
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Tree Decomposition-based Approach for Compiling
Independent Sets

Teruji Sugaya1,a) Masaaki Nishino2,b) Norihito Yasuda2,c) Shin-ichiMinato3,d)

Received: September 28, 2019, Accepted: April 8, 2020

Abstract: Knowledge compilation is a method for compiling a knowledge base into an appropriate data structure,
generally called tractable language. Graph substructure plays an important role in knowledge compilation and frontier-
based search is known to be an efficient algorithm, in which computation time is bounded by the path-width of a graph.
For some limited classes of graph structures, studies have shown that it can be improved and bounded by the branch-
width, however, the redesign of an algorithm for other classes does not appear to be straightforward. In this paper, we
focus on the similarity between frontier-based search and dynamic programming on tree decomposition. Dynamic pro-
gramming on tree decomposition has been intensely studied for varieties of problems on counting or optimization of
graph substructures. However, to the best of our knowledge, they are rarely applied to knowledge compilation. Then,
we show that dynamic programming for finding the size of the maximum independent set can be, by simple replace-
ment, applied to the compilation of independent sets. Furthermore, we empirically show that our method can compile
much faster than conventional frontier-based search in some instances, and it becomes several orders of magnitude
faster especially when the tree-width is small compared to the path-width.

Keywords: knowledge compilation, frontier-based search, structured Z-d-DNNF, independent set

1. Introduction

Knowledge compilation is a method for compiling a knowl-
edge base into an appropriate data structure that supports transfor-
mations or queries such that they can be applied or answered ef-
ficiently [1]. The language of data structures is called a tractable

language in general. In knowledge compilation, the tractability
of the language is a result of the compilation and it can be used to
process various queries related to a knowledge base, such as op-
timization, enumeration, and counting. Knowledge compilation
has been intensively studied and has applications in various fields.
In Broeck et al.’s study [2], a variety of exemplary applications
were cited, such as diagnosis [3], [4], planning [5], probabilistic
reasoning [6], [7], [8], probabilistic databases [9], [10], [11], [12],
first-order probabilistic inference [13], [14], [15], and learning of
tractable probabilistic models [16].

The graph substructure is also an important target of knowl-
edge compilation. Graph substructures are subsets of graph
nodes and edges that satisfy specific conditions, such as inde-
pendent set, s-t path, and matching. Frontier-based search [17]
algorithms, which include Knuth’s Simpath [18], are efficient for

1 Graduate School of Information Science and Technology, Hokkaido Uni-
versity, Sapporo, Hokkaido 060–0808, Japan

2 NTT Communication Science Laboratories, NTT Corporation, Keihanna
Science City, Kyoto 619–0237, Japan

3 Graduate School of Informatics, Kyoto University, Kyoto 606–8501,
Japan

a) sugaya@ist.hokudai.ac.jp
b) nishino.masaaki@lab.ntt.co.jp
c) yasuda.n@lab.ntt.co.jp
d) minato@i.kyoto-u.ac.jp

compiling a graph substructure into a tractable language called
zero-suppressed binary decision diagrams (ZDDs) [19]. Frontier-
based search algorithms can be used to compile large sets of
a graph substructure into ZDDs of a considerably smaller size.
Once such ZDDs have been constructed, the sets of a graph sub-
structure can be efficiently enumerated or counted using the oper-
ations supported by ZDDs. Currently, frontier-based algorithms
for several graph substructures, including s-t paths, Hamiltonian
paths, spanning trees, and matching, have been proposed.

It is known that the computation time and size of the obtained
ZDDs can be bounded by the path-width of the graph [20]. Stud-
ies were conducted with the objective of improving the efficiency
of frontier-based search. Nishino et al. [21] and Sugaya et al. [22]
redesigned frontier-based search to run on branch decomposition
to compile matching [21] or s-t paths [21], [22]. The size of their
output tractable language was then bounded by the branch-width.
However, to expand their method such that it can be applied to
other types of graph substructures, one must design a suitable
algorithm from scratch, which does not appear to be straightfor-
ward.

On the other hand, dynamic programming has been intensively
studied as an algorithm that uses tree decomposition. Numer-
ous studies have focused on counting or optimizing graph sub-
structures, e.g., the maximum independent set [23], [24], min-
imum dominating set [25], coloring [26], and minimum Steiner
tree [27]. It is known that the tree-width and branch-width are al-
ways within a constant factor of each other [28]. However, to the
best of our knowledge, their application was limited to counting
or optimizing graph substructures, and few approaches have been

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 1 Frequently used notations.

Notation Description Notation Description
G = (V, E) Simple undirected graph g � h Represents {a ∪ b | a ∈ g and b ∈ h}
v1, v2, . . . , u1, u2, . . . , w1, w2, . . . Nodes of G (gnodes) α, β, . . . Nodes of a vtree (vnodes)
|V |, |E| Size of gnodes and edges of G Eβ Set of items that correspond to the leaves of a sub-

tree the root of which is β
V Gnode set contained in G eα An item that corresponds to a leaf α of a vtree
T Tree decomposition s(i) Size of the maximum independent set of Gi

T (T) Set of nodes of a tree decomposition T s(i; Pi,Qi) Size of the maximum independent set of Gi

Bi Bag of a tnode i ∈ T (T) that contains the entire gnode set Pi and no mem-
ber of the gnode set Qi

W Tree-width S(i) Independent sets of Gi

Vi Union of tnode Bi and its children tnodes S(i; Pi,Qi) Independent sets of Gi that contain the entire gn-
ode set Pi

Gi The subgraph induced by Vi. and no member of the gnode set Qi

d, dα Dnode of structured Z-d-DNNF mate[v] Mate of gnode v
and dnode that identifies the respecting vnode α

⊥, ε, X,±X Terminal dnode, each representing ∅, {∅}, {X}, and
{{X}, ∅}

Dα Dnode set that respects vnode α
〈d〉 A family of sets represented with dnode d

done for the knowledge compilation *1.
In this paper, unlike previous studies, we focus on the simi-

larity between frontier-based search and dynamic programming
methods that use tree decomposition. We show that the dynamic
programming used for finding the size of the maximum indepen-
dent set in a given graph [23], [24] can be used in the compilation
of independent sets by simple replacement. Additionally, we use
structured Z-deterministic decomposable negation normal form
(Z-d-DNNF) [22] as a tractable language in our method. Previ-
ous studies of dynamic programming on tree decomposition, in-
cluding that of maximum independent set [23], [24], is conducted
on a bottom up search dependent on the types of tree decomposi-
tion nodes. As we show in Section 3.4, a tractable language Z-d-
DNNF is suitable to apply this type of dynamic programming on
tree decomposition towards knowledge compilation.

The time complexity of the proposed method is the same as that
of the dynamic programming method for computing the size of
a maximum independent set. Moreover, the size of the tractable
language is bounded by the tree-width of the input graph, whereas
that of frontier-based search is bounded by the path-width. In ad-
dition, as in the case of frontier-based search, we can enumerate
or count the independent sets using an operation supported by
structured Z-d-DNNF. Furthermore, we empirically show that
our method can compile independent sets of a graph much faster
than the conventional frontier-based search in some instances,
and it may become several orders of magnitude faster especially
when the tree-width is small compared to the path-width.

Organization.
The organization of this paper is as follows. The relevant terms

are explained in Section 2. Our proposed method is described in
Section 3. Experimental results are provided in Section 4. Re-
lated research is described in Section 5. Section 6 concludes the
paper and describes areas of future research.

2. Preliminaries

We consider four types of graphs, which are discussed later:

*1 For the study of dynamic programming on automaton, refer to Amarilli
et al.’s paper [29] which is also shown in Section 5.

input graph, tree decomposition of the input, vtree, and struc-
tured Z-d-DNNF. To avoid confusion, we distinguish them by
the name and notation of their nodes: the vertices of the input
graph are called gnodes and are denoted by u, w, v1, v2, . . ., the
nodes in tree decompositions are called tnodes and are denoted
by B, B1, B2, . . ., vtree nodes are called vnodes and are denoted
by α, β, . . ., and structured Z-d-DNNF nodes are called dnodes

and are denoted by d1, d2,
For the reader’s convenience, the notations frequently used in

this paper are listed in Table 1.

2.1 Graph and Tree Decomposition
2.1.1 Graph

Let G = (V, E) be a simple undirected connected graph having
a gnode set V and an edge set E. |V | and |E| denote the size of
the gnodes and that of the edges of the graph G, respectively. An
independent set is a set of gnodes in a graph, in which no two gn-
odes are adjacent. A maximum independent set is an independent
set of the largest size of a graph G.
2.1.2 Tree Decomposition

Intuitively, a tree decomposition of a graph G is a means of
representing G as a tree-like structure. Formally, it is defined as
follows.
Definition 1 (Tree Decomposition). A tree decomposition of a
graph G is a pair (B,T), where T is a tree, T (T) is the set of
tnodes of T , and B = (Bi : i ∈ T (T)) is a family of subsets of V

that are assigned to each tnode i ∈ T (T). B is also called a bag.
The properties of tree decomposition are as follows [30], [31].
(1)
⋃

(Bi : i ∈ T (T)) = V .
(2) For every edge e of G there exists i ∈ T (T) such that e has

both ends in Bi.
(3) For i, j, k ∈ T (T), if j is on the path of T between i and k,

then

Bi ∩ Bk ⊆ Bj. (1)

The width of the tree decomposition is

max
i∈T (T)

(|Bi| − 1). (2)

We say graph G has tree-width W if W is the minimum width of

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 1 Example of a graph and its nice tree decomposition.

any tree decomposition of G. When T of a tree decomposition is
a path, the decomposition is called path decomposition, and the
tree-width derived from the decomposition is called path-width.

A tree decomposition is frequently transformed to a nice tree

decomposition [32] to facilitate the design of dynamic program-
ming.
Definition 2 (Nice Tree Decomposition). A tree decomposition
T is nice if there is a root node root ∈ T (T), and each tnode
i ∈ T (T) is one of the following four types:
(1) Leaf: i is a leaf of T and |Bi| = 1.
(2) Introduce: i has one child j such that there is a gnode u with

Bi = Bj ∪ {u}, where gnode u is said to be introduced in Bi.
(3) Forget: i has one child j such that there is a gnode w with

Bj = Bi ∪ {w}, where gnode w is said to be forgotten in Bi.
(4) Join: i has two children j and k with Bi = Bj = BK .

From the graph G(V, E) and its tree decomposition with tree-
width W, it is known that a nice tree decomposition of tree-width
W can be obtained in O(W2 · max(|T (T)|, |V |) [33]. We show an
example of a graph and its nice tree decomposition in Fig. 1. For
the sake of simplicity, hereafter we represent a (nice) tree decom-
position (B,T) by T .

2.2 Tractable Language
Structured-Z-d-DNNF is a tractable language for hierarchi-

cally decomposing given families of sets and representing them
with a directed acyclic graph (DAG). In this section, we explain
structured-Z-d-DNNF and its related notions.
2.2.1 (X,Y)-Decomposition

(X,Y)-decomposition is a method for decomposing given fam-
ilies of sets into sub-families.

Let f be a family of sets and U be its ground set. Let X,Y

be mutually exclusive subsets of U and let X ∪ Y = U. For
i = 1, . . . , n, let pl

i(X) be a family of sets, whose ground set is
X, and let pr

i (Y) be a family of sets, whose ground set is Y .
The (X,Y)-decomposition of a family of sets f is described

as shown below; this decomposition is referred to as (X,Y)-
decomposition.

f = [pl
1(X) � pr

1(Y)] ∪ . . . ∪ [pl
n(X) � pr

n(Y)]. (3)

Here, � represents the operation join, defined as g�h = {a∪b | a ∈
g and b ∈ h}, where g and h are arbitrary families of sets. For ex-
ample, when g = {{1}, {2}} and h = {{3}, {4}} are given, g � h is
equal to {{1, 3}, {1, 4}, {2, 3}, {2, 4}}.

Any family of sets are (X,Y)-decomposable, however in gen-
eral, the (X,Y)-decompositions are not canonical [34]. Addition-
ally, n in Eq. (3) is O(2|X|2|Y |) with a naive method. In Section 3.2,
we describe how to reduce the number of cases in our method.

2.2.2 Vtree
A vtree is a rooted, full, and ordered binary tree. Each node of

a vtree is called a vnode. In a vtree, each leaf corresponds to a
distinct item of the ground set of the families of sets, except the
dummy vnode, described below.

Here, the left and right children of the internal vnode α are de-
noted by αl and αr, respectively. The set of items corresponding
to the leaves of a vtree rooted at vnode α is Eα, and the item corre-
sponding to a leaf vnode α is eα. An internal vnode α represents a
partition of the set of items Eα into two sets Eαl and Eαr . A vtree
is used to recursively (X,Y)-decompose a family of sets, starting
from the root of the vtree.

In addition, when a vnode α is a dummy, i.e., α has no corre-
sponding item, the corresponding dummy item is represented by
eα = φ. A dummy vnode is necessary for the proposed method,
as explained in Section 3. A vtree that includes dummy nodes is
called a dummy-added vtree.

We show an example of a vtree in Fig. 3. In the figure, the num-
ber of each node is the ID of the vnode. Root node 3 corresponds
to a (X,Y)-decomposition, where X = {A, B} and Y = {C,D}.
Similarly, vnode 1 corresponds to a (X,Y)-decomposition, where
X = {A} and Y = {B}.
2.2.3 Structured Z-d-DNNF

Structured Z-d-DNNF is a tractable representation that repre-
sents families of sets [22]. In this study, we used structured Z-d-
DNNF as the output from the compilation of independent sets in
a given graph. Structured Z-d-DNNF represents a family of sets
as a DAG that shows recursive (X,Y)-decompositions of the set
family.

Structured Z-d-DNNF consists of one or more nodes, called
dnodes. A dnode d corresponds to a family of sets. Let 〈d〉 be the
set family corresponding to d. Structured Z-d-DNNF respecting
a vtree Φ is inductively defined as follows.
Definition 3. A structured Z-d-DNNF that respects vtree Φ is
one of the following.
(1) d = ε or d = ⊥.

These represent families of sets {∅} and ∅, respectively. *2

(2) d = eα or d = ±eα.
These represent families of sets {{eα}} and {{eα}, ∅}, respec-
tively. Here, α is a leaf of vtree Φ and eα is the item respect-
ing vnode α. To identify the vnode that the dnode respects,
it is denoted by dα.

(3) d = {(d1
βl , d

1
βr), . . . , (dn

βl , d
n
βr)}.

Here, βl and βr are the left and right children of the internal
vnode β of a vtree Φ, respectively. d represents the families
of sets

⋃n
i=1〈di

βl〉 � 〈di
βr 〉, where d1

βl , . . . , d
n
βl are dnodes that

respect βl, d1
βr , . . . , dn

βr are dnodes that respect βr, and 〈d〉 is
(X, Y)-decomposed with X = Eβl and Y = Eβr .

The former two dnodes are called terminal dnodes and the latter
is called a decision dnode. The ordered pair of dnodes (di

βl , d
i
βr)

that appears in a decision dnode is called an element. The size of
a structured Z-d-DNNF is defined as the number of elements.
A decision node combined with its child elements is called a de-

composition. An (X, Y)-decomposition {(d1
βl , d

1
βr), . . . , } is said

*2 ∅ is an empty family and {∅} is a family having only an empty set.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 2 Structured Z-d-DNNF respecting vtree in Fig. 3, which represents
families of sets, {{A,C}, {A, B,C}, {A, B,C,D}, {B,C,D}}.

Fig. 3 Example of vtree.

to satisfy determinism if (〈di
βl 〉 � 〈di

βr 〉) ∩ (〈d j
βl 〉 � 〈d

j
βr 〉) = ∅ for

any i � j. An (X, Y)-decomposition {(d1
βl , d

1
βr), . . . , } is said to

satisfy structured decomposability if Eβl ∩Eβr = ∅. Every (X, Y)-
decomposition that corresponds to a decision dnode of structured
Z-d-DNNF satisfies determinism and structured decomposability.

If a structured Z-d-DNNF has no (X,Y)-decomposition of the
form {(ε, α)} or {(α, ε)}, it is said to be empty-trimmed. If a struc-
tured Z-d-DNNF has no (X,Y)-decomposition of the form (⊥, α)
or (α,⊥), it is said to be empty-removed. A structured Z-d-DNNF
that is empty-trimmed and empty-removed is said to be reduced.
Note that unlike ZDDs [19], a reduced structured Z-d-DNNF is
not always canonical, i.e., the topologies of two structured Z-d-
DNNFs that respect the same vtree and represent the same family
of sets may differ. Given a structured Z-d-DNNF, some queries
can be efficiently answered, including the computation of the size
of a family of sets or enumeration of all sets in the family.

In Fig. 2, we show an example of a structured Z-d-DNNF
that respects the vtree shown in Fig. 3 and represents a family
of sets, {{A,C}, {A, B,C}, {A, B,C,D}, {B,C,D}}. An “or-gate”-
shaped node in the figure represents a decision dnode, where the
given number represents the ID of the vnode that it respects. Fur-
thermore, a circle node marked with a cross combined with its
left and right children represents an element. The size of the
structured Z-d-DNNF is six. For example, the leftmost element
(A,C) represents a family of sets {{A,C}}, whereas the lower el-
ements (A, B) and (C,D) represent the families of sets, {{A, B}}
and {{C,D}}, respectively. In addition, upper elements other than
(A,C) represent the families of sets {{A, B}} � {{C}} = {{A, B,C}},
{{A, B}} � {{C,D}} = {{A, B,C,D}}, {{B}} � {{C,D}} = {{B,C,D}},
respectively. Consequently, the root dnode of Fig. 2 represents
families of sets {{A,C}, {A, B,C},{A, B,C,D}, {B,C,D}}.

2.3 Dynamic Programming on Tree Decomposition to Find
the Size of the Maximum Independent Set

In this section, we explain dynamic programming on tree de-
composition to compute the size of the maximum independent set
of a given graph [23], [24]. As described in Section 3, we apply

this method to knowledge compilation.
Before offering a formal explanation, we provide a sketch of

the algorithm. In this method, first a depth first search is con-
ducted on the nice tree decomposition of a given graph. In this
search procedure, each tnode is traversed from a child to a parent
and the maximum independent set candidate is searched. Then,
the size of the maximum independent set is computed. To distin-
guish which gnodes are and are not contained in an independent
set, 1 is mapped to the former and 0 to the latter. The former
gnodes must not be adjacent according to the definition of an in-
dependent set.

Here, the key is that the problem can be solved by locally
checking the adjacency of gnodes; that is, it is sufficient to check
the adjacency of the gnodes mapped with 1 on each tnode because
of the separation Lemma 1, which is explained in Section 3.1.

The method is formally explained here. In this method, a
simple undirected connected graph G = (V, E) and its nice tree
decomposition T are the inputs. Then, the size of the maxi-
mum independent set is computed. Here, Ti is the subtree of
T rooted at i. In addition, we define Vi =

⋃
j∈T (Ti) Bj and let

Gi be the subgraph induced by Vi. Furthermore, s(i) is the size
of the maximum independent set of Gi. Subsequently, for each
bag Bi in T , we define the sets of gnodes, Pi and Qi, that satisfy
Pi ∪ Qi = Bi, Pi ∩ Qi = ∅. Note that, in the preceding sketch,
a set of gnodes that is mapped to 1 in tnode i corresponds to Pi,
and one mapped to 0 corresponds to Qi. Furthermore, s(i; Pi,Qi)
is defined as follows *3:

s(i; Pi,Qi)

= max

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
|S i|

S i ⊆ Vi

S i is an independent set
Pi ⊆ S i,Qi ∩ S i = ∅, Pi ∪ Qi = Bi

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
. (4)

That is, s(i; Pi,Qi) is the maximum size among the independent
sets of Gi that contain all gnodes of Pi and do not contain any
gnodes of Qi.

In this method, a depth first search is conducted on the tnodes
on T and the process is categorized according to the types of
nodes. Next, the following computation according to the type of
each tnode is performed. Consequently, s(root) equals the size of
the maximum independent set. Here, the child of an introduce or
forget tnode i is j, and the children are j and k when i is a join
tnode. In addition, it is supposed that Bi = Bj ∪ {u} when i is an
introduce tnode, and that Bi = Bj \ {w} when i is a forget node.
(1) i is a leaf:

Clearly, s(i) = 0.
(2) i is an introduce node:

The process is defined according to three cases:
(I) There exist two adjacent gnodes in Pi,
(II) There do not exist two adjacent gnodes in Pi and u ∈ Pi,
(III) There do not exist two adjacent gnodes in Pi and u ∈ Qi.

*3 We refer to a Japanese article that divides the gnodes in a tnode into two
groups to explain this method, http://dopal.cs.uec.ac.jp/okamotoy/lect/
2016/treewidth/lect07.pdf

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

s(i; Pi,Qi) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∞ (I)
s(j; Pi \ {u},Qi) + 1 (II)
s(j; Pi,Qi \ {u}) (III)

. (5)

(3) i is a forget node:

s(i; Pi,Qi) = max{s(j; Pi ∪ {w},Qi), s(j; Pi,Qi ∪ {w})}.
(6)

(4) i is a join node:

s(i; Pi,Qi) = s(j; Pi,Qi) + s(k; Pi,Qi) − |Pi|. (7)

Here, the size of the states of each tnode is O(2W). It takes
O(|V |) to naively check the adjacency of gnodes. However, a
method that achieves the computation in O(W) has been pro-
posed [24]. Thus, the time complexity of this computation for
the entire node is O(2W |T |).

2.4 Frontier-based Search
Knuth proposed Simpath [18], which is a method for compiling

graph substructures contained in a given graph, e.g., s-t paths or
cycles, into a tractable language ZDD [19]. This method is also
called a frontier-based search [17]. In this method, an exhaustive
search is conducted on the edges of the given graph successively
in a predefined order. ZDDs, where each ZDD node represents
the candidate subsets of graph substructures, are simultaneously
constructed. However, if the procedure is conducted naively, the
number of generated ZDD nodes grows exponentially and the
procedure soon becomes intractable. To reduce the number of
ZDD nodes during the search procedure, a “label” is assigned to
the gnodes. The labels are mapped to the gnodes based on the
state of the incident edges and are designed to identify the fol-
lowing two conditions pertaining to the candidate subsets. (1) If
two candidates share the same remaining search space, the state
of these candidates can be judged as equivalent. Subsequently,
the corresponding ZDD nodes can be merged. (2) If the state of
a candidate is invalid for the graph substructure, the correspond-
ing ZDD node can be pruned. These labels are called mates.
Knuth showed that, by designing a suitable mate, several types
of graph substructures, such as s-t paths, cycles, or Hamiltonian
paths [18], can be compiled by using the frontier-based search.
Kawahara et al. showed that it can be used to compile other types
of graph substructures, e.g., spanning tree or matching [17].

As a trivial extension of Knuth or Kawahara’s approach, the
independent sets contained in an input graph can be compiled as
follows. Instead of on the edges, an exhaustive search is con-
ducted on the gnodes of the given graph successively in a pre-
defined order. ZDDs, where each ZDD node represents a candi-
date of independent sets, are simultaneously constructed. In the
procedure, mate[v] = 1 is assigned to gnodes v contained in the
independent set candidate, and mate[u] = 0 is assigned to gn-
odes u not contained in the candidate. Here, gnodes to which no
mate was assigned are called unprocessed. Whereas, if mates are
assigned to a gnode including all of its adjacent gnodes, the gn-
ode is called processed. The remaining gnode set is defined as
frontier gnodes. By definition, an unprocessed gnode is not adja-
cent to any processed gnode. Therefore, only the adjacency of the

frontier gnodes must be checked. Thus, if the values of the mates
assigned to the frontier gnodes are equivalent in two independent
set candidates, they share the same remaining search space. Then,
the corresponding ZDD nodes can be merged. However, if both
values of the mates assigned to two adjacent gnodes on a fron-
tier equal to 1, the property of independent sets is violated, then
the corresponding ZDD node can be pruned. The assignment of
mates to the frontier gnodes is called configuration.

Note that, frontier gnode set is equal to vertex separator,
where, the j-th vertex separator F j on the gnode order (v1, . . . , vn)
is defined as F j = {vi|i ≤ j,∃k > j, {vi, vk} ∈ E}. Vertex separa-

tion number is defined as max1≤i≤|V | |Fi|. It is known that when
we find the gnode order with minimum vertex separation number
of a graph, the minimum vertex separation number is equal to the
path-width of the graph [35].

3. Our Method

Our proposed method takes a connected undirected graph G,
its nice tree decomposition T , and the vtree Φ generated from the
nice tree decomposition as inputs. *4 Furthermore, the indepen-
dent sets contained in the input graph are compiled and its result
becomes the output of our method. Here, the size of the inde-
pendent sets tends to be very large, and the computational cost is
high if it is computed naively.

Thus, we adopted a method to compile the independent sets
that uses a structured Z-d-DNNF [22]. Because the size of the
output of a structured Z-d-DNNF is much smaller than that of
the independent sets that it represents, the process of compilation
can efficiently be conducted using this method rather than a naive
method.

In the following, we first describe the tree decomposition prop-
erty called separation lemma, which plays an important role in
the design of our method (Section 3.1). Then, we explain our
method for compiling the independent sets in an input graph. To
clarify the comparison of dynamic programming for finding the
maximum number of independent sets and the proposed method,
we first describe our compilation method as a dynamic program-
ming scheme for computing the independent sets (Section 3.2).
Then, we explain the method for constructing the vtree from the
nice tree decomposition of an input graph (Section 3.3), addi-
tionally the method for compiling the independent sets into struc-
tured Z-d-DNNFs using the vtree (Section 3.4). Because the two
children nodes of a join node of nice tree decomposition are not
mutually exclusive as two children of an internal vnode are, we
need to modify a nice tree decomposition before we construct a
vtree and structured Z-d-DNNF. Further, we explain the correct-
ness and complexity of the algorithm (Section 3.5), and finally,
queries and transformations supported by structured Z-d-DNNF
(Section 3.6).

3.1 Separation Lemma
The nodes of a tree decomposition satisfy the property shown

in the following Lemma 1, which plays an important role in the
design of our method, as shown later in this section.

*4 We show the method for generating a vtree from a nice tree decomposi-
tion in Section 3.3.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Lemma 1 (Separation Lemma). Let T be the tree decomposi-
tion of a graph G and i, j and k be the tnodes of T , where j exists
on the path from i to k. Then, an edge that connects a gnode of
u ∈ Bi \ Bj to that of v ∈ Bk \ Bj does not exist. In other words, a
bag Bj separates Bi \ Bj and Bk \ Bj [33].

3.2 Dynamic Programming
In this section, we explain the use of dynamic programming

for compiling the independent sets of an input graph.
Before offering a formal explanation, we provide a sketch of

the algorithm. As the same with the algorithm in Section 2.3, we
first conduct a depth first search on the nice tree decomposition
of a given graph. Here, instead of maximum independent set can-
didates, we search independent set candidates. Also, as the same
in Section 2.3, to distinguish which gnodes are and are not con-
tained in an independent set, 1 is mapped to the former and 0 to
the latter. The former gnodes must not be adjacent and it can be
solved by locally checking the adjacency of gnodes because of
the separation Lemma 1 in Section 3.1.

The method is formally explained as follows. Let Ti be the
subtree of T rooted at i, and let Vi be Vi =

⋃
j∈T (Ti) Bj and let S(i)

be the independent sets of Gi.
For each tnode i of T , we define gnode sets Pi,Qi to satisfy

Pi ∪Qi = Bi and Pi ∩Qi = ∅. Furthermore, we define S(i; Pi,Qi)
as follows:

S(i; Pi,Qi) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S i

S i ⊆ Vi

S i is an independent set
Pi ⊆ S i,Qi ∩ S i = ∅, Pi ∪ Qi = Bi

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

(8)

That is, S(i; Pi,Qi) is the family of independent sets of Gi, and
an independent set S i ∈ S contains all gnodes of Pi and none
of Qi. When we use mate, as described in Section 2.4, we have
mate[v] = 1 for a gnode v that is contained in Pi, and we have
mate[u] = 0 for u contained in Qi.

As in the method for finding maximum independent sets de-
scribed in Section 2.3, we conduct a depth-first search on the tn-
odes of the tree decomposition, where processing begins from the
lower tnode. When we classify the process according to the tn-
ode types, we obtain the recursive expressions in Theorems 4, 5,
6, and 7. Note that, as a consequence of Lemma 1, more than two
independent sets that share the same combination of Pi and Qi

share the same subsequent processing after Bi; that is, the combi-
nation of Pi and Qi plays the same role as a configuration in the
frontier-based search described in Section 2.4.
Theorem 4 (Leaf Nodes). S(i) = S(i; ∅, ∅) = {∅}.
Proof. Because a leaf tnode contains a gnode set ∅, the theorem
is proven.
Theorem 5 (Introduce Nodes). Let i be an introduce node and
j be the child of i; gnode u not contained in Bj is introduced in
Bi. We then classify the process into three cases as described in
Section 2.3: (I) There exist more than one adjacent gnodes in Pi,
(II) No two gnodes in Pi are adjacent and u ∈ Pi,
(III) No two gnodes in Pi are adjacent and u ∈ Qi.
We then have

S(i; Pi,Qi) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{∅} (I)
S(j; Pi \ {u},Qi) � {{u}} (II)
S(j; Pi,Qi \ {u}). (III)

. (9)

Proof. (I) Suppose that I ∩ Bi = Pi holds for a gnode set I in
Gi, and u, v ∈ Pi holds for some {u, v} ∈ E. Then, I is not an
independent set.

(II) Suppose that I ∈ S(j), I ∩ Bj = Pj, and {u, v} � E for all
v ∈ Pj. Then, because all the adjacent gnodes of u in Gi are con-
tained in Bj from Lemma 1, I∪{u} is an independent set. Because
(I ∪ {u}) ∩ Bi = Pj ∪ {u}, this case is proven.

(III) Because u ∈ Bi, it holds that Pi = Pj. Consequently,
if an independent set I satisfies I ∩ Bj = Pj, it also holds that
I ∩ Bi = Pi. Thus, this case is proven.
Theorem 6 (Forget Nodes). Suppose that i is a forget node, j

is the child of i, and gnode w contained in Bj is forgotten in Bi.
There can then exist more than one independent set, in which the
configuration is different in Bj, whereas it is equal in Bi. Because
these independent sets share the same subsequent processing af-
ter Bi, a union operation is performed to unify the processing.
Consequently, it holds that

S(i; Pi,Qi) = S(j; Pi ∪ {w},Qi) ∪ S(j; Pi,Qi ∪ {w}). (10)

Proof. S(i; Pi,Qi) is the union of the two following sets: (1) All
independent sets I in Gi, in which it holds that I ∩ Bi = Pi and
w ∈ I. (2) All independent sets I in Gi, in which it holds that
I∩Bi = Pi and w � I. Consequently, it holds that S(j; Pi∪{w},Qi)
in the former, whereas it holds that S(j; Pi,Qi ∪ {w}} in the latter.
Theorem 7 (Join Nodes). Suppose that i is a join node and j and
k are the two children of i. Then, we have

S(i; Pi,Qi) = S(j; Pi,Qi) � S(k; Pi,Qi). (11)

Proof. For all I j ∈ S(j; Pi,Qi) and all Ik ∈ S(k; Pi,Qi), it holds
that I j∩Bj = Ik∩Bk = I j∩Bi = Ik∩Bi = Pi, because Bi = Bj = Bk.
Here, from Lemma 1, it holds that {v, u} � E for ∀v ∈ I j \ Pi and
∀u ∈ Ik \ Pi. Consequently, gnode sets I j \ Pi and Ik \ Pi do
not share adjacent gnodes. Thus, it holds that Ii = I j ∪ Ik is an
independent set of Gi for ∀I j ∈ S(j; Pi,Qi) and ∀Ik ∈ S(k; Pi,Qi).

3.3 Vtree Construction from a Nice Tree Decomposition
Next, we explain the construction of a dummy-added vtree

from a given nice tree decomposition. For simplicity, it is called
a vtree described below. The problem here is the difference be-
tween the properties of an internal node of a vtree and those of a
join tnode of a nice tree decomposition. Namely, at each internal
node of a vtree, the sets corresponding to the leaves of the left
and right sub-vtrees are disjoint, whereas, in a join tnode i and its
two children j and k of a nice tree decomposition, Vj and Vk are
not always mutually exclusive.

Therefore, we first transform a given nice tree decomposition
T such that the gnodes contained in the left and right children of
each internal node are disjoint. The transformation method is as
follows. For every join tnode i and its two children j and k in a
nice tree decomposition T , we can specify j as the left child and
k as the right child without loss of generality. For j and k, we let
Vm be Vm = Vj ∩ Vk. Furthermore, for each tnode k included in

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 4 Example of a dummy-added vtree generated from
a nice tree decomposition in Fig. 1.

the sub-vtree on the right, we change it to B′k = Bk \ Vm and limit
the gnode contained in Vk and its child tnodes to B′k. We conduct
this transformation on each join tnode from the bottom to the root
and let the obtained tree be T ′ *5.

Then, we conduct a depth-first search on the tree T ′, giving
priority to the left side, and generate a vnode corresponding to
each node of the tree from a child to a parent.

Here, we inductively define the process of vnode generation.
A node of tree T ′ is denoted as i, j, k,
(1) When a node i has no child, we generate the corresponding

vnode α that is a dummy eα = φ.
(2) When a node i has one child j for which B′i = B′j ∪ {u} holds,

there exists a vnode α, where Eα = Vj from the inductive
assumption. We generate a vnode β and let βr = α. Further-
more, we generate a vnode βl, where eβl = u.

(3) When a node i has one child j for which B′i ∪{w} = B′j holds,
as in (2), we generate a vnode β and let βr = α. Then, we
generate a dummy vnode βl, where eβl = φ.

(4) When a node i has one child j for which B′i = B′j holds, we
have the same vnode generation as that described in (3).

(5) When a node i has two children j and k, there exists a vnode
α, where Eα = Vj, and a vnode β, where Eβ = Vk from the
inductive assumption. We generate a vnode γ and let γl = α

and γr = β.
In Fig. 4, we show an example of a vtree generated from a nice

tree decomposition of Fig. 1.

3.4 Compilation with Structured Z-d-DNNF
In this section, we present a method for representing the dy-

namic programming scheme described in Section 3.2 with a struc-
tured Z-d-DNNF. The problem here involves the structured de-
composability of a structured Z-d-DNNF. That is, in each ele-
ment of a structured Z-d-DNNF, the families of sets represented
by the left and right ordered pairs are mutually exclusive, whereas
the ground sets of two children ofS(i) are not necessarily disjoint.
As a result, a structured Z-d-DNNF cannot be used to represent
the hierarchy of S(i) as it is.

Therefore, we limit S(i) to the tree T ′ described in Section 3.3.
Suppose that we have a join tnode i and its left and right children
j and k, where Vm = Vj ∩ Vk holds. Then, for the right child
and its descendant r, we exchange S(r) with S′(r) = {S \ Vm|S ∈
S(r)}. Each S (i; Pi,Qi) we exchange with S ′(i; P′i ,Q

′
i), where

P′i = Pi \ Bm, Q′i = Qi \ Bm. We conduct this process for each

*5 T ′ cannot always be a tree decomposition, because it does not always
satisfy (2) in Definition 1.

join tnode from the root to the bottom. Even after performing
this process, the families of sets represented by the root S′(root)
equal S(root), and all the independent sets of the input graph are
represented.

Then, we construct a dnode according to the types of node i,
as described in detail below, and we let it have one-to-one corre-
spondence with a certain S′(i; P′i ,Q

′
i). As shown in Section 3.5,

the hierarchy of these nodes meets the definition of a structured
Z-d-DNNF.

In the following, we inductively define the method for compos-
ing a dnode with regard to node type i.
(1) When i has no child, we let the corresponding dnode be ε,

because the vnode to which it corresponds is a dummy vn-
ode.

(2) When a node i has one child j for which B′i = B′j ∪ {u} holds,
S ′(j) has its corresponding dnodes based on the inductive
assumption. When gnode u is contained in P′i , we construct
an element with the ordered pair of dnodes, one of which
is a dnode that represents {{u}} and the other is a decision
dnode that corresponds to S′(j; P′i \ {u},Q′i). Subsequently,
we let the element be a child of a decision dnode correspond-
ing to S′(i; P′i ,Q

′
i). On the other hand, when gnode u is

contained in Q′i , we construct an element with the ordered
pair of dnodes, one of which is a terminal dnode represent-
ing {ε} and the second is a decision dnode corresponding to
S′(j; P′i ,Q

′
i \{u}). Subsequently, we let the element be a child

of a decision dnode corresponding to S′(i; P′i ,Q
′
i).

(3) When a node i has one child j for which B′i ∪ {w} = B′j
holds, S ′(j) has its corresponding dnodes based on the in-
ductive assumption. When both S′(j; P′i ∪ {w},Q′i) and
S′(j; P′i ,Q

′
i ∪ {w}) exist, we construct an element using an

ordered pair with a terminal dnode {ε} and the correspond-
ing dnode of each. These are (ε, d1

j) and (ε, d2
j), where

d1
j corresponds to S′(j; P′i ∪ {w},Q′i) and d2

j corresponds
to S′(j; P′i ,Q

′
i ∪ {w}). Subsequently, we let the element be

the child of a decision dnode corresponding to S′(i; P′i ,Q
′
i).

When one of S′(j; P′i ∪ {w},Q′i) and S′(j; P′i ,Q
′
i ∪ {w}) does

not exist, a dnode corresponding to S′(i; P′i ,Q
′
i) has only one

child.
(4) When a node i has one child j for which B′i = B′j holds,

S ′(j) has its corresponding dnodes based on the inductive
assumption. We construct an element with the ordered pair
of dnodes, one of which is a terminal dnode that represents
{ε} and the second is a decision dnode that corresponds to
S′(j; P′j,Q

′
j). Subsequently, we let the element be a child

of a decision dnode corresponding to S′(i; P′i ,Q
′
i), where

P′i = P′j and B′i = B′j.
(5) When a node i has two children j and k, j and k have their

corresponding dnodes based on the inductive assumption.
We then construct an element with the ordered pair, where
the dnodes share the same configuration S′(j; P′j,Q

′
j) and

S′(k; P′k,Q
′
k), and where P′j = P′k, B

′
j = B′k. Subsequently,

we let the element be the child of a dnode corresponding to
S′(i; P′i ,Q

′
i).

Example. We describe an example of the method for construct-
ing a structured Z-d-DNNF. We take the graph of Fig. 1 and its

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

vtree Fig. 4 as inputs. Then, we have Fig. 5 as the result of com-
piling all the independent sets contained in the input graph. In
Fig. 5, the decision dnode respecting the same vnode α is said to
be d1

α, d
2
α, . . . from the left. For example, the decision nodes with

3 shown at the bottom of the figure are d1
3 , d

2
3 from the left, re-

spectively. Furthermore, Table 2 shows the state at each tnode
and vnode during processing.

In tnode 1, the family of independent sets is only S(1; ∅, ∅) =
{∅}. Thus, a terminal dnode representing {∅} is constructed that
respects a vnode 1. In tnode 2, there are two families of indepen-
dent sets: one is S(2; ∅, {1}) = {∅}, which does not contain gnode
1 in B2, and the second is S(2; {1}, ∅) = {{1}}, which does contain
gnode 1 in B2. The corresponding elements are (ε, ε) and (v1, ε),
which are contained in the two decision dnodes d1

3 and d2
3, respec-

tively. Vnode 3 is respected by these decision dnodes. In tnode 3,
because gnodes 1 and 2 are not contained in the same independent
set, we have the families of independent sets S(3; ∅, {1, 2}) = {∅},
S(3; {2}, {1}) = {{2}}, and S(3; {1}, {2}) = {{1}}. The correspond-
ing elements are (ε, d1

3), (v2, d1
3), and (ε, d2

3), which are contained
in the decision dnodes d1

5, d2
5, and d3

5. A vnode 5 is respected
by these decision dnodes. In tnode 4, we have the families of
independent sets S(4; ∅, {1}) = {∅, {2}} and S(4; {1}, ∅) = {{1}},
because gnode 2 is forgotten. The corresponding elements are
(ε, d1

5), (ε, d2
5), and (ε, d3

5). The configurations of these elements

Fig. 5 Compilation result of the graph in Fig. 1.

Table 2 Process with inputs Fig. 1 and Fig. 4.

Tnode Vnodes BAG Type S(i; Pi,Qi) Families of Independent Sets
Dnodes

1 1 ∅ Leaf S(1; ∅, ∅) {∅}
2 2,3 {1} Introduce S(2; ∅, {1}),S(2; {1}, ∅) {∅},{{1}}
3 4,5 {1, 2} Introduce S(3; ∅, {1, 2}),S(3; {1}, {2}),S(3; {2}, {1}) {∅},{{1}},{{2}}
4 6,7 {1} Forget S(4; ∅, {1}),S(4; {1}, ∅) {∅, {2}},{{1}}
5 8 ∅ Leaf S(5; ∅, ∅) {∅}
6 9,10 {1} Introduce S(6; ∅, {1}),S(6; {1}, ∅) {∅},{{1}}
7 11,12 {1, 3} Introduce S(7; ∅, {1, 3}),S(7; {1}, {3}),S(7{3}, {1}) {∅},{{1}},{{3}}
8 13,14 {1} Forget S(8; ∅, {1}),S(8; {1}, ∅) {∅, {3}},{{1}}
9 15 {1} Join S(9; ∅, {1}),S(9; {1}, ∅) {∅, {2}, {3}, {2, 3}},{{1}}

10 16,17 {1, 4} Introduce S(10; ∅, {1, 4}),S(10; {1}, {4}),S(10; {4}, {1}) {∅, {2}, {3}, {4 {2, 4}, {3, 4}},{{1}}
11 18,19 {4} Forget S(11; ∅, {4}),S(11; {4}, ∅) {∅, {2}, {3}, {4}, {2, 4}, {3, 4}},{{1}}
12 20,21 ∅ Forget S(12; ∅, ∅) {∅, {2}, {3}, {4}, {2, 4}, {3, 4}, {1}}

are {mate[1] = 0,mate[2] = 0}, {mate[1] = 0,mate[2] = 1}, and
{mate[1] = 1,mate[2] = 0}, respectively. Because B4 = {1}, the
first two are merged and contained in the same decision dnode
d1

7, and the last is contained in decision dnode d2
7; both of these

dnodes respect vnode 7.
In tnode 5, we have the family of independent sets S(5; ∅, ∅) =

{∅}. Thus, a terminal dnode representing {∅} is constructed that
respects vnode 8. In tnode 6, we have the families of independent
sets S(6; ∅, {1}) = {∅} and S(6; {1}, ∅) = {{1}}. Because, vnode 9
is a dummy node that has no corresponding gnode, we construct
an element (ε, ε) from the vnodes corresponding to tnode 6 and
give them the configurations of S(6; ∅, {1}) and S(6; {1}, ∅), re-
spectively. In addition, these are contained in the decision dnodes
d1

10 and d2
10, respectively, both of which respect vnode 10.

Next, we conduct this process up to tnode 8 in the same man-
ner. In tnode 9, we construct two elements with the ordered set of
the decision dnodes of 7 and 14, which share the same configu-
ration. We then let them be contained in decision dnodes d1

15 and
d2

15, both of which respect vnode 15.
In the root tnode 12, because the frontier gnode is an empty

set, all of the lower dnodes are contained in one decision dnode
d21, which represents S(12; ∅, ∅) = {∅, {2 {3}, {4}, {2, 4}, {3, 4}, {1}}
and respects vnode 21.

We show pseudo-code for the proposed method in Algorithm
1. Construct takes sets of decision dnodes D at each tnode and
tnode id i as inputs. The output is D, which is added to the com-
putation result. This algorithm conducts an exhaustive search on

Algorithm 1 Construct(D, i)
1: // D[i] is a decision dnode corresponding to tnode i

2: if i is introduce then

3: D[Child(i)]← Construct(D,Child(i))

4: D[i]← Introduce(D,Child(i))

5: else if i is forget then

6: D[Child(i)]← Construct(D,Child(i))

7: D[i]← Forget(D,Child(i))

8: else if i is join then

9: D[ChildLeft(i)]← Construct(D,ChildLeft(i))

10: D[ChildRight(i)]← Construct(D,ChildRight(i))

11: D[i]← Join(D,ChildLeft(i),ChildRight(i))

12: else if i is leaf then

13: D[i]← Leaf()

14: end if

15: return D

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

the tnodes of a tree decomposition from the bottom, where the
process is divided based on the types of tnodes. In Algorithm
1, Introduce, Forget, Join, and Leaf are functions that return
the result corresponding to the types of tnode, where Child(i),
ChildLeft(i), and ChildRight(i) return the sole child, the left child,
and the right child of i, respectively.

3.5 Correctness and Complexity
Theorem 8. The proposed method correctly compiles the inde-
pendent sets contained in the input graph.
Proof. In the hierarchy of nodes presented in Section 3.4, it is
obvious that each node corresponds to a certain S′(i), and the
root dnode corresponds to S′(root) = S(root). Therefore, each
node meets conditions (1), (2), and (3) in Definition 3, and it is
sufficient to prove that the hierarchy meets the requirements of
structured decomposability and determinism. First, we prove that
the hierarchy of nodes obtained in the previous section meets the
requirement of structured decomposability. Because the ground
sets of the left and right subtree are mutually exclusive on each
internal vnode β, each internal vnode represents a certain (X,Y)-
decomposition. Thus, the hierarchy of Section 3.4 satisfies struc-
tured decomposability. Next, we prove that the hierarchy of Sec-
tion 3.4 meets the requirement of determinism. We assume that
I1, I2 ∈ S(i; Pi,Qi) are limited to I′1, I

′
2 ∈ S

′(i; P′i ,Q
′
i) and that

they satisfy I′1 = I′2 for the sake of contradiction. Let I′ = I′1 = I′2.
For ∀v ∈ I1 \ I′, i is a forget tnode of v or its ancestor, because
I1 and I2 are merged into S(i; Pi,Qi). However, v ∈ Bi, because
I1, I2 ∈ S(i; Pi,Qi) are limited to I′1, I

′
2 ∈ S

′(i; P′i ,Q
′
i), which is a

contradiction. This also applies to ∀v ∈ I2 \ I′.
Theorem 9. The time complexity of the proposed method is
O(2W |T (T)|), and the size of the compilation result of a struc-
tured Z-d-DNNF is O(2W |T (T)|).
Proof. The size of the states of each tnode i is O(2W), which
is the same as that of the method for calculating the size of the
maximum independent set described in Section 2.3. Because the
time required to construct each dnode corresponding to each state
is constant, the time complexity for constructing all the dnodes
is O(2W |T (T)|), which is the same as the time required by the
method described in Section 2.3. Because the size of the elements
of each decision dnode is proportional to that of the states in each
tnode, the size of the compilation result of structured Z-d-DNNF
is O(2W |T (T)|).

3.6 Query and Transformation with Structured Z-d-DNNF
In this subsection, we explain some of queries and transforma-

tions supported by Structured Z-d-DNNF. First, we take queries.
The size of the independent sets represented with a structured Z-
d-DNNF is calculated in time O(n). Here, n is the size of the out-
put of the structured Z-d-DNNF. This query is said to be Model

Counting. The enumeration of independent sets represented by a
structured Z-d-DNNF is completed in time O(p(n,m)). Here, m

is the size of the independent sets and p(n,m) is a polynomial of
degree n,m. This query is said to be Model Enumeration [22].

Next, we take Random Sampling as an example of transforma-
tion. After the compilation of independent sets of a given graph,
we sometimes need to take some samples of all the independent

Algorithm 2 RandomSample(d)
Let Card(d) be the size of independent sets represented by d. We assume that

d is already reduced and Card(d) is calculated.

1: if d is terminal then

2: if d = ε or d = eα for an item eα then

3: return d

4: else if d = ±eα for an item eα then

5: Assign eα or ε to d′ with probability 1
2 respectively

6: return d′

7: end if

8: else

9: Assign (di
l , d

i
r) to (d′l , d

′
r) with probability

Card(di
l) Card(di

r)
Card(d) respectively.

10: d′l ← RandomSample(d′l)

11: d′r ← RandomSample(d′r)

12: return d′ = {(d′l , d
′
r)}

13: end if

sets. However, if the total size of the independent sets is very
large, a naive enumeration method is impractical in order to select
a few of them. For this purpose, random sampling of independent
sets on the compilation result is useful.

We assume that the independent sets of a graph is already com-
piled and reduced, additionally the size of independent sets are
already calculated. In addition, the cumulative sum of the child
elements at each dnodes is already calculated, which is necessary
for random walk described below. Henceforth, Random sam-
pling is conducted by a following random walk: We start from
the root node. When we are at a non-terminal node d, we ran-
domly move to a node (di

l , d
i
r) ∈ d with probability

Card(di
l) Card(di

r)
Card(d) ,

where Card(d) represents the cardinality of the independent sets
represented by d. We repeat this procedure until we reach a
terminal, which yields a random sampling of the independent
sets represented by d. The time complexity is proportional to
∑

i∈{1,...,H} log(Ave[|d(i)|]), where H denotes the height of the vtree
that the compilation result respects to, Ave[.] denotes the average,
and |d(i)| denotes the size of the children of a dnode at i-th height.
The pseudo code of the procedure is shown in Algorithm 2.

4. Experiments

In this section, we describe the results of our experimental eval-
uation. To compare the performance of the proposed method, we
conducted frontier-based search. That is, we compiled all of the
independent sets in the input graph with our method and the com-
parison method respectively and compared their performance.
Additionally, we took Model Counting and Random Sampling
as an example of query and transformation respectively. The de-
tail of the frontier-based search to compile the independent sets in
an input graph is described in Section 2.4. We implemented the
frontier-based search based on the implementation of TdZdd *6.

The experiment was performed on a computer with an Intel
Xeon CPU E7-8837 (2.67 GHz), 1.5 TB main memory, and Linux
4.4.104-39-default. The proposed methods were implemented in
C++ and built with g++ 4.85.

For the input graphs, we used the data set ex-instances-

*6 https://github.com/kunisura/TdZdd

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 3 Instances for the ten smallest and ten largest of the path-width/tree-
width ratio.

Instance |V| |E| TW PW PW/TW
ex069 235 441 13 9 0.69*10

ex091 193 336 11 10 0.91*10

ex095 220 555 12 11 0.92*10

ex143 130 660 36 35 0.97*10

ex063 103 582 36 36 1.00
ex077 237 423 11 11 1.00
ex103 237 419 12 12 1.00
ex117 77 181 14 14 1.00
ex145 48 96 12 12 1.00
ex195 216 382 12 12 1.00
ex197 303 1,158 17 41 2.41
ex019 291 752 16 41 2.56
ex073 712 1,085 8 21 2.63
ex015 177 669 15 42 2.80
ex153 772 11,654 56 170 3.04
ex155 758 11,580 55 168 3.05
ex081 188 638 6 19 3.17
ex011 465 1,004 10 33 3.30
ex129 737 2,826 17 60 3.53
ex149 698 2,604 13 51 3.92

PACE2017-public-2016-12-02 *7, which was provided for a 2017
contest for tree decomposition implementation (PACE). As the
prepossessing of our method, we applied tree decomposition to
each of the input graphs, transformed them into nice tree decom-
positions and created vtrees. Consequently, we used them as in-
puts to the proposed method.

We executed tree decomposition using flow-cutter-pace17 *8, a
heuristics method that won the second place in PACE heuristic
tree decomposition challenge in 2017. It was decided as a rule of
the contest that the current best tree decomposition must imme-
diately print in standard output and then halt once the calculation
process receives the SIGTERM signal *9. Thus, we uniformly ter-
minated the calculation for each graph in two seconds.

On the other hand, as the prepossessing of comparative
method, we conducted beam search to find the appropriate or-
der of the gnodes of an input graph, which equals to the path-
width [35]. We used our own implementation for the beam search
with following the method detailed in Inoue et al. [20]. The beam
search width we adopted was 3000. Among the data set, we ex-
cluded only ex115 because it took more than ten hours to obtain
the result. Except this instance, the computation to find the order
of the gnodes took two seconds to three hours per instance.

In Table 3, we show the instances for the ten smallest and ten
largest of the path-width/tree-width ratio. Further, in Table 4 and
Table 5, we show the experimental results of construction, reduc-
tion. Also, in Table 6, we show the results of query and transfor-
mation. The rest of the instances is omitted due to lack of space.

In Table 3, the columns headed Instance, |V |, |E|, TW, PW, and
PW/TW show the name of the input graph, the size of gnodes, the
size of edges, the tree-width, the path-width of the graph, and the
path-width/tree-width ratio respectively. We considered that the

*7 https://people.mmci.uni-saarland.de/˜hdell/pace17/ex-instances-
PACE2017-public-2016-12-02.tar.bz2

*8 https://github.com/kit-algo/flow-cutter-pace17
*9 https://pacechallenge.wordpress.com/pace-2016/track-a-treewidth/
*10 In these instances, path-width is smaller than tree-width because we used

heuristics to calculate both values. In the following three tables, Ta-
bles 4–6, we took the path decomposition as the tree decomposition i.e.,
PW/TW = 1.00.

Table 4 Experimental results of the proposed and the comparative method
(Construction).

Construction
Our Method Frontier-Based Search

Instance time (ms) nodes time (ms) nodes PW/TW
ex069 43 70,385 8 26,433 1.00
ex091 65 114,200 12 41,759 1.00
ex095 57 88,263 7 34,261 1.00
ex143 1,172 1,708,633 125 663,759 1.00
ex063 655 946,529 48 278,210 1.00
ex077 23 38,119 12 40,127 1.00
ex103 134 226,304 22 107,677 1.00
ex117 95 152,518 16 81,573 1.00
ex145 246 393,670 8 33,572 1.00
ex195 119 195,948 33 150,371 1.00
ex197 85 137,419 796,979 2,330,290,142 2.41
ex019 426 684,402 >1 h 2.56
ex073 34 57,840 28,748 94,456,354 2.63
ex015 16 22,818 351,867 1,048,684,198 2.80
ex153 19,195 22,775,996 >1 h 3.04
ex155 10,002 12,799,222 >1 h 3.05
ex081 5 8,491 183 993,796 3.17
ex011 27 46,499 391,209 1,152,363,020 3.30
ex129 200 321,957 >1 h 3.53
ex149 75 123,749 >1 h 3.92

Table 5 Experimental results of the proposed and the comparative method
(Reduction).

Reduction
Our Method Frontier-Based Search

Instance time (ms) nodes time (ms) nodes PW/TW
ex069 29 27,385 1 8,794 1.00
ex091 61 46,738 1 12,048 1.00
ex095 41 30,300 1 5,278 1.00
ex143 1,760 575,335 23 86,983 1.00
ex063 766 56,081 8 14,974 1.00
ex077 16 13,685 1 15,506 1.00
ex103 159 84,846 4 40,242 1.00
ex117 103 55,144 2 17,549 1.00
ex145 291 66,361 1 3,680 1.00
ex195 126 70,287 5 57,224 1.00
ex197 84 34,483 193,147 23,241,232 2.41
ex019 651 192,182 >1 h 2.56
ex073 24 20,137 5,266 35,742,140 2.63
ex015 7 3,992 71,982 11,887 2.80
ex153 30,160 1,923,582 >1 h 3.04
ex155 15,000 998,317 >1 h 3.05
ex081 2 1,315 31 290,033 3.17
ex011 19 14,627 79,808 92,324,582 3.30
ex129 244 94,446 >1 h 3.53
ex149 71 42,867 >1 h 3.92

vertex separation number, which is gained with the gnode order
in the last paragraph, is equal to the path-width (cf., Section 2.4.).

On the other hand, in the columns headed Our Method and
Frontier-Based Search of Table 4 show the time required to com-
pile the independent sets and the size of the output, respectively.
The instances that did not finish running within one hour are
marked as “>1 h”. Further, the columns headed Reduction of
Table 5 show the time required for reduction of the compilation
output and the size of the output in the reduced form, respectively.

Additionally, in the column headed MC of Table 6, the time re-
quired for model counting is shown. Further, the columns headed
Random of Table 6 show the time required for the random sam-
pling. We tried random sampling on our method and the com-
parative method for one hundred times and recorded the average
time required. The column Rand Init show the time required for
the calculation of the cumulative sum of the child elements at
each dnodes of our method. This step is required only once as the

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 6 Experimental results of the proposed and the comparative method
(Query and Transformation).

Our Method Frontier-Based Search
MC Rand Init Random MC Random

Instance time (ms) time (ms) time (ms) time (ms) time (ms) PW/TW
ex069 15 20 3 0 1 1.00
ex091 27 34 2 0 1 1.00
ex095 17 23 2 0 1 1.00
ex143 457 591 4 2 0 1.00
ex063 40 47 2 0 0 1.00
ex077 9 10 3 1 1 1.00
ex103 67 82 3 1 1 1.00
ex117 37 46 1 0 0 1.00
ex145 43 56 0 0 0 1.00
ex195 49 62 3 2 1 1.00
ex197 25 28 2 1,617 24 2.41
ex019 161 208 5 >1 h 2.56
ex073 13 16 10 2,192 37 2.63
ex015 2 3 2 0 0 2.80
ex153 1,978 2,332 67 >1 h 3.04
ex155 919 1,116 35 >1 h 3.05
ex081 0 1 1 9 0 3.17
ex011 10 12 6 5,917 91 3.30
ex129 80 96 8 >1 h 3.53
ex149 31 36 8 >1 h 3.92

prepossess of binary searches in a random walk (cf., Section 3.6.).
We omitted the cardinality of the independent sets in the table,

because it tends to be extremely large. For example, the largest
cardinality is that of ex073, which is equal to

13, 564, 085, 714, 942,

581, 386, 021, 576, 849, 347, 911, 369, 251, 429,

160, 021, 307, 529, 166, 008, 896, 322, 192, 959,

972, 367, 896, 454, 404, 330, 774, 718, 193, 622,

700, 383, 259, 154, 902, 400, 967, 511, 932, 927.

This also shows the effectiveness of our method in the applica-
tion because a naive enumeration method is impractical in order
to select a few of them for the purpose of random sampling.

Unless there is a risk of misunderstanding, hereinafter, we re-
fer to the time required for compilation and reduction as sim-
ply the time required for compilation. The compilation of the
proposed method finished within 5 minutes, while, the compara-
tive method could not finish the process within 1 hour at 7 data.
However, when the path-width/tree-width ratio is small, compar-
ative method outperforms our proposed method both for the time
needed for the compilation and the size of the output. As we
pointed in Section 3, the two children nodes of a join node of nice
tree decomposition are not mutually exclusive, it causes overlap
in the process of the compilation of our method. By contrast, the
path-width/tree-width ratio is large, the efficiency of our method
prevails the overlap.

On the other hand, for both of proposed and comparative
method, the time required for model counting and random sam-
pling is relatively small compared to that of compilation. Though
proposed method needs the cumulative sum calculation for the
prepossess of random sampling, the time required for main pro-
cess of random sampling is comparable to that of comparative
method. In addition, time required for nice tree decomposition
and vtree creation is very short and within 50 milli seconds.

In Fig. 6, we compared the time required for compilation by

Fig. 6 Compilation time of proposed method vs. Tree-width.

proposed method with the tree-width of the input graphs. In
the same way, we compared the time required for compilation
by comparative method with and path-width of the input graphs
in Fig. 7, the size of the output of proposed method with tree-
width of the input graphs in Fig. 8, and the size of the output of
compared method with path-width of the input graphs in Fig. 9.
Former two graphs show that proposed method and comparative
method are executed in proportion to the tree-width and path-
width, respectively. On the other hand, latter two graphs show
that the size of the output of those two methods are in proportion
to the tree-width and path-width, respectively. Figure 6 and Fig. 8
supports the theoretical time complexity value discussed in Sec-
tion 3.5.

In Fig. 10, we compared the ratio of compilation time and
tree/path-width. That is, we plotted the ratio of the compilation
time of the proposed method and the comparative method on the
vertical axis, while the ratio of tree-width and path-width of the
input graph on the horizontal axis. The figure shows that, when
the tree-width of an input graph is small compared to the path-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 7 Compilation time of comparative method vs. Path-width.

Fig. 8 Size of the output of proposed method vs. Tree-width.

Fig. 9 Size of the output of comparative method vs. Path-width.

width, the compilation time of the proposed method is orders
of magnitude smaller than that of comparative method. In the
same manner, we compared the ratio of the size of the output of
those two methods and tree/path-width in Fig. 11. The figure also
shows that, when the tree-width of an input graph is small com-
pared to the path-width, the size of the node of proposed method

Fig. 10 Compilation time ratio of comparison method to proposed method
vs. Ratio of tree-width to path-width.

Fig. 11 Size of the output ratio of comparison method to proposed
method vs. Ratio of tree-width to path-width.

has a tendency to be orders of magnitude smaller than that of
comparative method.

5. Related Work

Tree Decomposition and Dynamic Programming
Tree decomposition was proposed by Halin [30] and rediscov-

ered by Robertson and Seymour [31]. Dynamic programming on
tree decomposition was intensively studied for use in optimiza-
tion problems of graph substructures, such as minimum dominant
set [25], edge coloring [26], and Steiner tree [27].

Algorithmic Metatheorem
Algorithmic metatheorem claims that if a graph substructure is

described in a certain logic, then some problems of the graph sub-
structure can be solved in a certain amount of delay [36]. Since
Courcelle’s theorem [37], many algorithmic metatheorems have
been shown [38], [39], [40], [41]. Amarilli et al. [29] indepen-
dently proposed a monotone d-DNNF circuit in zero-suppressed

semantics, which uses a concept similar to that of a structured
Z-d-DNNF. Then, they re-proved that the enumeration of the set

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

of assignments in a given Monadic second order (MSO) formula
with free first-order variables on a bounded tree-width structure
can be performed with a constant delay between two consecutive
outputs, a result which is the same as the existing results obtained
by Bagan [42] or Kazana and Segoufin [43].

Frontier-based Search
Sekine et al. [44] designed an algorithm that compiles the span-

ning trees of a given graph into BDDs [45]. This method enu-
merates spanning trees with an exhaustive search on the edges
of a given graph and efficiently reduces the searching space by
merging or pruning the searching branches on the “elimination
frontier.” This method is also used to compile the maximal in-
dependent sets of the given graph [46]. Knuth [18] independently
proposed the same type of method Simpath. He proposed an inge-
nious data structure called “mate” to efficiently enumerate the s-t
paths or cycles of a given graph in ZDDs [19]. This method is also
called a frontier-based search and it is known that it can also be
used to compile matching and Steiner trees [17]. It is known that
the size of the state per frontier is bounded by the path-width of
the given graph [20]. The top down construction [21] and merging
frontier-based search [22] methods were proposed for improving
this size such that it is bounded by the branch-width.

Enumeration of Independent Sets or Cliques
The independent sets of a given graph correspond to the cliques

of its complement graph. Recently, fast enumeration algorithms
for maximal cliques or maximal independent sets were inten-
sively studied. Bron and Kerbosch proposed a method to enu-
merate the maximum cliques of a given graph by using backtrack-
ing [47]. Tsukiyama et al. proposed a first output-polynomial al-
gorithm that enumerates the maximal independent sets in time
O(|E||V |μ) [48], where μ is the size of the maximal cliques. Chiba
and Nishizeki improved on this result, achieving O(|E|aμ) [49],
where a is the arboricity of the given graph. Makino and Uno pro-
posed an algorithm for enumerating the maximal cliques based on
matrix multiplication [50]. One of their algorithms can be used to
enumerate the maximal cliques of G in time O(Δ4μ), where Δ is
the maximal degree of G (Theorem 2 in Ref. [50]). Tomita et al.
used the same type of pruning method as that presented by Bron
and Kerbosch [47] and proposed a method for enumerating the
maximal cliques in time O(3|V |/3) [51].

Applications of Clique
A clique is known to have various applications. The term

“clique” was first used in the study of close communities in so-
cial networks [52]. It is also used in the description of similarity
searching in 3D databases in chemistry [53], test set compaction
algorithms for combinatorial circuits [54], and comparative mod-
eling of protein structures in bioinformatics [55].

6. Conclusion and Future Work

In this paper, we proposed a method for compiling the inde-
pendent sets of a given graph. In the proposed method, a tractable
language called structured Z-d-DNNF is used. By applying a pre-
vious method for tree decomposition to compute the size of the

maximum independent set of a given graph, the independent sets
are computed with a time complexity that is equivalent to that
of the previous method. After the compilation, the sizes of the
independent sets can be efficiently computed and the indepen-
dent sets can be counted with dynamic programming on a struc-
tured Z-d-DNNF. In addition, the experimental results show that
our algorithm runs several orders of magnitude faster than con-
ventional frontier-based search, especially when the tree-width is
small compared to the path-width.

Because methods for solving optimization problems on graph
substructures are widely applied to problems other than maxi-
mum independent sets, our future work will focus on applying
them to compilation. For example, it is known that an indepen-
dent set is maximum if and only if it is dominant [46]. Therefore,
by applying a previous method for computing the size of the min-
imum dominant set of a given graph [25], we could expand our
method to compile the maximum independent sets of a graph. It
is also our interesting future work to analyze the relationship be-
tween our method using structured Z-d-DNNF and other recent
tractable language such as Zero-suppressed SDD (ZSDD) [56].
ZSDD is a subset tractable language of structured Z-d-DNNF and
supports more operations than the latter. Because ZSDD supports
operations that are called apply, which covers a variety of trans-
formations or queries, the compilation output from ZSDD could
facilitate broader applicable research than structured Z-d-DNNF.

Acknowledgments We thank Jun Kawahara for answering
our question on the use of frontier-based search for compiling
independent sets. We thank Yoichi Iwata for answering our ques-
tion on contests for tree decomposition implementation.

References

[1] Darwiche, A. and Marquis, P.: A knowledge compilation map, J. Artif.
Intell. Res., Vol.17, pp.229–264 (2002).

[2] Van den Broeck, G. and Darwiche, A.: On the role of canonicity in
knowledge compilation, AAAI, pp.1641–1648 (2015).

[3] Elliott, P. and Williams, B.C.: Dnnf-based belief state estimation.
Proc. AAAI, pp.36–41 (2006).

[4] Huang, J. and Darwiche, A.: On compiling system models for faster
and more scalable diagnosis, Proc. AAAI, pp.300–306 (2005).

[5] Huang, J.: Combining knowledge compilation and search for confor-
mant probabilistic planning, Proc. ICAPS, pp.253–262 (2006).

[6] Chavira, M., Darwiche, A. and Jaeger, M.: Compiling relational
bayesian networks for exact inference, International Journal of Ap-
proximate Reasoning, Vol.42, No.1-2, pp.4–20 (2006).

[7] Chavira, M. and Darwiche, A.: On probabilistic inference by weighted
model counting, Artificial Intelligence Ournal, Vol.172, No.6-7,
pp.772–799 (2008).

[8] Fierens, D., Van den Broeck, G., Thon, I., Gutmann, B. and De Raedt,
L.: Inference in probabilistic logic programs using weighted cnf’s,
Proc. CoRR, Vol.abs/1202.3719 (2012).

[9] Suciu, D., Olteanu, D., Ré, C. and Koch, C.: Probabilistic Databases,
Synthesis Lectures on Data Management, Morgan & Claypool Pub-
lishers (2011).

[10] Jha, A.K. and Suciu, D.: Knowledge compilation meets database the-
ory: Compiling queries to decision diagrams, Theory of Computing
Systems, Vol.52, No.3, pp.403–440 (2013).

[11] Rekatsinas, T., Deshpande, A. and Getoor, L.: Local structure and
determinism in probabilistic databases, Proc. SIGMOD, pp.373–384
(2012).

[12] Beame, P., Li, J., Roy, S. and Suciu, D.: Lower bounds for exact model
counting and applications in probabilistic databases, UAI (2013).

[13] Van den Broeck, G., Taghipour, N., Meert, W., Davis, J. and De Raedt,
L.: Lifted probabilistic inference by first-order knowledge compila-
tion, IJCAI, pp.2178–2185 (2011).

[14] Van den Broeck, G.: On the completeness of first-order knowledge
compilation for lifted probabilistic inference, NIPS, pp.1386–1394

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

(2011).
[15] Van den Broeck, G.: Lifted Inference and Learning in Statistical Re-

lational Models (Eerste-orde inferentie en leren in statistische rela-
tionele modellen), PhD thesis, Katholieke Universiteit Leuven, Bel-
gium (2013).

[16] Kisa, D., Van den Broeck, G., Choi, A. and Darwiche, A.: Probabilis-
tic sentential decision diagrams, Proc. KR (2014).

[17] Kawahara, J., Inoue, T., Iwashita, H. and Minato, S.: Frontier-based
search for enumerating all constrained subgraphs with compressed
representation, IEICE Trans., Vol.100-A, No.9, pp.1773–1784 (2017).

[18] Knuth, D.E.: The Art of Computer Programming, Volume 4A: Combi-
natorial Algorithms, Part 1, Addison-Wesley Professional (2011).

[19] Minato, S.: Zero-suppressed bdds for set manipulation in combinato-
rial problems, DAC, pp.272–277 (1993).

[20] Inoue, Y. and Minato, S.: Acceleration of zdd construction for sub-
graph enumeration via path-width optimization, Technical Report
TCS-TR-A-16-80 (2016).

[21] Nishino, M., Yasuda, N., Minato, S. and Nagata, M.: Compiling graph
substructures into sentential decision diagrams, AAAI, pp.1213–1221
(2017).

[22] Sugaya, T., Nishino, M., Yasuda, N. and Minato, S.: Fast compi-
lation of graph substructures for counting and enumeration, Behav-
iormetrika, pp.1–28 (2018).

[23] Bodlaender, H.L. and Koster, A.M.C.A.: Combinatorial optimization
on graphs of bounded treewidth, Comput. J., Vol.51, No.3, pp.255–
269 (2008).

[24] Bodlaender, H.L., Bonsma, P.S. and Lokshtanov, D.: The fine details
of fast dynamic programming over tree decompositions, Parameter-
ized and Exact Computation - 8th International Symposium, IPEC
2013, Sophia Antipolis, France, September 4–6, 2013, Revised Se-
lected Papers, pp.41–53 (2013).

[25] Hedetniemi, S.T. and Laskar, R.: Domination in trees: Models and
algorithms, Graph Theory with Applications to Algorithms and Com-
puter Science, pp.423–442, John Wiley & Sons, Inc. (1985).

[26] Mitchell, S. and Hedetniemi, S.: Linear algorithms for edge-coloring
trees and unicyclic graphs, Information Processing Letters, Vol.9,
No.3, pp.110–112 (1979).

[27] Chimani, M., Mutzel, P. and Zey, B.: Improved steiner tree algorithms
for bounded treewidth, J. Discrete Algorithms, Vol.16, No.Supplement
C, pp.67–78 (2012). Selected papers from the 22nd International
Workshop on Combinatorial Algorithms (IWOCA 2011).

[28] Robertson, N. and Seymour, P.D.: Graph minors. X. Obstructions to
tree-decomposition, J. Comb. Theory, Ser. B, Vol.52, No.2, pp.153–
190 (1991).

[29] Amarilli, A., Bourhis, P., Jachiet, L. and Mengel, S.: A circuit-based
approach to efficient enumeration, ICALP LIPIcs, Vol.80, pp.111:1–
111:15, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017).

[30] Halin, R.: S-functions for graphs, Journal of Geometry, Vol.8, No.1-2,
pp.171–186 (1976).

[31] Robertson, N. and Seymour, P.D.: Graph minors. III. planar tree-
width, Journal of Combinatorial Theory, Ser. B, Vol.36, No.1, pp.49–
64 (1984).

[32] Kloks, T.: Treewidth: Computations and Approximations, Vol.842,
Springer Science & Business Media (1994).

[33] Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D.,
Pilipczuk, M., Pilipczuk, M. and Saurabh, S.: Parameterized Algo-
rithms, Springer (2015).

[34] Darwiche, A.: SDD: A new canonical representation of propositional
knowledge bases, IJCAI, pp.819–826 (2011).

[35] Kinnersley, N.G.: The vertex separation number of a graph equals its
path-width, Information Processing Letters, Vol.42, No.6, pp.345–350
(1992).

[36] Ishihata, M., Maehara, T. and Rigaux, T.: Algorithmic meta-theorems
for monotone submodular maximization, CoRR, Vol.abs/1807.04575
(2018).

[37] Courcelle, B.: The monadic second-order logic of graphs. i. recogniz-
able sets of finite graphs, Information and Computation, Vol.85, No.1,
pp.12–75 (1990).

[38] Seese, D.: Linear time computable problems and first-order descrip-
tions, Mathematical Structures in Computer Science, Vol.6, No.6,
pp.505–526 (1996).

[39] Bagan, G.: MSO queries on tree decomposable structures are com-
putable with linear delay, Computer Science Logic, 20th International
Workshop, CSL 2006, 15th Annual Conference of the EACSL, Szeged,
Hungary, September 25–29, 2006, Proceedings, pp.167–181 (2006).

[40] Kazana, W. and Segoufin, L.: First-order query evaluation on struc-
tures of bounded degree, Logical Methods in Computer Science, Vol.7,
No.2 (2011).

[41] Arnborg, S., Lagergren, J. and Seese, D.: Easy problems for
tree-decomposable graphs, J. Algorithms, Vol.12, No.2, pp.308–340
(1991).

[42] Bagan, G.: Mso queries on tree decomposable structures are com-
putable with linear delay, International Workshop on Computer Sci-
ence Logic, pp.167–181, Springer (2006).

[43] Kazana, W. and Segoufin, L.: Enumeration of monadic second-order
queries on trees, ACM Trans. Computational Logic, Vol.14, No.4,
pp.25:1–25:12 (2013).

[44] Sekine, K., Imai, H. and Tani, S.: Computing the tutte polynomial of
a graph of moderate size, ISAAC, pp.224–233 (1995).

[45] Bryant, R.E.: Graph-based algorithms for boolean function manipula-
tion, IEEE Trans. Computers, Vol.35, No.8, pp.677–691 (1986).

[46] Hayase, K., Sadakane, K. and Tani, S.: Output-size sensitiveness
of obdd construction through maximal independent set problem, In-
ternational Computing and Combinatorics Conference, pp.229–234,
Springer (1995).

[47] Bron, C. and Kerbosch, J.: Algorithm 457: finding all cliques of an
undirected graph, Comm. ACM, Vol.16, No.9, pp.575–577 (1973).

[48] Tsukiyama, S., Ide, M., Ariyoshi, H. and Shirakawa, I.: A new al-
gorithm for generating all the maximal independent sets, SICOMP,
Vol.6, No.3, pp.505–517 (1977).

[49] Chiba, N. and Nishizeki, T.: Arboricity and subgraph listing algo-
rithms, SICOMP, Vol.14, No.1, pp.210–223 (1985).

[50] Makino, K. and Uno, T.: New algorithms for enumerating all maximal
cliques, SWAT, Vol.3111, pp.260–272, Springer (2004).

[51] Tomita, E., Tanaka, A. and Takahashi, H.: The worst-case time com-
plexity for generating all maximal cliques and computational experi-
ments, Theor. Comput. Sci., Vol.363, No.1, pp.28–42 (2006).

[52] Luce, R.D. and Perry, A.D.: A method of matrix analysis of group
structure, Psychometrika, Vol.14, No.2, pp.95–116 (1949).

[53] Rhodes, N., Willett, P., Calvet, A., Dunbar, J.B. and Humblet, C.:
Clip: Similarity searching of 3D databases using clique detection, J.
Chem. Inf. Comput. Sci., Vol.43, No.2, pp.443–448 (2003).

[54] Hamzaoglu, I. and Patel, J.H.: Test set compaction algorithms for
combinational circuits, IEEE Trans. Computer-Aided Design of Inte-
grated Circuits and Systems, Vol.19, No.8, pp.957–963 (2000).

[55] Samudrala, R. and Moult, J.: A graph-theoretic algorithm for com-
parative modeling of protein structure, J. Mol. Biol., Vol.279, No.1,
pp.287–302 (1998).

[56] Nishino, M., Yasuda, N., Minato, S. and Nagata, M.: Zero-suppressed
sentential decision diagrams, AAAI, pp.1058–1066 (2016).

Teruji Sugaya is currently a PH.D. stu-
dent at the Graduate School of Informa-
tion Science and Technology, Hokkaido
University, Japan. He received his B.S.
degree in Public Law from the University
of Tokyo in 1995 and his M.S. degree in
Informatics from the Open University of
Japan in 2015. His research interests in-

clude knowledge compilation, graph algorithms, and probabilis-
tic graphical models. He is a member of IPSJ and IEICE.

Masaaki Nishino is a Research Scientist
at Nippon Telegraph and Telephone Cor-
poration (NTT) Communication Science
Laboratories. He received his B.E., M.E.,
and Ph.D. degrees in informatics from Ky-
oto University in 2006, 2008, and 2014,
respectively. He joined NTT in 2008.
His current research interests include data

structures, natural language processing, and combinatorial opti-
mization. He is a member of IPSJ, JSAI, and ANLP.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Norihito Yasuda received his B.S. de-
gree in integrated human studies and his
M.S. degree in human and environmen-
tal studies from Kyoto University, Kyoto,
Japan, and the D.Eng. degree in com-
putational intelligence and system science
from the Tokyo Institute of Technology,
Japan, in 1997, 1999, and 2011, respec-

tively. He is a Senior Researcher with Nippon Telegraph and
Telephone Corporation Laboratories, Tokyo, Japan, where he has
worked since 1999. He was a Research Associate Professor with
the Graduate School of Information Science and Technology,
Hokkaido University, Sapporo, Japan in 2015. His current re-
search interests include discrete algorithms and natural language
processing.

Shin-ichi Minato is a Professor at the
Graduate School of Informatics, Kyoto
University. He received his B.E., M.E.,
and D.E. degrees in information science
from Kyoto University in 1988, 1990, and
1995, respectively. He worked for NTT
Laboratories from 1990 until 2004. He
was a Visiting Scholar at the Computer

Science Department of Stanford University in 1997. He joined
Hokkaido University as an Associate Professor in 2004 and has
been a Professor since October 2010. He became a Professor at
Kyoto University in April 2018 (present position). His research
interests include efficient representations and manipulation algo-
rithms for large-scale discrete structures, such as Boolean func-
tions, sets of combinations, sequences, and permutations. He
served as a Research Director of JST ERATO MINATO Discrete
Structure Manipulation System Project from 2009 to 2016. He is
a senior member of IEICE and IPSJ and is a member of IEEE and
JSAI.

c© 2020 Information Processing Society of Japan

