5D-03

臨床CT画像に適応可能な空間分解能評価法の考案

今井 國治[†] 遠地 志太[‡] 梁川 雅弘[#]

名古屋大学大学院医学系研究科[†] 大阪大学医学部附属病院[‡] 大阪大学大学院医学研究科[#]

1. はじめに

近年、0.25mm 幅という極小検出器を持つ超高 精細 CT 装置が登場したことによって、従来では 検出不可能だった細かな生体情報が得られるよ うになった。このように、多様化、高精細化す る CT 画像を医療現場でどのように活用できるか を把握することは必要であり、その画質特性を 評価することは極めて重要である。

空間分解能をはじめ、CT 画像の画質評価では、 ファントムなどの単純構造を基にした物理評価 が主流である。そのため、視覚評価による結果 と必ずしも一致しないことを経験している。こ のような問題点を解決するために、医用画像の 画質評価では、臨床画像そのもの、もしくは可 能な限り臨床状態を再現したファントムによる 評価が必要である。しかし、臨床画像のような 複雑な構造を基にした画質評価法は未だ確立さ れていない。本研究では、伸展固定肺における 血管影、気管支影に対して対象 Toeplitz 行列を用 いた新たな分解能評価法を考案した上で、超高 精細画像と従来画像の分解能を評価し、提案法 の臨床画像への適応可能性について検証した。

2. 解析対象および実験方法

解析対象には、術後肺から作成した伸展固定 肺を使用した。伸展固定肺は、臨床画像と病理 所見を対比し理解するための一つの基礎的解析 法として利用されており、人間の生体構造を可 能な限り忠実に再現することができる。これを 超高精細 CT 装置(Aquilion Precision: CANON) の撮影寝台上に配置した。この装置の撮影モー ドには、表1に示すような特徴を有しており、従 来の分解能を持つ通常モード(NR)と、解像度 を向上させた高分解能モード(HR、SHR)があ る。そこで、三種類の撮影モードおよび小焦点 (S1: 0.6mm × 0.6mm) に設定の下、管電圧 120kVp、CTDIvol 9mGy となる臨床相当の線量条 件で撮影した。その後、逐次近似応用再構成法

表1 撮影モードによる検出器幅とチャンネル数

Scan Mode	列方向(Row)	面内方向(Channel)
NR	0.50 mm	896 ch
HR	0.50 mm	1792 ch
SHR	0.25 mm	1792 ch

(AIDR-3D、強度: eMild)を用いて、再構成関 数 FC04-H、スライス厚 0.5mm、DFOV 200mm、 マトリックスサイズ 512-pixel の再構成条件で横 断面画像を作成した。DICOM 形式で出力された 画像から、後述する提案法を用いて撮影面内の 分解能を評価し、撮影モードによる画質の差異 を検討した。

3. 解析方法

従来から空間分解能評価法として広く用いら れている MTF は、主に次の特徴を持っている。

- (1) 点像もしくは線像強度分布のような単純構 造信号を用いた解析法である。
- (2) 前提条件として、評価対象となる画像系全 体に線形性が成立する必要がある。
- (3) 解像度評価に非常に有用な「画像信号の周 波数分解」を利用した方法であり、その手 段としてフーリエ変換が使用されている。

しかし、MTF を臨床画像への適用を考えた場合、 項目(1)では、基本的に人体内に単純構造信号が 存在しないこと、項目(2)では、広く普及してい る逐次近似応用再構成画像は非線形的特性を有 していること、項目(3)では、高速計算アルゴリ ズム上、サンプル数を 2ⁿ 個にするという制約を 受けることなどの問題点がある。これらの点を 解決できるように本提案法では、対称 Toeplitz 行 列による周波数分解を評価原理に組み込んだ。

一般に、実画像x(n)は、画像信号s(n)と平均零 の加法性白色雑音 $\omega(n)$ を用いて、 $x(n) = s(n) + \omega(n)$ と表現され、この中の画像信号s(n)に対し て解像度評価が行われている。しかし、CT 画像 上に存在する画像ノイズは、厳密には白色雑音 ではないため、容易に取り除くことは出来ない。 また、視覚評価では、画像ノイズの影響を加味 した実画像x(n)が用いられることが多い。これら を踏まえ、本提案法では、画像ノイズを含んだ 実画像に対して解析を行った。この場合の対称 Toeplitz 行列(自己相関行列) *R*を求めると、

Spatial Resolution Evaluation Method for Clinical Computed Tomography Images

^{*}Kuniharu IMAI, *Yukihiro ENCHI #Masahiro YANAGAWA

[†] Nagoya University, Graduate School of Medicine

[‡] Osaka University Hospital

[#] Osaka University, Graduate School of Medicine

図1伸展固定肺の横断面画像に対する解析領域

$$R = \begin{bmatrix} r_x(0) & r_x(1) & \cdots & r_x(N-1) \\ r_x(1) & r_x(0) & \cdots & r_x(N-2) \\ \vdots & \vdots & \ddots & \vdots \\ r_x(N-1) & r_x(N-2) & \cdots & r_x(0) \end{bmatrix}$$
$$\dots r_x(\tau) = E\{x(n)x(n+\tau)\}: x(n)\mathcal{O} \triangleq \mathbb{C}$$
相関関数

となり、ここから求まる固有値*λ_i*(*R*)は、各空間 周波数におけるエネルギー密度を表している。

以上の基本原理に基づき、本提案法では、伸展固定肺から、図1に示すような任意の大きさの 領域を対象に、x、y方向に標準化した CT 値プロ ファイルから自己相関行列を求め、これを基に 各空間周波数における肺血管部及び気管支部の エネルギー密度を算出した。

4. 解析結果および検討

図2は、横断面画像のx方向(横方向)に対す るエネルギー密度の周波数特性であり、スキャ ンモードが異なる場合を描出した。エネルギー 密度は、NRモード撮影で、低次高調波領域ほど 高くなっているのに対し、高次高調波領域では、 高分解能モードの方が高くなった。一般的に、 画像信号のエッジ成分は空間周波数の高い領域 に含まれることが知られており、高分解能モー ドでは、検出器のチャンネル数が増加したこと で、部分体積効果が抑制された鮮鋭度の高い画 質が得られ、その結果、高次高調波領域への固 有値寄与率が高くなったと考えられる。さらに、 本提案法において、解析サンプル数によって固 有値の総和が一定になることを考慮すると、高 分解能モードでは、高次の領域への寄与率が高 くなった分、低次の領域で NR モードより低くな っている。つまり、本提案法では、算出された 固有値が、ある高調波領域に偏らず、全ての高 調波領域に均等に分配されることが「分解能が 高い」ことを意味する。そこで図3に、固有値の 等分配性をローレンツ曲線によって調べた。通 常モードと比較すると、高分解能モードでは、 均等分布線と呼ばれる線分 y=x に近くなっている。 また、本提案法では、ローレンツ曲線と均等分 布線で囲まれた面積から算出されるジニ係数を 用いることで、定量指標による空間分解能評価 が可能である。ここで、縦横方向の感度が高い という人間の視覚特性を考慮し、解析画像のv方 向(縦方向)にも同様の評価を行い、x、v方向 のジニ係数の関係を検討した。図4のように、原 点の近い側にプロットされた高分解能モードの 方が高解像度であり、原点からの距離がほぼ等 しい HR と SHR では、ほぼ同等の解像度である ことが定量的に示された。図1の解析対象画像を 確認すると、高分解能モードの方が、血管及び 気管支の辺縁が鮮鋭であり、さらに、HR と SHR を比較すると、注視しなければ、その違いを見 つけることは出来ないことが分かった。このこ とから、エネルギー密度による空間分解能評価 法は、適切に画像の鮮鋭度を反映していること が明らかとなった。

5. まとめ

本研究では、伸展固定肺に対して、対称 Toeplitz 行列を用いた空間分解能評価法を考案し、 超高精細 CT 画像の画質特性について検討を行っ た。その結果、三種類の撮影モードによる解像 度の差異を定量的に評価することが可能となっ た。さらに、この評価結果は視覚による評価結 果と類似することが明らかとなった。以上のこ とから、本提案法は、臨床画像にも適用可能な 空間分解能評価法であることが示唆された。

