Fe g R— A s VAT A T9—6
Imrys5 I vISEE 26—6
(1990. 9. 7

/s

BMstEgicEIWeA TV 7 REB L X5 A O0AG
BT A 1EERAL

FEus EHEB— b=l

HRTERFTHFHIFRIFER

AXBBHSGECE S WA T V=7 VEEBEFVO0AG D71 k547 Y25 4 0S/0 Ik HHE:EN
BRI E Z OUIFHHEIC >WTiRR 2, 00AG i34 7Y = 7 MEBNKEF VTS > T, AEERE -2
F2A4 vADIBRICHITENT VWS, COYRFATHENDEA T V=7 F OHEE(LIIKRD 5 4 T D5
{LEARA ¥R 5 v ZDNEHEEDBINREEIL ENH B, CNOOBNE(LIZA S - A7 P2 7 M THEIT
ol AH =X alc k> THFIESNEEHEN S, $7o. AXREKYAF LDV 7 =T - TR
i3 AL~ DI DWW T bEEERT 20

Attribute Grammar Based Structure Evolution in Object
Management System OOAG

Lichao Tan Yoichi Shinoda Takuya Katayama

Department of Computer Science, Tokyo Institute of Technology
2-12-1 Ookayama Meguro-ku Tokyo 152 Japan

In this paper, we discuss methods of dealing with structural changes in an object man-
agement system OS/0, which is a prototype of an attribute grammar based object man-
agement model OOAG. OOAG is object-oriented and especially suitable for describing
tree-like structures that are widely used in practice. Structural changes in the system
include the evolution of tree type and dynamic transformation of tree instance’s internal
structure. The changes are controlled and evaluated by an efficient mechanism that is
characterized by meta-object. Dealing with change in the context of software process is
also discussed.

(1

1 Introduction

Motivation for improving a software development envi-
ronment (SDE) may derive from three different require-
ments for improving used tools, software processes and
software artifact structures. Requirements for improve-
ment in tools may derive from two different aspects:
deficiencies in current tools and new requirements on
the part of the user. Both cases may result in evolu-
tion of current tools or creation of new tools. However,
a good new tool would lose much of its effectiveness if
it is incompatible with the old ones. So, it is generally
desirable that the user’s view of a system be kept consis-
tent as much as possible when the system changes. On
the other hand, for a modern SDE, support for improve-
ments of software processes, as well as their associated
artifacts is considered indispensable. Another problem
associated with change in a SDE is how to deal with
the old states (tools, structures, views, etc) of the en-
vironment. It is convenient and necessary to save and
manage these old states for certain software develop-
ment activities such as system re-adjustment, reproduc-
tion of certain states, re-testing of old products and so
on. There is also a problem of interface for user because
of the need to access old states or to shift between new
and old states in an efficient way.

In this paper, we discuss the method of dealing with
these problems in an object management system OS/0
(Object System / Zero) whose model is based on
a formalism called OOAG (Object-Oriented Attribute
Grammars)[SK 90a]. OOAG is an object-oriented ex-
tension of standard attribute grammars [Knuth 68] that
combines the advantages of both declarative (functional)
and object-oriented paradigms. Substantial changes in
the system include dynamic transformation of object
structure as well as dynamic modification of object class
definition, which collectively provide to support the im-
provement of SDE as mentioned above. In OS/0, these
changes are controlled by meta-objects in order to pro-
vide a clear and consistent user view. Old-fashioned
objects are identified as versions of current objects and
are also managed by the meta-object mechanism.

The paper is organized as follows. In section 2, we first
explain the OOAG model. Then, in section 3 we elu-
cidate how structural change of objects can occur in
the model. In section 4, we will describe how software

(2)

processes and changes in them are described,using the
OOAG model. A method for controlling and evaluat-
ing the changes is discussed in section 5; in this section,
the functionalities of meta-object, the main element of
the method, are described and a kind of lazy evaluation
of changes by meta-object is also discussed. Section 6
discusses some implementation issues. Finally, section 7
gives some concluding remarks.

2 The Principle of OOAG

Traditionally, attribute grammars are known for their
use in generating compilers for programming languages.
However, because attribute grammars are based on the
functional computation of attribute values over the tree
structures, it can be used as a powerful mechanism
wherever the target application can be described as a
system of tree structures with operations manipulating
values called attributes attached to their nodes[Kat 89).
Object-Oriented Attribute Grammars (OOAG) has
been proposed mainly for managing software objects in
software development environments[SK 90a). OOAG in-
corporates certain object-oriented features into standard
attribute grammars in order to solve problems inherent
in standard attribute grammars. Among these problems
are the following:

1. Since the meaning of an entire attributed tree is
given only by the values of distinguished attributes
of the root node, any results from significant seman-
tic computation must be brought up to the root.

. There is no mechanism to dynamically invoke recal-
culation of attributes, which is necessary for prac-
tical applications.

. Because every attribute is permanently attached to
a node, even temporary attributes must be still de-
scribed and their values maintained in the same way
as other attributes.

. Modification of a tree including creation of new
nodes is not possible from inside the grammar, i.e.,
as a standard computational mechanism offered by
semantic functions.

In OOAG, attributed trees are viewed as distinguished
objects capable of receiving and understanding mes-
sages. Object definition is performed in two parts: static

specification and dynamic specification. The static spec-
ification is compatible with standard attribute gram-
mars. It specifies the structure of the object (syntactic
rules) and static semantic rules. Static semantic rules
are used to express relations that have to be maintained
among static attributes and native attributes. Native at-
tributes are values that express the nature of the object
and are permanently attached to the object. Static at-
tributes are divided into two kinds: inherited attributes
and synthesized atiributes; both are used to propagate
attribute values over the tree. For example, consider a
program P that is divided into two module objects M,
and M, whose source programs are written in C, or di-
vided into three module objects Ny, N, and N3 whose
source programs are written in Fortran. The executable
code for P must be updated whenever the object code
of any module is modified. The specification of such a
P can be described as below. This specification is ex-
plained further in the following subsections.

P(spec | executable) — M, M,
— — —static specification
where ——static semantic rules

M, .spec = specPart1(P.spec)

M3 .spec = specPart2(P.spec)

P executable = link(M;.obj_code, M3.0obj_code)

— — —dynamic specification
:modifySpec (specDelta |) =
M, :modifySpec(specDeltal |)
M, :modifySpec(specDelta2 |)
where — —dynamic semantic rules
specDeltal = specPart1(specDelta)

specDelta2 = specPart2(specDelta)

band Nl Nz Na
where

P .executable =

— — —another static specification

link(N;.objcode, Nj.obj_code, N3.obj-code)

2.1 Static and Dynamic Specification

The static specification for object P above shows that
P has a static inherited attribute spec, a static synthe-
sized attribute ezecutable, and two component objects

(3

M, and M, (in the first case). Below the construction
rule P — M; Mj, which corresponds to the syntac-
tic rule in standard attribute grammars, synthesized at-
tributes (output) of P and inherited attributes (input)
of M; and M, are defined by the static semantic rules.

A dynamic specification has two basic components:
an aclivation rule and some dynamic semantic rules.
An activation rule is of the form : message(iy...ip |
01..‘0(’) = R
and oy,.,0, are dynamic input(inherited} and oui-

my--- Ry m;, where iy,..,%,

pul(synthesized) attributes respectively, and my, ...,m
are messages to the components Ry, ..., ;. A dynamic
semantic rule is similar to a static semantic rule except
that it can define and use the value of native attributes
and the dynamic input/output attributes. Dynamic at-
tributes are somewhat different than static attributes.
Specifically, static attributes are persistent in the tree,
while dynamic ones become alive (visible) only when the
activation rule in which they occur is invoked by mes-
sage. Moreover when the computation is finished, they
disappear again. In other words, dynamic attributes
can be viewed as temporary attributes used for dynamic
computation. The example also shows the definition of
a :modifySpec message which asks for the modification
of the program’s specification. We will explain later how
this message results in modification of the program’s ex-
ecutable code.

2.2 LHS and RHS Classes

When we take an object-oriented view of a construction
rule, the left hand side (lhs) symbol can be viewed as
a class name while the right hand side (rhs) part as
giving the class definition. Expanding the lhs node to
its rhs nodes in a tree is viewed as creating an instance
of the class. We note that there are two construction
rules for the same object P in the example, that is,
there are two possible ways to expand the node P in a
tree. Applying either construction rule creates a valid
instance of P. Hence, we consider the rhs part of each
alternative construction rule as giving the definition for
a subgroup of objects of the LHS class represented by
the Ihs symbol. Such a subgroup is called as a RHS
class, and the LHS class is regarded as the union of
the alternative RHS classes. RHS class names may be
explicitly specified in the static specification by a prefix
dot notation, e.g.,

P(spec | executable) — .C M; M,

o F77 Nl Ng N3

In this case, the LHS class P is regarded as the union
of two RHS classes .C and .F77 (technically, RHSs are
made to inherit the LHS). A LHS class actually has its
own definition of instance and class methods below the
RHS definition part, but we omit them here for conve-
nience.

2.3 Dynamic Computation

Dynamic computation in an object is invoked by sending
a message to the object with appropriate values bound
to its dynamic input attributes. On receiving the mes-
sage, the object selects the corresponding dynamic spec-
ification and evaluates its dynamic semantic rules by (1)
evaluating the equations and/or (2) sending appropri-
ate messages to objects that appear in the right hand
side of the activation rule. Component objects receiv-
ing these messages repeat the same action, potentially
leading to further computation and further messages.
After this dynamic computation has finished, the object
modifies its static attributes by re-evaluating the related
static semantic rules if values of its native attributes on
which the static attributes depend have been modified.
The modification of its static attributes in turn causes
an attribute change propagation through the tree, thus
bringing the entire tree to a new consistent state.

Consider the following specification of the ”module” ob-
ject M used in the preceding example.

M (spec | objcode) = R
where

— — —static spec

R.spec = M spec

M .obj-code = cc (R.source)
native current_spec, current_obj
where

M .objcode = current.obj

— — —dynamic specification
:modifySpec (specDelta |) =
R :makeSource (
(new current.spec) | current_source
where
(new current_spec) =

)

makeSpec (current_spec, specDelta)

(4)

current_obj = cc (current_source)

In the static specification part, it specifies that module
M has a component object R that constructs a source
program from its specification. It also specifies two na-
tive attributes, current_spec and current_obj, which store
the newest specification and object code of the module.
These two native attributes are modified by the message
:modifySpec. When the newest object code current_obj
is obtained, the static synthesized attribute obj_code of
M is reset to the new current_obj by the static seman-
tic rule. The value of obj_code is in turn propagated
to the P object affecting the attribute executable. The
notation (new ...) is used to represent the new value of
native attributes.

Having explained the general features of OOAG, we now
turn to discussing those aspects of the system that are
designed to cope with change.

3 Dealing With Change in

OOAG

Upon receiving a message, an object may modify the val-
ues of its native attributes as a result of the correspond-
ing computation. We consider this kind of change triv-
ial from the point of view of system evolution. Rather,
What we discuss in this paper are structural changes,
which cause more significant problems with respect to
preserving a consistent view of the system. In OOAG,
there are roughly two kinds of structural change by now.
One is in the instance level; an object can transform its
internal structure from one RHS to another legal RHS.
The other one is caused by changes to the LHS/RHS
class definition, which again affects their related in-
stance objects. Another aspect of dealing with object
change is how to provide an efficient tool for manipulat-
ing the change history. In this section we discuss how
all of these problems have been addressed in OOAG.

3.1 Structural Transformation of Ob-
jects

As stated in section 2, the definition of a LHS class con-
sists of several alternative RHS definitions. Instances as-
sociated with any of these classes are regarded as valid
instances of the LHS. A transform operation converts

‘tranform

cxccutable
O,

.(a) before :transform (b) after :transform

Figure 1: Object State Before and After :transform

an instance of a RHS into an instance of another al-
ternative RHS class. Transform operations are invoked
by the message :transform, which is realized in the LHS
class. After the transformation, the object’s attributes
are re-computed or reset properly and the propagation
of static attributes is carried out according to the ap-
propriate semantic rules.

Figure 1 shows the state of P in the example before
and after a :transform operation. Note, however, that
the interface of P does not change so that the user can
send the same message to P before and after the trans-
formation (e.g., sending the same :exec_code returns the
old P.executable (C-code) before and the new one (F77-
code) after). Keeping the interface of the LHS class un-
affected in this way provides a consistent object view to
the user, who see objects only in terms of their LHS.
We restrict the means of instance conversion to explicit
invocation by the message :transform. This is in con-
trast to the method of allowing arbitrary user-defined
object conversion operations. As-we only allow prede-
fined conversion rules, that is, only those RHS classes
corresponding to the LHS are legal candidates for trans-
formation, the semantic correctness of the transforma-
tion is guaranteed. In managing large ob jects, this kind
of restricted transformational ability is considered both
efficient and essential since arbitrary transformations
may break the system’s consistency. Moreover, it is of-
ten difficult to define arbitrary transformation between
objects in any situation.

(5)

3.2 Changes to Class Definition

In OOAG, a LHS or RHS class can dynamically change
its own definition by receiving messages. Currently
there are three basic types of class definition change.

1. A new RHS definition is added to a LHS class. This
operation does not affect current instances, but the
new RHS can be used later for object instantiation
or as a new candidate for a :transform.

2. An existing RHS definition is modified in a LHS
class. This operation results in the invocation of
:transform operation to all the current instances of
the RHS in order to keep them consistent with the
new definition.

3. Anexisting RHS definition is deleted in a LHS class.
This operation also causes the :transform operations
on the instances of the RHS with the effect of con-
verting them into UNDEFINED objects.

These three operations are realized in the LHS class by
the class methods :addRhs, :modifyRhs, and :deleteRhs,
respectively. Other more complex changes can be re-
alized by using them, e.g., deleting a LHS wholly can
be resolved to deleting all the RHS definitions in the
LHS. We address the problem of how to maintain old
instances caused by such class evolution in the following
section.

3.3 Version Mechanism for Change His-
tory

In this section, we discuss the version mechanism we
are adopting in OOAG. It is through the mechanism
that users can access the old structures of objects and
perform activities such as retrying, testing and compar-
ing. By the benefits of static properties offered by the
attribute grammar, we can easily move to the correct
old state of a composite object by attribute propaga-
tion when one component object backtracks to an old

version.

A new version of an object is created in two ways. One
is explicitly by a message :checkln. When an object re-
ceives a :checkIn message, its current state is saved as
a new stable version of the object. A user may use the
:checkln message at any time. The other is implicitly
when the object receives a :transform message and per-
forms the appropriate operation. The state before the

transformation is logged as a new stable version, while
the state after the transformation becomes the current
state. Thus, a new version is made as a side effect of
performing each :transform.

In OOAG, a message is sent by default to the current
version of the object. As a result, accessing an old ver-
sion requires two steps. First we need to pop up an old
version, making it the current version. This means that
subsequent messages will go to this version. Second,
we send messages to the object to perform the actual
access. A set of version pop-up operations are defined
as instance methods of RHS classes such as, :popUpNo(
aNum), :popUpNewest(), :popUpSucc(), :popUpPred(),
and :popUpRhs(aRHS). The message :popUpNo(aNum
) requests that version aNum be popped up as the cur-
rent version. The message :popUpRhs(aRHS) requests
that one version which is an instance of the aRHS class
be popped up; when there are many such instances,
one is chosen according to a default rule. The :popUp-
Newest(), :popUpSucc() and :popUpPred() messages re-
quest that the newest (in time) version, the successor,
and the predecessor of the current version be popped
up, respectively.

We note that only version creation operations (:checkln,
:transform) or pop-up operations can result in new cur-
rent versions. It is possible to get a non-linear version
derivation graph by, for example, applying a version cre-
ation operation to an old version (by popping it up first
). Consider now the problem of dealing with old versions
when a class is changed, e.g., “should we delete all the
old instances when a RHS class is deleted?”. There are
obviously many possible solutions. Our solution is that
changes in the current class definition do not affect the
old instances, i.e., when a RHS is modified or deleted,
the old versions of its instances are not touched even
though the current versions may change. We consider
this may reduce the cost of class change, yet still be
convenient for referring to real change histories.

4 Change Support for Software
Processes

4.1 The Object-Oriented Software Pro-
cesses

(6)

_Str_ops
°

ops spec pgm.
°

m_Str_
°

PGM_STRUCT Y

pgm

JSP_SPEC

making pgm_str

Figure 2: Graphical Representation of JSP Object Spec-
ification .

One important aspect of describing software objects in
the OOAG formalism is that data driven software pro-
cesses and their enaction can be described naturally.
Software processes are viewed as hierarchies of software
activities, each of which corresponds to a node in the
tree. An initial software process is enacted by providing
the initial inherited attributes to a newly created tree of
software objects and proceeds as the static computation
is carried out. Re-adjusting a software process, includ-
ing dynamic structure modification and external tools
exchange, can be realized by change invoking messages.

As an example, consider the Jackson Structured Pro-
gramming (JSP) method[Jac 75]. JSP is a structured
method of producing programs that can be informally
described as consisting of the following steps:

1. Construct data structures: the specification is an-
alyzed and two data structures called the input
data structure and the output data structure are ex-
tracted.

. Derive program structure: the input and output
data structures are put together to derive the pro-
gram structure.

. Enumerate operations: the specification is ana-
lyzed, and operations to be performed on input and

output data are extracted.

. Create programs: the program structure obtained
from step 2 is augmented with operations from step
3 to form a program structure with operations. The
final program is then derived from this structure.

To describe this method using OOAG, we first extract
seven software artifacts as distinguished objects: (1) the
specification (JSP_SPEC) (2) the input data structure
(IDS) (3) the output data structure (ODS) (4) the pro-
gram structure (PGM_STRUCT) (5) the operation list
(OPS_LIST) (6) the program structure with operations
(PGM_STRUCT_WITH_OPS) and (7) the final program
text (PGM_TEXT). Next, we distinguish the attributes
to be attached to each of these objects as well as se-
mantic dependencies among these attributes. Resulting
attributes and semantic dependencies among them are
shown in Figure 2.

Enaction of this JSP process is initiated by instantiating

P)

RHS2

RHS1 RHS1L

(a) before :transform (b) after :transform

Figure 3: States of Object PGM_STRUCT

a JSP_SPEC object along with its children objects, and
giving appropriate value to its static inherited attribute
spec. This will propagate through the component ob-
jects, and the process will terminate with syntheéized
attribute pgm of the object JSP_SPEC properly com-
puted.

Above described methodology of describing a software
process can be called as object-oriented software pro-
cesses, as analogy to the object-oriented design method-
ology. Various aspects of changes in software processes,
including changes to related artifacts and tools used, can
be described well in our OOAG based object-oriented
software process framework. using change coping mech-
anisms described in earlier sections. In the followings,
we show more details of how changes can be supported
in the object-oriented software processes.

4.2 Coping With A Simple Change

Suppose now that the object PGM_STRUCT in the ex-
ample is equipped with two alternative methods for con-
structing the program structure pgm.str from inputs
spec, ids and ods. Also assume that when the JSP pro-
cess proceeds to some point-and the results are unsatis-
factory, it comes out the method used in PGM_STRUCT
was not proper and, hence, needs to be shifted to the
other one. This change requirement can be satisfied by
sending the message :transform to PGM_STRUCT (Fig-
ure 2). The states of PGM_STRUCT before and after
the :transform are illustrated in Figure 3. As discussed
in section 2, we can regard the LHS class PGM_STRUCT

as having two alternative RHS classes. When we take
into account the versioning of products created dur-
ing the process, all the related products (represented
as attributes of the nodes appearing to the right of
PGM_STRUCT in Figure 2) created before the invo-
cation of the :transform are saved as old versions. An
entire collection of versions from a given time comprise
the product list of the whole process at that time. Such
a collection can be obtained by sending a special ver-
sion pop-up message to the root; and as a result, the
root will in turn send pop-up messages to its subtrees
to gather appropriate component products. As shown
in this example, structural changes can be invoked and
responded to well during software processes.

5 Monitoring Evaluation of

Change by Meta-Object

One of our major objectives in this work has been to pro-
vide a consistent view of objects so that users can freely
manipulate the old versions without the need for usage
modification. Moreover, we also wanted to make it effi-
cient to evaluate validness-guaranteed object structural
changes. To realize these objectives, we use meta-objects
for version control and change evaluation monitoring.

5.1 Meta-Object

The concept of meta-object was developed to repre-
sent computational reflection in object-oriented systems
[Maes 87]. It provides a flexible way for dynamically
changing the system itself. The concept of persistent
meta-object was introduced to realize schema evolu-
tion management in object-oriented databases [TK 89].
Here, we incorporate a similar technique into the OS/0
system to realize a consistent user view of the changing
system.

A meta-object is associated with an object that it man-
ages. The meta-object holds the change history and
other evolution information of the object. Any access
to the object is intercepted by the meta-object, so that
it can complete various management tasks for the ob-
jects. For examples, operations of version reference can
be realized inside the meta-object by manipulating the
change history, and operations of invoking changes are
catched by the meta-object so that their execution can
be monitored easily. A meta-object conceptually lives

(8)

as long as its associated object does. In 0S/0, a meta-
object is not directly visible to the user. As a result, the
user does not need to define the meta-object for an ob-
ject, but rather the system will do so automatically. In
other words, the meta-object can be regarded as a vir-
tual object at the user level. It is embodied at a lower

level by an XLISP object. XLISP[Betz 85) language is

used to implement OS/0 (see in section 6).

5.2 Realization of Version Control

The task of version control in OS/0 is completed
In OS/0, we don’t mean all
indeed,
integers do not even have
proper semantics for versioning. So we distinguish
two classes of objects: VERSIONABLE-NODE and
UNVERSIONABLE-NODE. These two classes inherit
the common NODE class that specifies the common

by meta-objects.
the objects need versioning; some classes

of objects such as

structure and behavior of objects (nodes). A version-
able RHS may have both versioned or non-versioned
instances. A versioned instance may be dynamically
changed to a non-versioned one by a message, and vice
versa. In contrast, an unversionable RHS is allowed to
have non-versioned instances only. When a versioned
object is changed (e.g., by :transform), the old state is
saved as a version. However, if the change occurs in a

non-versioned object, the old state is not saved.

In OS/0, versioned objects are associated with meta-
objects. Such a meta-object is created in two situations
(1) when a versioned object is created, or (2) when a
non-versioned object is changed to a versioned object.
Similarly, a meta-object is-deleted (1) when the corre-
sponding versioned object is deleted, or (2) when the
versioned object is changed to a non-versioned object.

As stated in section 5.1, any message to a versioned
object is intercepted by its meta-object. Upon inter-
ception, the meta-object does the corresponding version
control tasks according to the type of message. More
precisely, it does the following

1. :checkln,
Saves the current state of the associated object as
a stable version, and modifies the current version
number and the internally stored version list.

. :transform,
Saves the current state of the object, then sends

the current version the message :transform to per-
form the transformation; also modifies the current
version and the version list.

3. pop-up messages,

Modifies the current version number.

4. other messages,
Forwards the message to the current version.

Meta-objects in OS/0 are implemented by using XLISP
objects. To define various types of meta-objects, class
inheritance can be used to form a class definition hier-
archy for meta-objects.

5.3 Lazy Evaluation of Change

Besides to realize version control, meta-objects is also
used to facilitate a kind of lazy evaluation of structural
changes. As stated in previous sections, when a struc-
tural change occurs, related attribute values are prop-
agated through the whole system to make it globally
consistent. This propagation can be computational in-
tensive if there are a large number of objects. Some-
times it is efficient to delay the propagation until its
effects are needed. For example, structural change to
an object may not be evaluated until the object is to
be accessed by attribute propagation or message pass-
ing. This control task can easily be implemented by
the associated meta-object since changes to an object
are stored there, and since every access to the object is
intercepted by the meta-object. By this access intercep-
tion mechanism, the timing of evaluation invocation can
be set properly and the eventual consistent state of the
whole system is guaranteed.

6 Implementation Issues

The OS/0 system is composed of two parts. One is the
systemn kernel and user defined object space based on the
XLISP system, and the other is the editor/translator
generated by the Cornell Synthesizer Generator [RT 89]
systemn, which translates OOAG specifications into exe-
cutable xlisp programs. Two major components of the
system kernel are (1) the definition of the NODE class,
which implements functions common to all objects such
as the attribute evaluation algorithm and subtree ma-
nipulation, and (2) the object scheduler which imple-
ments context switching, concurrent execution of mul-

(9

tiple objects, etc. As for change management, there
are several important points. When a :new is sent to a
VERSIONABLE-NODE in OOAG, two :new messages
are invoked at the XLISP level: one is sent to the corre-
sponding class counterpart, while the other is sent to the
class META to create a meta-object for the new object.
At the XLISP level, an object of class VERSIONABLE-
NODE is implemented as a set of versions, each of which
has an attribute meta referring to the common associ-
ated meta-object. A meta-object has some attributes
such as current-v, version-list, etc. To realize message
interception by meta-objects, each message-passing op-
eration in OOAG

x: aMes
is translated into a XLISP send function
(send (send x :meta) :aMes)

The message :meta returns the meta-object of the re-
ceiver object.

7 Concluding Remarks

We have discussed how “change coping” mechanisms in
Object Oriented Attribute Grammars can be used to
support changes required for improving SDEs. Our ap-
proach is characterized by the powerful mechanisms to
cope with dynamic changes of type definition as well as
internal structure of software objects in a transparent
way, together with the benefits inherited from attribute
grammars such as functional description and locality of
description. Moreover, the abilities to describe and sup-
port changes of object oriented software processes pro-
vide a flexible way for software process evolution, which
is not available in process models with clear distinction
between processes and products.

As for realiz-
ing the evaluation of dynamic changes, there are also
many methods proposed. For example, in objectbase
management systems, eager instance conversion[PS 87],
logical instance conversion[BKKK 87}, version interface
mechanism[SZ 86} and other methods dealing with ob-
ject definition changes have been proposed and used. In
[TK 89], we have argued that our meta mechanism with
lazy instance conversion provide for clearer design con-
cepts and more flexibility. In this paper, we have specif-
ically explained that, by using meta-objects, the change

management and version control are masked from the
object definition level, thereby leaving users a clear view
of the objects. Also, meta-objects are flexible for imple-
menting and dynamically modifying the system since
they can easily be re-linked and reused.

In 0S/0, we have already run several small OOAG spec-
ifications. The experiments with more practical object-
base applications involving change are under way now.
Those include the experiment on OOAG based object
oriented software processes as described in section 4.
We believe that we will find out the more concrete and
practical effectiveness of our method during the experi-
ments.

References

[Betz 85] D. Betz, XLISP: An Experimental Ob-

ject Oriented Language, Jan. 1985

[BKKK 87] J. Banerjee, W. Kim, H.J. Kim, H.F. Ko-
rth, Semantics and Implementation of
Schema Evolution in Object-Oriented
Databases, Proc. ACM/SIGMOD An-
nual Conference on Management of

Data, pp.311-322, Feb. 1987

[Jac 75) M.A. Jackson, Principles of Program

Design, Academic Press, London, 1975

[Kat 89] T. Katayama, Application of At-
tribute Grammar Techniques to Soft-
ware Development, Proceedings of US-
Japan Seminar on Software Engineer-

ing pp.91-99, 1987

{Knuth 68] D.E. Knuth, Semantics of Context-
Free Languages, Mathematical Sys-

tems Theory, 2(2):127-145, 1968

[Maes 87) P. Maes, Concepts And Experiments In
Computational Reflection, Proceedings

of OOPSLA’87, Oct. 1987

[PS 87] D.J. Penney, J. Stein, Class Modifica-
tion in the GemStone Object-Oriented
DBMS, Proceedings of OOPSLA 87,
pp-111-117, Oct. 1987

[RT 89) T.W. Reps, T. Teitelbaum, The Syn-

thesizer Generator, Texts and Mono-

(10$)

[SK 88]

[SK 90a]

[SK 90b]

[SZ 86]

[TK 89

graphs in Computer Science, Springer-
Verlag, 1989

Y. Shinoda, T. Katayama, Attribute
Grammar Based Programming and
Its Environment, Proceedings of the
21st Hawaii International Conference
on System Sciences, Software Track,
pp.612-620, 1988

Y. Shinoda, T. Katayama, Object Ori-
ented Extension of Attribute Gram-
mars and its Implementation Using
Distributed Attribute Evaluation Al-
gorithm, to appear in Proceedings of
the International Workshop on At-
tribute Grammars and Their Applica-
tion, 1990 ’

Y. Shinoda, T. Katayama, Software Ob-
ject Modeling by an Object Oriented
Extension of Attribute Grammars, to
appear in Proceedings of the Info-
Japan’90, 1989

A.H. Skarra and S.B. Zdonik, The Man-
agement of Changing Types in an
Object-Oriented Database, Proceed-
ings of OOPSLA’86, pp.483-495, Sept.
1986

L. Tan, T. Katayama, Meta-Operations
for Type Management in Object-
Oriented Databases — — — A Lazy
Mechanism for Schema Evolution, Pro-
ceedings of the First International
Conference on Deductive and Object-
Oriented Databases, pp.58-75, .Oct.
1989

