on
Virtual Execution Environments (VEE), pp.13–23, ACM (2005).

[17] Caglar, F., Shekhar, S. and Gokhale, A.: Towards a Performance Inter-
ferenceaware Virtual Machine Placement Strategy for Supporting Soft
Realtime Applications in the Cloud, Proc. 3rd International Workshop
on Real-time and Distributed Computing in Emerging Applications
(REACTION), pp.15–20, Universidad Carlos III de Madrid (2014).

[18] Jinho, H., Sai, Z., F.Y., W. and Timothy, W.: A component-based per-
formance comparison of four hypervisors, Proc. IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM), pp.269–
276, IEEE (2013).

[19] Rasmusson, L. and Diarmuid, C.: Performance overhead of KVM on
Linux 3.9 on ARM Cortex-A15, ACM SIGBED Review, Vol.11, No.2,
pp.32–38 (2014).

[20] Xing, P., Ling, L., Yiduo, M., Sankaran, S., Koh, Y. and Calton, P.:
Understanding performance interference of i/o workload in virtual-
ized cloud environments, Proc. 3rd International Conference on Cloud
Computing (CLOUD), pp.51–58, IEEE (2010).

[21] Malensek, M., Pallickara, S.L. and Pallickara, S.: Alleviation of Disk
I/O Contention in Virtualized Settings for Data-Intensive Computing,
BDC, pp.1–10, IEEE Computer Society (2015).

[22] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A.,
Neugebauer, R., Pratt, I. and Warfield, A.: Xen and the art of vir-
tualization, ACM SIGOPS Operating Systems Review, Vol.37, No.5,
pp.164–177 (2003).

[23] Walters, B.: VMware virtual platform, Linux journal, Vol.1999,
No.63es, p.6 (1999).

[24] FIO: The Flexible I/O (FIO) benchmark, A WEB page, available from
〈https://github.com/axboe/fio〉 (accessed 2019-10-07).

[25] Felter, W., Ferreira, A., Rajamony, R. and Rubio, J.: An Updated
Performance Comparison of Virtual Machines and Linux Containers,
Technical Report RC25482 (AUS1407-001), IBM Research Division
(2014).

[26] Regola, N. and Ducom, J.: Recommendations for Virtualization Tech-
nologies in High Performance Computing, Proc. International Con-
ference on Cloud Computing Technology and Science (CloudCom),
pp.409–416, IEEE (2010).

[27] Che, J., ans C. Shi, Y.Y. and Lin, W.: A synthetical performance eval-
uation of openVZ, Xen and KVM, Proc. Asia-Pacific Services com-
puting Conference, pp.587–594, IEEE (2010).

[28] Morabito, R., Kjallman, J. and Komu, M.: Hypervisors vs.
Lightweight Virtualization: A Performance Comparison, Proc. Inter-
national Conference on Cloud Engineering (IC2E), pp.368–374, IEEE
(2015).

[29] Raho, M., Spyridakis, A., Paolino, M. and Raho, D.: KVM, Xen and
Docker: A performance analysis for ARM based NFV and Cloud com-
puting, Proc. 3rd Workshop on Advances in Information, Electronic
and Electrical Engineering (AIEEE), pp.1–8, IEEE (2015).

[30] Sharma, P., Chaufournier, L., Shenoy, P. and Tay, Y.C.: Containers and
Virtual Machines at Scale: A Comparative Study, Proc. 17th Interna-
tional Middleware Conference, pp.1:1–1:13, ACM (2016).

[31] Zhang, Q., Liu, L., Pu, C., Dou, Q., Wu, L. and Zhou, W.: A Compar-
ative Study of Containers and Virtual Machines in Big Data Environ-
ment, 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), pp.178–185 (2018).

[32] Garg, S.K., Lakshmi, J. and Johny, J.: Migrating VM Workloads to
Containers: Issues and Challenges, 11th IEEE International Confer-
ence on Cloud Computing, CLOUD 2018, pp.778–785 (2018).

[33] Xavier, M., Neves, M.V., Rossi, F.D., Ferreto, T.C., Lange, T. and
Rose, C.F.D.: Performance evaluation of container-based virtual-
ization for high performance computing environments, Proc. 21st
Euromicro International Conference on Parallel, Distributed and
Network-Based Processing (PDP), pp.233–240, IEEE (2013).

[34] Linux-VServer: Welcome to Linux-VServer, A WEB page, available
from 〈http://linux-vserver.org/〉 (accessed 2019-10-07).

[35] OpenVZ: Open source container-based virtualization for Linux, A
WEB page, available from 〈https://openvz.org/〉 (accessed 2019-10-
07).

[36] Matthews, J., Hu, W., Hapuarachchi, M., Deshane, T. and Hamilton,
D.G.: Quantifying the Performance Isolation Properties of Virtualiza-
tion Systems, Proc. 2007 Workshop on Experimental Computer Sci-
ence, (ExpCS), p.6, ACM (2007).

[37] Soltesz, S., Potzl, H., Fiuczynski, M., Bavier, A. and Peterson, L.:
Container based operating system virtualization: A scalable, high-
performance alternative to hypervisors, SIGOPS Operating System
Review, Vol.41, No.3, pp.275–287 (2007).

[38] Mizusawa, N., Kon, J., Seki, Y., Tao, J. and Yamaguchi, S.: Perfor-

mance Improvement of File Operations on OverlayFS for Containers,
Proc. IEEE International Conference on Smart Computing, pp.297–
302, IEEE (2018).

[39] Xavier, M., Neves, M.V., Rossi, F.D., Ferreto, T.C., Lange, T. and
Rose, C.F.D.: A Performance Isolation Analysis of Disk-intensive
Workloads on Container-based Clouds, Proc. 23rd Euromicro Inter-
national Conference on Parallel, Distributed and Network-Based Pro-
cessing (PDP), pp.253–260, IEEE (2015).

[40] Lu, L., Zhang, Y., Do, T., AI-Kiswany, S. and Arpaci-Dusseau, R.:
Physical Disentanglement in a Container-Based File System, Proc.
11th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), pp.81–96 (2014).

[41] Kang, J., Zhang, B., Wo, T., Yu, W., Du, L., Ma, S. and Huai, J.:
SpanFS: A scalable file system on fast storage devices, Proc. USENIX
Annual Technical Conference (ATC), pp.249–261 (2015).

[42] Kang, J., Zhang, B., Wo, T., Hu, C., and Huai, J.: Multilanes: pro-
viding virtualized storage for OS-level virtualization on many cores,
Proc. 12th USENIX Conference on File and Storage Technologies
(FAST), pp.317–329 (2014).

[43] Park, D. and Shin, D.: iJournaling: Fine-Grained Journaling for Im-
proving the Latency of Fsync System Call, 2017 USENIX Annual
Technical Conference (USENIX ATC 17), pp.787–798, USENIX As-
sociation (2017).

Asraa Abdulrazak Ali Mardan re-
ceived her B.Sc. and M.Sc. in Informa-
tion Engineering from AL-Narain Uni-
versity, Iraq in 2010 and 2014 respec-
tively. Currently she is a Ph.D. student in
Keio University, graduate school of Sci-
ence and Technology. Her research inter-
ests are Cloud Computing, Virtualization

technologies, Container, and File systems.

Kenji Kono received his B.Sc. degree in
1993, M.Sc. degree in 1995, and Ph.D.
degree in 2000, all in computer science
from the University of Tokyo. He is a
professor in the Department of Informa-
tion and Computer Science at Keio Uni-
versity. He received the IPSJ Yamashita-
Memorial Award in 2000, IPSJ Annual

Best Paper Awards in 1999, 2008, 2009, and 2012, JSSST Soft-
ware Paper Award in 2014, IBM Faculty Award in 2015, and
JSSST Basic Research Award in 2016. He served as a PC member
of top conferences such as ICDCS and DSN. He also organized
ACM SIGOPS APSys in 2015. His research interests include op-
erating systems, system software, and computer security. He is a
member of the IEEE, ACM and USENIX.

c© 2020 Information Processing Society of Japan


