F=F_—R VAT A T6—1
(1r990. 3. 12)

ETFNVIEEICH LIS T— 5 N= 2w v >
DELE

A AR B% AIER o FE—
® il XKZ2E K & B W % A,

T980 &M A F2-1-1

AL, A VHANOTLF 7Oy H . F— Iy R—-2AX L L I2BTB T a A ELYER
TE5EDOEFITLT) ALOEBIZOVTHNE, ThoDT LTy X Lo, HRHT 7
O—FilfEoTwvd, Va4 VBREORBIIAD»DL2ELFHRLRROBER Y BB LENH Y
B RIZINODOFJREEFTT HHBROFROFIELMRMIMKET A LIV INLEBET S
—EE TN T) XL AR T 5, BIChOS0T LT) ZLoMEBIZoWTKRET 5, 04
BN FyZTHEASZORAEE, T XRTIE-> TRBOMEBERT Vs A>T LT) X 4
%, Vad HECHEELAT- s OoBEICKTEL TRBEOHREYS X 5TV T) X LITETE
5 EERT,

A New Realization for Parallel DataBase Machines With its
Model

Issam A. Hamid Norio Shiratori Shoichi Noguchi
Research Institute of Electrical Communication, Tohoku University

2-1-1, Katahira, Aoba-ku, Sendai shi, 980, Japan.

In this paper we have given a design for shared memory multiprocessor parallel database machine
using a very fast type of interconnection network. Also, a large set of parallel algorithms for
implementing the join operation on such DB have been given. The approach is a structured one. The
major steps of the join operation done by the machine is defined. Other alternative join algorithms
are constructed by concatenating the different ways of performing those join operation. Performance
model has been given to show that for a given hardware configuration there are different algorithms
effect the best performance, which is depends on the characteristics of the data and its structure in

the join algorithms.

I
Il

1-Introduction

The general objective is, the design of a back-end
Data base Machine (DBM) suitable for supporting
multiple user, on line large relational data base
systems.

The limitations of conventional database
systems, the continuous advancements in memory-
processor technology, and the continuous reduction
in fabrication costs, inspired a new approach to
database system implementation. This approach
replaces the general-purpose von Numann processor
with a dedicated machine, the data base (DBM),
tailored for the data processing environment and in
most cases utilizing parallel processing to support
some or all the functions of the DBM’s.

There is a novel scheme for classifying the set of
DBM’s proposed so far[Qa85]. This scheme was used
to qualitatively evaluate and compare the respective
of DBM’s.

The most important characteristics of
contemporary and anticipated very large scale
relational database systems are, the vast amount of
data in such systems, and the large number of users
requiring simultaneous access to such data.

We have formulated the following guidelines, and
motivations along which a DBM of a large capacity
store with a big ability to handle the on-line
multiple-user access with adequate response time
can be designed .

1) The mass store is to consist of moving-head
disks, because of its ability to provide a vast amount
of on-line storage at a relatively low cost and
moderate performance.

2) The indexing is of the kind of page-level
indexing, which can greatly improves the execution
time of the selection and the modification operations.
But this may introduce overhead in executing these
operations in the form of index access delay and
maintenance, and increases the execution time of
the other update operations.

We suggested to reduce this overhead, so that
the page must be selected to have a large size and be
processed in parallel processor.

3) The DBM is to organize as MIMD type which
can provide parallel access to the DB. Because of
relatively low cost of the processor and memory
devices, the use of parallel processing may enhance
the effectiveness of a DBM. Although the SIMD
organization of a DBM may reduce the execution
time of a DM operation, it does not offer a real
solution to the multiple-user problem. The MIMD
has the ability not only to execute a DB operation in
parailel, but also to execute more than one operation
(for instance, from the same or different queries) in
parallel. In this paper we introduce a new
architecture for large database machine which has a
strong capability of parallelism using a dedicated
interconnection network with added mechanism of

Fetch-and-add instruction, so that to over come the
critical sections used in most conflict access control
algorithms, and present rich set of parallel joint
algorithm with high performance model.

4) The DBM is an off-disk type organization,
which can reduce the initial large amount of data
movement by taking advantage of the page level
indexing and the local and sequential references in
the database.

5) Over come some important problems that can
simplify database software and increase its
consistency operations; like,

a) concurrency control algorithms can be
improved through the new added mechanism
of Fetch-and-add instruction.

b) cross referencing is removed without a sort
operation using hashing bit and pointer
arrays.

2-The System Outline

The processor elements of MIMD should be
designed to efficiently support not only the
relational algebra operations such a selection and
projection, but also the primitives that manipulate
the page index as well.

1) The main controller (MC);

The MC interfaces the users to the database
system, translate the user queries to the primitives
of the DBM, controls the other component of the
DBM. The implementation of the MC is strongly
dependent on the way of partitioning of DBM’s task,
come from the host machine.

Based on this partition, the MC can be
implemented using a minicomputer.

2) The mass storage (MS);

This subsystem consists of two level memory, and
controlled by MSC (mass storage controller);

a) Mass Memory (MM)

Mass memory consist of a set of moving-head
disks. The disk is modified to read and write from
and to more than one track in parallel.

Tracks which can be read (written) in parallel
from (to) one disk, from what is called a minimum
access unit(MACU){Qa85].

The tuples within this unit, are laid out on the
tracks of the corresponding moving-head disk in a
bit serial-word serial pattern.

Also, the MM stores another type of data, named
index terms. These terms are clustered according to
their attribute name, in order to improve their
retrieval and storage costs. Hence, the index terms
of same attribute resides in the same index page.

b) Parallel Memory Modules.(PMM)

This subsystem is organized as a set of large
modules (blocks), each with size equal to an MACU.
It is also, partitioned into a set of submodules, each
store one track of a moving-head disk.

3) The MIMD subsystem consists of MSIMD

system.

fi

a) Every one SIMD has one CU. Several SIMD
subsystems controlled(coordinated) by the main
controller presented the total MIMD subsystem.

b) Each SIMD subsystem consists of a set of
triplets of the form, <I/O controller processor, local
memory >.

All PEs is controlled by the SIMD-CU, through
the Broadcast Bus-(BB), which permits SIMD-CU to
write the same data to all PEs, and read data, from
every one of its PE’s memory(Fig. 2).

4) Interconnection Network (IN) and

parallel update

The IN has the ability to allow any number of
SIMD'’s or moving-head disks to read(write) from (to)
different memory modules simultaneously and
enable two or more SIMD’s to read from the same
memory module in parallel. The input to IN is the
connected to the input of the individual PEs. The
output of IN have a number of buffers represent the
memory needed for Fetch-and-Add execution. (Fig.
3)

The latter requirement is needed to provide the
system with the capability of handling simultaneous
processing of the database operations.

The IN has wused Fetch-And-Add
mechanism[St84] to serialize locking and
reservation operation in database applications. In
this sense we designed our IN to be a kind of Benes
rearreangeble MIN because of its ability to realize
arbitrary permutation function. We had succeeded to
present very fast routing algorithm to realize certain
very important permutation functions using such
O(log N) time steps[Ha89]. Such bound excited us to
use it for parallel updates in data base machine. The
extra realization introduced here is to add a small
buffer in the input and output of IN, to implement
the fetch-And-add mechanism(Fig. 3).

Fetch-And-Add can serialize N simultaneous
requesters in a single operation, while other
mechanism like test-and-set, and Compare-and-
swap free the N requesters to pass through the lock
in a serial fashion.

The major reason behind the use of the Fetch-
And-Add is to eliminate serialaccess to shared data,
when two or more processors place requests to
update the same memory cell, the requests are
honored sequentially. To the extent, that processors
are forced to execute Read/Modify/write serially.

Processing cluster is a set of triplets;
processors(PE), local RAM, DMA controller. Local
RAM has the capacity of several disk tracks.
Number of PEs within one cluster is the number of
sub-blocks with one block of the parallel buffer. The
PEs within a cluster are controlled and managed by
the cluster master PE.

The data with a cluster are moved between PEs
via tuple bus, which is provided with both point-to-
point and broadcast capabilities.

The parallel buffer is organized as a set of blocks,
each block having the size of one MACU. A block is

further partitioned into a set of sub-blocks of a mass
memory disk.

3- Back-ground and Comparisons of
other join algorithms

On the various multiprocessor DBM several
parallel algorithms have been proposed to
implement the join operation.

Most of these algorithms are parallel version of
the nested-loops algorithm [De79] to perform join
operation of the DBM. The algorithm assumes that
both relations for instance, S and T are stored in
page units on the system disk. The parallel nested-
loops algorithm begins by having each of the PEs
read a different page from relation S. Then, all the
pages of relation T are broadcast, one by one to all
PEs. Upon receiving a page of T each PE joins its
page of S with the incoming page of T, using the
nested-loops algorithm[De79). These steps are
repeated until all the S pages are joined.

The parallel nested loops algorithm has been
extended[Va84] to allow a number of pages from
relations to be read into a PE before the broadcast of
pages of relation T would begin. Such an extension
improves the speed of the parallel nested-loops
algorithm by reducing the numbers of times the
relation T has to be broadcast to the PEs during the
execution of such algorithm.

If the number of pages storing the source relation
is the same as that of the target relation, and equal
to N, then it is easy to show that the parallel nested-
loops a time complexity of O(N2)[Va84].

Another proposal has used the uniprocessor two-
way sort-merge algorithm [Bi83] as a basis for a
parallel join algorithm. The parallel sort-merge-
join[Bi83] algorithm has the time complexity O(N
log N). ‘

Another proposal for a parallel join algorithm has
been given for the GRACE multiprocessor
DBM(Ki84]. This algorithm joins S and T relations
by first distributing their tuples between a number
of buckets based on the tuples’ join attribute values
using a hashing function. The joining of tuples
within a buckets is performed by PEs that use a sort-
based algorithm. The PEs in GRACE[Ki84] are
specially designed as hardware sorters with
capability of sorting N tuples in linear time. The
Grace’ algorithm[Ki84] has the time complexity
O(N), which is linear with respect to the number of
pages that store the source or target relation.

Another Proposal for parallel join algorithm has
been given based on Hypertree multiprocessor
DBM[Go81]. This algorithm begins with each PE
applying the same hashing function to the join
attribute of its own tuples. The hash function uses
the join attribute value of a tuple to compute a PE
number. The tuple is then sent to the PE having
such a number. During the second phase of the
algorithm each PE join the tuples it receives as a
result of the execution of the first phase.

=3 =

Adopting a GRACE-like[Ki84) or [Good81] like
algorithm alone does not guarantee that the join
operation on a given machine will have the best
performance. To remedy such a demerit we have
given here three different algorithms. The first, one
is linear and behaves similarly to the GRACE[Ki84]
algorithm for joins when the probability of joining is
high.

The second behaves as [Good81] but it is more
general and good for joins of low probability.

The third algorithm is for joins that have
moderate joining probability.

The use of simple optimizer to choose one of these
algorithms for a given join operation is simple and
guarantees that such an operation will in fact be
carried out with high performance.

4- Parallel Join Algorithms

One of the most important operations of the
relational systems and probably the most important
limiting factor on their performance is the ®-join of a
source relation S and a target relation T on
attributes A from S and B from T is the relation R,
obtained by concatenating each tuple s€S and each
tuple t€T whenever (s{A] ©t[B]) is true. © is one of
the operators (=,#,<,>,=,2), the 0-join
operation is generally needed for formulating
queries which reference more than one relation. The
most frequently used type of ®-join operation is the
equi-join, (=).

Database is divided into a set of large data units.
Each called a page represents the smallest
addressable unit of data. The tuples in the same page
should have the same relation. Database directory
contains the information needed to map a “data-
Name* to the set of page addresses which store the
named data. Data named at two levels; Relation
level, tuple level. Tuple name: <relation name,
attribute name, value>. Database directory
consists of two indexes; Relation indexes, Page
index. Relation index; Maps the“Relation name” to
a set of page addresses. These pages contain all the
tuples of the relation whose name is “relation name”.
Relation index contains entries for all the relations
in the DB.

The best performing join algorithm is not unique
but algorithms score the best performance
depending on the characteristics of the input source
and target relations.

In the following we give different algorithms
categories depending on the relations tuples.

1) Global Broadcast:

Different MACU of the source relation and all of
the MACU'’s of the target relation are assigned to
every phase, (Number of phases = Number of MACU
storing the source relation). Therefore, one cluster
having a typical phase needs the read from the
parallel buffer and process a source MACU and all of
the target MACU's.

2) Global Hash:

Hashing function partitions the domain which
represents the join attributes of both the source and
target relations into dijoint subsets. Hence, the
expected number of tuples from the source relation
subset is the local memory units of the processors
within a cluster. The set of source and target tuples
which hash to one global bucket constitutes the
tuples which are assigned to one phase for joining
(i.e., number of phases =number of global buckets).

Selecting the tuples of phase i of a global hash
algorithm requires a cluster to read from the parallel
buffer into its PEs all of the source and target
MACU’s one MACU per time.

As one MACU is read into the PE’s parallel
memories, the PEs themselves in parallel compute a
hashing function over the join atribute value of
every tuple of the MACU and collect these tuples
that hash to phase i (global bucket i).

The tuples read (collected) by a particular cluster
during the execution of one phase of a basic
algorithm can be distributed among the clusters’
PEs for joining using one of two methods;

(a) local Broadcast;

The source tuples read (collected) by each PE
during the initial execution of a phase are left in the
PEs, (the target tuples of that phase temporarily
buffered in the PEs, and the parallel buffer and the
mass memory in the case of global broadcast
algorithms) are broadcast, one tuple at a time over
the tuple bus of the cluster. Then the PEs in parallel
join the broadcast tuples within their share of the
source tuples.

(b) Local Hash;

Source and target tuples of a phase are hashed
based on their join attribute values to the PEs of the
cluster that executes the phase. The hashing
function statistically independent of the global one
in case of global hash algorithms is computed by the
PEs for every tuple of that phase.

Using the tuple bus the hashed tuples are moved
to their destination PEs for joining.

There are three methods to a PE for joining a
target tuple with the PEs’ assignment from the
source tuples of one phase.

(1) The complete Comparison:

The join attribute of the target tuple is compared
to that of every source tuple in the PE. The target
tuple is concatenated with a copy of every source
tuple having the same join attribute value.

(2) Sorting: .

The source tuples assigned to a PE are first sorted
based on their join attribute value. Such joining is
performed by the binary search method[] to locate
those source tuples whose join attribute values are
the same as that of the target one,

In a PE the sorting of the source tuples is
implemented by actually sorting a table of pointers
through which the source tuples are referenced.

(3) The hash table:

The hash tuples in a PE are first; hashed (based
on their join attribute values) to a hash tuple using a
suitable hashing function.

The join is performed then by hashing the target
tuple (based on its join attribute value) using the
same hashing function to the hash table.

A scan of the join attribute values of all the
~source tuples within a bucket of the hash table is
needed to locate those source tuples whose join
attribute values are the same as that of the target
tuple.

An algorithm name can be thought as the
ordered quadruple <X,Y,Z, basic>. X,Y,Z, are the
results of the the three decisions taken by the
normal algorithm and the word basic indicates that
the algorithm belongs to the basic algorithms.
Therefore, X€{Global Broadcast, Global Hash},
Y¢{Local Broadcast, Local Hash}, Z€{Complete,
Sort, Hash}. The word basic is related to the type of
join operations on the source or target relations
filtering. Therefore, we have about 12 types of join
algorithms and we need to study there different
performance on the data base machine.

From the point of view of a cluster the execution
of one phase of a basic algorithm involves six
subphases. During the 1st subphase, a set of source
tuples (the tuples of a source MACU for the global
broadcast algorithms or the tuples of the source
relation which hash to a global bucket for the global
hash algorithms) are read/collected by the PEs of
the cluster.

In the 2nd subphase the selected tuples from the
1st subphase in PEs are hashed to the cluster’s PEs.
In the 3rd phase all PEs within the cluster sort or
store in a hash table, their shares of the source
tuples, or do nothing with them.

The PEs within a cluster execute the 1st 2nd and
3rd subphases in a pipeline fashion with the source
tuple as the unit of the pipeline. So that when the
tuple is read/collected by a PE in the 1st subphase
the execution of the 2nd subphase is triggered which
in turn triggers the execution of the 3rd one. when
all tuples of the source relation read/ collected in the
first subphase are processed through the second and
3rd ones, then the execution of the 4th subphase is
triggered.

During the 4th subphase a set of target tuples (all
of the tuples within the target relation for the global
broadcast algorithm or the target tuples which hash
to a global bucket for the global hash order) is read
/collected by the clusters; PEs.

In the 5th subphase the target tuples of the
fourth subphase are broadcast/hashed to the
clusters’ PE. In the 6th subphase every PE within
the cluster joins its share from the source and target
tuples.

The clusters PE’s execute the 4th, 5th, and 6th
subtuples in a pipeline fashion with the target tuples
as the unit of the pipeline.

Hence we have three major algorithms for
comparison. The First is global hash, local broadcast
sorting, of basic joint functions(Algo-1) which is
similar to GRACE[Ki84) algorithm of high join
probability.. The second is global broadcast local
broadcast sorting, of target relation joint
functions(Algo-2) which behaves as [Go81] for low
join probability. The third is global broadcast local
broadcast sorting, of source tuples joint
functions(Algo-3) for moderate join probability. In
the next section we make a model for the comparison
of these three algorithms.
5-Algorithms performance Model

How to study the performance of the proposed
parallel algorithms in carrying out the join
operation? One measure is total execution time of
the algorithm(z). t is the total time required by the
multiprocessor to execute the algorithm (assuming
that there is no overlapping in processing). There
are two exceptions to such overlapping.

(1) The activities of the different PEs within a
cluster overlap each other.

(2) The activity of broadcasting tuples over the tuple
bus of a processing cluster completely overlaps
the activities performed by the cluster master
PE, (updating and checking the Boolean arrays).
We have used analytic performance measure by

probabilistic average value models, which are

referred to as the join execution models.

The set of parameters which characterize the
model can be as either input or output. The output
category include t performance measure. The input
category has three groups of parameters, data,
hardware algorithm and hardware.

The data parameters are;

B(y) represents the cardinality of the relation; y,
y€{S, T}, and has a value of 103-105 tuples.
7(y) tuple length of relation; y of value of 100

bytes.
ra Jjointattribute length of 10 bytes.
yc cardinality of the domain underlying the join
attribute.
The hardware algorithm parameters are:
Bh is the number of buckets in a hash table of a PE.
BB is the number of bits in a Boolean array.
The hardware parameters;
Npg; is the number of PEs within one cluster, (or
the number of tracks within one cylinder of
the moving head disk) of value of 15.
L; isthe capacity of an MACU of value of 0.71 X106
bytes.
te; is the time to compare the join attribute value of
a source tuple to that of a target one of value of
0.02 ms. .
th; is the time to calculate a hashing function with
the tuple’s join attribute value as the input
argument of value 0f 0.102 ms.
1g; is the time to swap two pointers within a PE’s
memory of value of 0.007 ms.

u(s); isthe time to move a tuple of relation y across
the tuple bus of a cluster of value of 0.1 ms.
Tave; is the average access time of the system disk

of value of 16 ms.

tp; is the time to move the disk head one track=
3ms.

Ttd; is the time to transfer an MACU between the
system disk and the parallel buffer block =16.7
ms.

Tpb; is the time to transfer an MACU between the

parallel buffer block and the PEs of a
cluster =vq.

The join execution models has the following
assumption:

(1) The multiprocessor hardware consists of only
one processing cluster one parallel buffer block
and one disk,

(2) The MACU is a cylinder of the moving head
disk. The disk is modified for the parallel read
out(write in) from (to) all of the tracks within one
cylinder, simultaneously.

(3) A tuple of the source or target relation is equally
likely to carry in its join attribute any value from
the attribute underlying domain.

(4) All of the hashing functions used by join
algorithm are ideal and statistically independent
of one another.

A hashing function is ideal if it is equally likely
to map a value from its domain to any value of its
range.

Notation:

t is the total time required by the multiprocessor
to execute the join algorithm

t1 is the total output time to move the MACU’s of
the output relation from the cluster’s PEs to the
system disk during the execution of a join
operation.

12 Time spent by a PE in hashing tuples during

phase x.

t3 is the total input time to move the tuples of the
source and target relations from the system disk
to the clusters’ PEs during the execution of a join
operation.

t3(x) isthe input time of phase x.

K is the number of phases in the execution of the
join algorithm

x isthe phase Index,x={1,2,...K}.

y is the Relation index where y€{S (source
relation, T(Target relation)}.

t4(x) is the time spent by a PE in comparing the

tuples’ join attribute value during phase x.

5 is the total Processor Time= Time spent by a PE
to execute a join algorithm.

t5(x) is the time fora processor to execute phase x.

tg(x) is the bus transmission time of phase x.

1g is the total bus transmission time= Time to
move tuples over the tuples bus of a cluster
during the execution of a join operation.

is the time spent by a PE in sorting source

tuples during phase x.

ey is the expected number of MACU’s (cylinders)
which store the output relation.

e2(y) is the number of MACUSs’ (cylinder which

store the tuples of the relation; y.

€3 is the fraction of the target relation tuples which
survive the checking of the Boolean array BA-S
during the execution of one phase of a global
broadcast join algorithm.

e4 Number of distinguished values in the join
attribute of the tuples of the relation y.

e5 Number of global buckets in a global hash join
algorithm.)

eg Number of tuples in a source MACU.

e7 Fraction of the tuples from the relation T which
hash to a global bucket and survive the checking
of the Boolean array BA-S during the execution
of one phase of a global hash Join algorithm.

¢g is the expected number of distinguished values
in the join attribute of the tuples in a source
MACU.

egly) is the expected number of distinguished

values in the join attribute of the tuples from
relation (y) that belong to one global bucket.

R; is the ratio of the number of bits in the Boolean
array(s) and the number of tuples in both the
source and target relations.

Ry is the ratio of the number of buckets in a
processor hash tuple and the PE’s expected
number of source tuples per one phase of a JOIN
algorithm.

t7(x)

Formulas for the join execution models:

The proofs of these two theorems have been
refrained from here because of space.

Theorem-1

Given a collection of keys (possibly not distinct)
with cardinality yk defined on a domain with
cardinality 7., if a key is equally likely to have any
value of the domain, then the expected number of
distinguished values yck in the collection of the keys
is:
rek=rc(l—Exp(—7K/7c))
Theorem-2

Given a collection of keys (distinct) with
cardinality 7k , if a key hashes to a Boolean array of
size pp; with equal probability, then the expected
number of bits set(apg) in the array is:)
aps=pp(1 —Exp(—7yk/pB)) fory,up > 1. =

The v spent in executing one of the target tuples
partial filtering join algorithms can be execute as
follows:
=1 +2 [t3(x) +t5(x) + 16(x)] ; because 13(x), T5(x),
and tg(x) for all x€{1,2,...,.K} are on the average
equal to t3(1), t5(1), and t6(1) , respectively. Hence,
t=11+K - [t3(1) +t5(1) +te(1)].

The total output time vy for each of the target
tuples relation partial filtering join algorithms can

for yx,7¢ > 1. =

=6 =

be computed by the following formula using the
hardware input parameters:
t1 =18 (tpb+2 tave. +Ttd).

The above formula states that for every MACU of
the resulting output relation, it takes vpp to move the
MACU to the parallel buffer block.

Tave. is to locate randomly an empty cylinder on
the disk and tyq to move the MACU to the empty
cylinder of the disk.

In addition it takes another taye. to move the disk
arm back to resume moving the target relation to
the cluster.

The formula that relates e1 to the models’ input
parameters is derived as follows; If eg is the expected
number of source tuples with the same value. Then
the expected number of tuples in the output
relation; eqp is (g . e6(v) .p) which is a tuple of the
largest relation (gt) carries in its join attribute a
value which exists in join attribute of the source
tuples.
£6(v) can be represented as the ratio; eg/eg, hence;
to/p =¢t. (e6/eg). (egfeq). £1=(gt.e6)/(e4 .L)

For a global broadcast, target tuples relation
partial filtering algorithm K has the value of ey,
and emt, which is the number of MACU’s (cylinders)
that store the tuples of the source and target
relations, respectively. On the other hand for a
global hash target relation algorithm, K has the
value of €5 the number of global buckets associated
with the algorithm.
€5 is chosen such that the set of source tuples which
hash to one global buckets fits in the local memories
of the PEs’ within the cluster.

The number of source tuples per global bucket
due to an ideal hash function that uniformly
distributes a set of tuples with cardinality £g over a
set of e5 buckets is a normally distributed random
variable with an expected value of (¢g/e5)

Therefore; ’
(eg/e5) LTS =z,
K=g5=Tleg. LTS/z 1.

Two expressions exist for t3(1), one for the X=
global broadcast and the other for X= global hash --
target partial algorithms.

In deriving these two expressions, it is assumed
that the tuples of the source and target relation are
stored on a adjacent cylinders of the disk.

During one phase of a global broadcast target
partial filtering algorithm one source MACU and all
the MACU's of the target relation are read by the
processing cluster, therefore,
3(1)= (vave.+ttd +Tpb) +Tave +Ttd + Tpb + (eme —1)
(tp +Ttd +Tpb)

The above formula states that moving the first
target source (MACU) from the disk to the PEs needs
on the average, TDAC to locate the cylinder on the
disk that stores the MACU, tiq to transfer the
cylinder content to the parallel buffer block, and Ty
to transfer the MACU to the PEs.

Also, for every remaining target MACU it takes
t4 to move the disk heads to the next cylinder, tiq to
transfer the cylinder content to the parallel buffer
block and tph to transfer the content of the parallel
buffer block to the PEs.

€mt, which is the number of cylinders that stores
the tuples of the target relations, and can be
computed from the following formula;
emt=Top.7e /2.

Where ¢yt is the cardinality of target relation, and
NTS is the cardinality source relation. Itis assumed
that ¢y =is. Also, yy and 7 is the tuple length of
the target and source relation respectively.

Py and Ps; are the parameters of tuple bus of a
cluster which are calculated assuming the effective
bandwidth of 1 Mbytes.

During the execution of one phase of a global
hash target partial filtering algorithm all of the
MACU’s which store the tuples of the source and
target relations are read by the processing cluster.

This is needed to collect the source and target
tuples which hash to one global bucket , Hence,
()= (vave. +ttd +Tph) + (ems— 1)-(vd + ved + Tpb)

+ (Vave,+‘3td+‘5pb) + (tea—1)-
(td +ted + Tpb)-

The derivation of formulas for the quantities
tg(1) and t5(1) of the target partial filtering
algorithms are presented next:

During the execution of one phase of a global
broadcast target partial filtering algorithm the
tuples of a source MACU are joined with the tuples
of the target relation. In doing so a global
broadcast, local broadcast target partial filtering
type’s algorithm broadcasts to the PEs only those
target tuples which survive the Boolean array
checking. Hence;

t6(1) =e3-dye- P,
where, €3 is the fraction of the target relation tuples
that survives the checking of the Boolean array
sorting during the execution of one phase of a global
broadcast target relation algorithm. A formula that
relates £3 to the model’s input parameters is;
£3=[1—Exp(—dts/ems(7c)) -Exp(—eg/uB)]

[The details of deriving this formula have refrained
from here because of space.]

To join one source MACU with all of the MACU’s
of the < global broadcast, local hash, target relation
algorithm>, will first redistribute among the PEs
within the cluster the tuples of a source MACU and
those tuples of the target relation which survive the
Boolean array checking. The tuple redistribution is
performed using a hashing function and on the
average only (1 —(1/Npg)) of both tuples of the source
MACU and the surviving tuples of the target
relation need to be moved to the other PEs in the
cluster.

Therefore,

16 =[(d1s - Ps/ems) +(e3 ¢ Py)l (1 —(1/Nppg)).
where [NTS/ems] of the above equation is the
average number of tuples in a source MACU.

=7=

During the execution of one phase of a <X = global
hash, target partial algorithm> the tuples of one
global bucket are joined.

In joining them a <global hash, local broadcast,
target partial algorithm> broadcasts to the PEs of
the cluster those target tuples which hash to the
global bucket (phase) and survive the Boolean array
checking.

Therefore, t6(1) =¢7- du1-Pt,
where ¢7 is the fraction of the target relation tuples
which hash to a global bucket and survive the
checking of the Boolean Array during the execution
of one phase of a global hash target partial
algorithm.)

A formula that relates e7 to the model’s input
parameters is;
£7=(1/e5)-(1 —Exp(—-¢eg/e4)- Exp(—eg/pp)), where,
eg=(e4/e5) - (1 —Exp(—eg/eq)).

The derivation is refrained from here because of
space.

To join the tuples of a global bucket, a global
hash-local hash, target relation algorithm,
redistributes using a hashing function the source
tuples of the global bucket and those target tuples of
the same buckets that survive the checking of the
Boolean array among the clusters PEs.,

Hence; t6(1) =[(eg/e5). TS+ £7.¢tt.Pel (1 —(1/ Npg)).

Next is how to derive a formula for t5(1), which
can be expressed as follows:

(1) =t2(1) +t7(1) +4(1).

The input parameters for the above formula are
derived next for each joint algorithm.
(a) Equation for ta(1);

When executing one phase of a <global
broadcast, local broadcast compare, sort or hash-
target partial algorithm>, the Boolean array hash
function is used. This function is computed by every
PE for its share from both the tuples of a source
MACU and all of the tuples of the target relations.

The <global broadcast, local broadcast, hash-
target partial algorithm> algorithm uses the hash
table function. This function is computed in each
phase by every PE for its share from the tuples of a
source MACU and those tuples of the target relation
which survive the Boolean array checking,
therefore, for <global broadcast, local broadcast
compare or sort-target partial algorithm>
algorithm, we have;
t2(1) =[(e6/(ems.NPE) +($pt/NpE) th=11
In the same way for <global broadcast, local
broadcast, hash-target partial algorithm > algorithm
we have;
t2(1) =vv+{(e/(Ems-NPE) +£3- it Th.

In addition to the Boolean array hash function, a
PE executing one phase of the joint algorithms,
(<global broadcast, local hash, (compare sort or
hash-target partial algorithms>), compute the local
hash function for its share from both of the tuples of
a source MACU and those tuples of the target
relation, which survive the Boolean array checking.

[

Also, the purpose of executing one phase of the
<global broadcast, local hash, hash-target partial
algorithm> uses another hash function, (the hash
table function) which is computed by every PE for its
share from the tuples of a source MACU and those
target tuples that survive the Boolean array
checking and hash to the PE itself, therefore, for
< global broadcast, local hash, compare or sort-target
partial algorithms> algorithm we have;

(1) = [eg/lems Npg) + (@u/NpE) - th + [26/
(ems-NpE) + (e3-0tt)/Npg] th= tUv;
and for <global broadcast, local hash, hash-target
partial algorithm > algorithm we have;
(1) =ttt + [Pis/(ems' NPE) + (€3-Dtt)/NPE]- Th.

When executing a global hash algorithm the
global hash function is used to partition tuples
between phases. This function is computed in each
phase by every PE for its share from all of the tuples
of the source and target relations.

Also, a PE executing one phase of the <global
hash, local broadcast, compare, sort, or hash-target
partial algorithm> type joint algorithm computes
the Boolean array hashing function for its share from
those source and target tuples which hash to one
global bucket. Also, a PE executing one phase of the
<global hash, local broadcast, hash-target partial
algorithm> computes the hash table function for its
share from the source tuples which hash to one
global bucket and survive the Boolean array
filtering.

Hence, for <global hash, local broadcast,
compare, or sort -target partial algorithm> we have;
12(1) = H. [(eg/Npg) + (de/Npp)] th + [(g6 / (g5

Npg))+ ¢t/ (e5-Npp)l-th =vree.
and for <global hash, local broadcast, hash-target
partial algorithm> we have;
to(l)=tvie+ [eg/ (e5:-Npg) + €7 -dutl -th,
When H=0, theneg =1, otherwise H=1.

In addition to global hash function a PE
executing the join algorithm <global hash, local
hash, compare, sort or hash -target partial
algorithms> uses another hash function, the local
hash function which is computed in each phase by
every PE for its share from those source and target
tuples that hash to one global bucket. Also, the PE
uses the Boolean array hash function which is
computed in each phase by every PE for its share
from those source and target tuples that hash to one
global bucket.

Also, <global hash, local hash, hash -target
partial algorithms> join algorithm uses another
hash function, the hash table function, which is
computed in each phase by every PE for the source
tuples which hash to one global bucket and one PE
and for those target tuples which hash to one global
bucket survive the Boolean array sorting and hash
one PE. Hence, for <global hash, local hash.
compare or sort -target partial algorithms> join
algorithms we have;

I

v2(1)= H [(eg/ Npg) + (¢t / Npg)] -th+2 [eg/ (e5-
Npg) + ¢t/ (e5Npg)l-th = treee

Also for <global hash, local hash, hash -target
partial algorithms> join algorithm we have; .

v2(1) =vvvev+[es/(e5- Npg) + (e7-9t/NpE] - th.

When a PE sorts a table of pointers on a set N
tuples is on the average, N logz N comparisons and
pointer swaps; thus,
t7(1)=(t¢+7t5)- N -loggN. Where N is the average
number of source tuples to be sorted by a PE during
the execution of one phase of the target relatlon
algorithms.

For <global broadcast, local broadcast, sort -
target partial algorithms> we have; M=¢g / (ems -
Npg).

For <global broadcast, local hash, sort -target
partial algorithms>

we have; M=¢g/(NMS . Npg).

For <global hash, local (hash or broadcast), sort -
target partial algorithms> we have M=¢g / (g5 -
Npg).

In general ty=1.;- EN(1),

Where EN(1) is the expected number of join
attribute value comparisons performed by a PE
during the execution of one phase of one of the join
algorithms.. If Ny or Ng are the average expected
number of source and target tuples, respectively,
assigned by one PE during the execution of one
phase of a target partial join algorithm, then;
EN(1)=N;-Ng

If a PE uses a sorting method for joining a target
tuple with Ng source tuples uses the binary search
method to locate the pointers to the linked list that
stores those tuples whose join attribute value match
those of the target tuples then the number of
comparisons done by PE is logagNg, then;

EN(1)=Nj - loga Na.
How to determine the best performance;

In this model the hardware input parameters are
kept constant. The other parameters are varied.
The t and the number of hashing functions are used
to evaluate the performance of the joint-algorithm.

In general the best performing algorithm among
a set containing others over a range of a parameter
value is the one with the smallest values to v over
that range. If several join algorithms have close t
values over that range, then the best performing
algorithm is the one with the minimum number of
hash functions.

(NPE,Z,tave.,Td, Ttd) hardware parameters that
characterize the moving head disk. The disk is
assumed to be modified for parallel reading (writing)
from (to) a whole cylinder.

The time to read(write) one track of the disk is
assumed to be the value of reading (writing) the
whole cylinder (t¢q). It also assumed that tpp has the
same value as that of tyq.

The hardware parameters that characterize a PE
is (t¢, T¢, Tg,th), off-the-shelf PEs’ parameters.

I
I

The parameters that characterize-the tuple bus of
a cluster (P, Py) are calculated .assuming that the
bus has effective bandwidth of 1Mbyte. -

We assume that ¢is and ¢ have the same values :
¢, changes directly by changing the ratio (e¢/Npg).

Rz is the ratio of the number of buckets in a PE’s ,
hash table, and the PE’s expected number of source
tuples per one phase of a Join join algorithm, and Ry
is the ratio of the number of bits in the Boolean
array(s) and the number of tuples in both the source
and target realtions, respectively. Rg and R; are
related to the amount of storage allocated to a hash
table and to the Boolean array(s), respectively.

The best performing joint algorithm can be
determined by two steps;
(1) The performance of the algorithm is analyzed for
the variable input parameters, for which we can
choose the best performing algorithm.
(2) The best performing algorithms are compared to
one another to find out the best over-all performing
one.
6- Conclusion

We have used the join models in this paper to
access the effectiveness of tuning the multiprocessor
structure which executes the join operation. Such an
investigation has explained the effectiveness of
using the Boolean array filtering techniques to
speedup such an execution without substantially
increasing the hardware cost.

X ik (References)

[De85] Dewitt, D.J., et.al., “Multiprocessor hash based join
algorithms,” in Proc. 11th Int. Conf. VLDB, 1985,
pp.151-164.

[HaB7] Hamid, I.A_, et.al.,“A new fast control mechanism for
rearrangeable interconnection network useful for
supersystems,” Tran. IEICE, vol. ET0 No. 10, Oct.
1987, pp. 997-1008.

[Ha88] Ilamid, 1.A,, et.al,“A new controlling algorithm fm
Benes mtprconnecllon network without symmetry,”
T'rans., IEICE, vol.ET1, No.9, E71, Sep., 1988, pp.895-
904,

[Ha89] Ilamid, LA, et.al.,“A new fastparallel computation
model for setting Benes rearrangeable interconnection
network,” Trans., IEICE, vol E72, No.4, April, 1989,

: pp-393-405.

[Go81] Goodman, J.R., “An investigation of multiprocessor
structures and algorithms for database mangement,”
Reprot of Univ., of Calif., Berkely, May, 1981.

[Go83] Gottlieb, A., et. al., “The NYU Ultracomputer
designing an MIMD shared memory parallel
computer,” IEEE, Feb., 1983, pp. 175-1189.

[Ki84] Kitsuregawa, K. et.al., “Arcitecture and performanc of
relational algebra machine GRACE,” in Proc. Int. Conf.
Parallel Processing, 1984, pp.241-250.

[Qa85].Qada, G.Z., et.al., “A database machine for very large

relational databases,” IEEE Trans. Comput., vol.C34,

pp.1015-1025, Nov. 1985.

Stone, 1., “Database applications of the Fetch-and-
add instruction,” IEEE, Jan., 1984, pp. 604-612. .
[Va84] Valduriez, P., et.al., “Join and semijoin algorithms fora

multi-microprocessor database machine,” ACM Trans.
Dtatbase Syst., vol. 9., No. 1, pp.133-161, March, 1984.

[St84]

Acknowledgment

The authors would like to thank NEC-Tohoku
Software group, in the large computer center of
Tohoku University, for their cooperation in' this
research. Also, much thanks with deep appreciation
for Miss Ito Kyoko for her never-ending advices and

the creative discussion led to this paper.

| HOST COMPUTER T==--

I

I

| Main controller I :

r '

1 1 l |
[siMD1]| [siMDL| [SIMDn | |
I

|

|

Interconnection Network :

1

[|

|

Main Memory I i

t 1

: Mass | | Cont :

L Mem | | roller |

=T77 ory I

——--1_1

Fig. 1, System outline for parallel Database machine

— g

Buffer to implement Fetch-

SiMD and-Add.

CuU

Fig. 2, One SIMD subsystem

PEg

PEN.1

..........

Interconnection Network

MM,

MMg MMNnN-1

Fig.3, Rearrengiable Interconnection network

=<
®@=<
®@=<
BD=<
®=<
®=<
D=<
®=<
@=<

with buffers at the input and output of it.

Notation used in the Figs. 4 to 8.

Global hash, local broadcast, sort, source
tuple complete algorithm >

Global hash, local broadcast, sort, source
tuple partial algorithm >

Global hash, local broadcast, sort, target
tuple partial algorithm >

Global hash, local broadcast, sort, target
tuple partial algorithm >

Global broadcast, local broadcast, sort,
source tuple, complete algorithm >

Global broadcast, local hash, sort, basic
algorithm >

Global broadcast, local hash, sort, target
partial algorithm >

Global broadcast, local hash, sort, source
tuple complete algorithm >

Global hash, local broadcast, sort, basic
algorithm >

T 109

(sec|

10

100
(sec)

10

(b{s/bfcsl

Ry= 10

0.1 I | N

(Pts) W(‘Pte—)x:&q
k\"\‘d 5) 100 |~ "
(C(SEC) 3)

oe ©

Qts,{c: 6.0\

F?\=)0

T 10q_

Pis [g =011

Rv= o
1 |

10 0.1

¢Jts or ¢tt x10—4

10 a
brs or Ptt x10

(sec)

D -

@ ¢h¥ﬁ=-|
5 q>{${(5(= -ol
§§{§>&/52: 0-¢

L :

1 10

-4
Cbts " or @tt x 10

