
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Branch Divergence Reduction Based on Code Motion

Junji Fukuhara1,a) Munehiro Takimoto1,b)

Received: August 30, 2019, Accepted: December 20, 2019

Abstract: The Single Instruction Multiple Data (SIMD) execution model on GPUs enables a program to execute
efficiently. Nevertheless, the efficiency may decrease via branch divergence that occurs when SIMD threads follow
different paths in branches. Once the branch divergence occurs, some threads have to wait until the completion of
other threads. This inefficiency on GPU is caused by instructions included in branches, which may be increased by
some traditional code optimizations based on code motion. Partial Redundancy Elimination (PRE) is one of such code
motions methods. The PRE causes some insertions of expressions into some paths in branches and increases branch
divergence. Thus, we propose a new PRE approach, called Speculative Sparse Code Motion (SSCM), which not only
removes redundant expressions but also reduces branch divergence. The SSCM achieves them based on both properties
of Sparse Code Motion (SCM) that reduces the static numbers of expressions in addition to PRE and speculative code
motion that hoists some expressions in branches out of them. The SCM property of SSCM reduces branch divergence
since it also hoists all the expressions in the true and false paths in a branch as a single expression. Moreover, the
speculation property helps to hoist all the expressions not hoisted by the SCM, which removes more redundant expres-
sions where speculation is not harmful in branches with branch divergence. Furthermore, the SSCM also enables the
selective application of speculative code motion to improve programs with divergent and or non-divergent branches.
To prove the effectiveness of our method, we applied it to some benchmarks with divergent branches. Our experimental
results demonstrate more than 8% improvement in some program efficiency.

Keywords: GPU, branch divergence, code optimization, partial redundancy elimination, speculative code motion

1. Introduction

Generally, GPUs are increasingly used not only for image pro-
cessing but also for general-purpose applications. Most of GPU
technologies implement Single Instruction Multiple Data (SIMD)
execution model, which executes processes in parallel by ap-
plying single instruction to multiple data simultaneously. The
SIMD execution model enables a program to execute efficiently,
while the efficiency may be decreased by branch divergence. The
branch divergence occurs when SIMD threads in a warp follow
different paths in a branch. In the face of the divergence, some
threads have to wait until the completion of the other threads.
Thus, the branch divergence results in the decrease of GPU per-
formance. In addition, some traditional code optimizations based
on code motion may increase branch divergence. Partial Redun-

dancy Elimination (PRE), which is effective code optimization
that not only removes partially redundant expressions but also
moves invariant expressions out of loops, is one of such code mo-
tions approach. The PRE causes some insertions of expressions
into some paths in branches which increases branch divergence;
hence, makes it difficult to apply PRE to GPU programs.

In this paper, we propose a novel PRE approach, called Spec-

ulative Sparse Code Motion (SSCM), which not only removes
redundant expressions but also reduces branch divergence. The
GPU programs execute both true and false sides of divergent

1 Department of Information Sciences, Graduate School of Science and
Technology, Tokyo University of Science, Noda, Chiba 278–8510, Japan

a) 6318527@ed.tus.ac.jp
b) mune@rs.tus.ac.jp

branches accordingly. Using this property, the SSCM specula-
tively hoists the expression that is on one side of a branch be-
fore it without a decrease in execution efficiency. Similarly, PRE
with speculative code motion, which is called speculative PRE

(SPRE) [11], [12], speculatively hoists some expressions with
less penalty cost based on profile information. The SSCM re-
moves more redundant expressions without the profile informa-
tion due to the speculative code motion in the divergent branch
with no penalty cost. Notice here that the SPRE also has the
essential property of PRE, which inserts some expressions into
some paths in branches; hence, it cannot be applied to programs
easily, including divergent branches. The SSCM has a property
of Sparse Code Motion (SCM) [1] that reduces the static num-
bers of expressions in addition to the speculation property. The
SCM property of SSCM, which hoists all the possible expres-
sions in both sides of a divergent branch out of it, as a single
expression, contributes to reducing the branch divergence. Also,
the speculation property enables hoisting expressions missed by
SCM, so that the SSCM can remove more redundant expressions.
However, the speculative code motion may decrease execution
efficiency for non-divergent branches because most of GPU pro-
grams have both divergent branches and non-divergent branches.
Consequently, the SSCM enables selective application of spec-
ulative code motion to improve programs with divergent and or
non-divergent branches.

The contributions of this paper are as follows:
(1) The SSCM enables PRE to remove partially redundant ex-

pressions in GPU programs without increasing branch diver-
gence.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

(2) The SSCM removes more redundant expressions through
speculative code motion and contributes to reducing branch
divergence by decreasing the static numbers of expressions.

(3) The SSCM selectively applies speculative code motion to di-
vergent branches but not non-divergent branches.

The rest of this paper is organized as follows: Section 2
presents the preliminaries of our approach. Sections 3 and 4 pro-
vide brief explanations of the PRE and the branch divergence,
respectively. Section 5 describes the SCM and presents the pro-
posed method (i.e., SSCM), which is an improvement of the
SCM. Our experimental results are presented in Section 6. Sec-
tion 7 discusses related works. Finally, Section 8 concludes our
paper and presents possible future works.

2. Preliminaries

We assume that a Control Flow Graph (CFG) has already been
created for each function defined in the source program. The CFG
is a directed graph G(N, E, s, e) with a node set N and an edge set
E ⊂ N × N. Each nodes n ∈ N represents a basic block consist-
ing of continuous statements without any branch in the middle.
Each edge (n,m) ∈ E represents the flow of control between ba-
sic blocks n and m. s and e denote the unique start node and end

node of G. Every node n ∈ N is assumed to lie on a path from s to
e. pi denotes the i-th node on the execution path p in a CFG and
lp denotes the length of p. P[m, n] denotes the set of all execution
paths from a node m to a node n. pred(n) =d f {m | (m, n) ∈ E}
and succ(n) =d f {m | (n,m) ∈ E} denote sets of all predecessors
and successors of a node n, respectively.

Like the other code motion methods, critical edges, which lead
from nodes with more than one successor to nodes with more than
one predecessor, may block the effective code motion. For exam-
ple, in Fig. 1 (a), the edge leading from node 2 to node 3 is a
critical edge. We assume that such critical edges are eliminated
through inserting a new node as illustrated in Fig. 1 (b).

Also, similarly to Ref. [4], it is assumed that a basic block
is divided into two partitions, as shown in Fig. 2. The division
point of a basic block is defined as the point immediately after

Fig. 1 Critical edges and their elimination.

Fig. 2 How to divide a basic block.

the last modification statement, which modifies some operands of
the considered expression e. The former partition is called the
Entry part and the latter is called the Exit part. If there is no
modification statement in the basic block, the entire basic block
is defined as an entry part, where an exit part is defined as empty.
The first expression e of an entry part is called entry computation,
and the expression of an exit part is called exit computation. In
our algorithm, we insert an expression at either an entry part or
an exit part. The insertion points at an entry part and an exit part
are called entry insertion point and exit insertion point, respec-
tively. Therefore, the insertion point is immediately before an
entry computation or an exit computation if there is the computa-
tion, immediately before the first modification statement if there
is no entry computation and there is a modification statement,
otherwise the end of that part.

3. Partial Redundancy Elimination

If an expression e exists at a program point p and any operands
of e are not modified on the execution path P from a program
point p to a program point q, e is available on P. Furthermore,
if e is available on all execution paths from the start node s to q,
e is available at q. Also, if e is available on at least one execu-
tion path in the paths from s to q, e is partially available at q.
If an expression e is available at a program point q, q is up-safe

for e. If an expression e exists at a program point p and is avail-
able immediately before p, e is fully redundant at p, and can be
eliminated by replacing it with the variable that holds the value
of e. On the other hand, if an expression e exists at a program
point p and is partially available immediately before p, e is par-
tially redundant at p, and cannot simply be removed as with fully
redundant expressions.

If an expression e exists at a program point p and any operand
of e is not modified on the execution path P from a program point
q to a program point p, e is anticipated at the program point q on
P. If e is anticipated on all execution paths from q to the end node
e, e is anticipated at q. Moreover, e is anticipated on at least one
execution path from q to e, e is partially anticipated at q. If an
expression e is anticipated at a program point q, q is down-safe

for e.
The PRE removes partially redundant expressions by insert-

ing expressions into the appropriate program points. Then, since
PRE inserts expressions at the down-safe program points, it can
remove partially redundant expressions without increasing the
number of executed expressions on any execution path.

When the PRE removes an expression, it stores the value of an
available expression in a temporary variable and replaces the ex-
pression with the temporary variable. It is important for the tem-
porary variables introduced by PRE to be allocated to registers,
so as not to reduce the effectiveness of the PRE. Therefore, in
order to suppress register pressure, it is necessary for the PRE not
to perform unnecessary code movement with no effect of redun-
dancy removal. Such an extension of PRE is called Lazy Code
Motion (LCM) [2]. The LCM shortens the lifetime of the tem-
porary variable introduced for eliminating a partially redundant
expression by inserting expressions into the nodes farthest from
the start node so that it suppresses some register spills.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

4. Branch Divergence

Generally, branch divergence is caused by the SIMD execu-
tion model, reducing the execution efficiency of GPU programs.
In the SIMD execution model, GPU programs must execute the
instructions in both true and false sides of a divergent branch ac-
cordingly because each warp, which is a group of threads, has a
single control flow.

Example. Consider a conditional branch where the branch di-
vergence occurs at node 1 in Fig. 3 (a). As shown in Fig. 3 (b),
a warp has eight threads, which are represented by arrows. The
black arrows represent the executing threads, and the gray arrows
represent the waiting threads. Figure 3 (b) shows the case where
the threads from t0 through t3 are active at node 2 in the true
side, and the other threads are active at node 3 in the false side,
depending on the result of p at node 1. In detail, first, all the
threads execute instructions at node 1 in parallel. Second, the
threads from t0 through t3 execute instructions at node 2 on the
true side. Then, the threads from t4 through t7 wait without do-
ing anything. Next, the threads from t4 through t7 execute the
instructions at node 3 on the false side. Also, the threads from t0
through t3 wait. Once the execution of the branch is completed,
all the threads execute the instructions at node 4. �

Fig. 3 CFG with branch divergence and behavior of threads.

Fig. 4 Effects of PRE and SCM.

Thus, the branch divergence costs time to execute the true and
false sides of a branch in order; hence, reducing the execution effi-
ciency. Several methods have been proposed to reduce the branch
divergence and improve execution efficiency [3], [8]. However,
since traditional code motion-based approaches such as PRE may
increase the branch divergence, they cannot simply be applied to
programs with branch divergence.

Example. Figure 4 assumes that the conditional branch at
node 6 causes branch divergence. As shown in Fig. 4 (a), expres-
sion originally exists at node 6 only on one side of the branch.
In this case, applying PRE to Fig. 4 (a) transforms to Fig. 4 (b). In
Fig. 4 (b), an expression appears on both sides of the branch, com-
pared to Fig. 4 (a), so that execution efficiency is reduced because
of the divergence in node 6. �

5. Proposed Method

In this section, first, we explain the SCM that is a traditional
method, which decreases the static number of expressions, and
then extend it to SSCM.

5.1 Sparse Code Motion
Here, we explain SCM [1], which is the basis of SSCM. We

define a concept and describe behavior for an input program in
the SCM.

The SCM consists of the following four steps:
(1) Application of LCM; we apply the LCM to an input pro-

gram.
(2) Computation of a safe moving point; we compute up-safe

program points, down-safe points, and earliest points.
(3) Computation of down-safety closure and down-safety re-

gion; we compute the down-safety closure ρ(n) and down-
safety region R.

(4) Determination of sparse insertion points; we find the inser-
tion points of an expression and transform a program for
sparse code motion.

Then, each step is explained below, where we especially give
details and significance of (2) and (3) as it applies to SSCM, and
then outline (1) and (4).
5.1.1 Application of LCM

The SCM first applies LCM, which suppress unnecessary code
motion of the PRE, to an input program. The SCM inserts an ex-
pression at the optimal position considering register pressure, as

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 5 Dataflow equations for SCM.

well as the LCM. For the details of LCM, see Ref. [2].
5.1.2 Computation of a Safe Moving Point

To compute a safe moving point, we define the following pred-
icates such as NdSafe, XdSafe, NuSafe, XuSafe, NEarliest, and
XEarliest using the dataflow equations in Fig. 5, where predicates
NComp, XComp, and Transp are locally determined. Then, each
predicate denotes the followings:
• NComp(B): B has an entry computation.
• XComp(B): B has an exit computation.
• Transp(B): B does not have a modification statement.
• NdSafe(B): It is down-safe at the entry insertion point of B.
• XdSafe(B): It is down-safe at the exit insertion point of B.
• NuSafe(B): It is up-safe at the entry insertion point of B.
• XuSafe(B): It is up-safe at the exit insertion point of B.
• NEarliest(B): It is down-safe at the entry insertion point of

B, but an expression cannot be moved to any predecessor of
B.

• XEarliest(B): It is down-safe at the exit insertion point of
B, but an expression cannot be moved to the entry insertion
point of B. �

These predicates and their dataflow equations used in SCM are
the same as ones used in LCM [4]. For ease of understanding, we
also use notations Comp, DnSafe, UpSafe, and RelComp defined
as follows:
• Comp =d f NComp

• DnSafe =d f NdSafe ∪ XdSafe

• UpSafe =d f NuSafe ∩ XuSafe

• RelComp =d f Comp \ UpSafe

5.1.3 Computation of Down-safety Closure and Down-
safety Region

In addition to down-safety, the SCM defines down-safety clo-

sure ρ(n) and down-safety region R. We show the definitions
quoted from Ref. [1]. The down-safety closure ρ(n) represents
a set of nodes to be considered as movable points of an expres-
sion from the CFG nodes n and succ(n). Down-safety region R

represents a set of nodes to be considered as movable points of
an expression in the entire CFG. These are based on the idea
that in adjusting insertion points determined by LCM; we con-
sider down-safe and not up-safe points as hoistable points. Down-
safety closure ρ(n) is defined as the minimum set satisfying the
following properties for CFG nodes n ∈ DnSafe \ UpSafe:

(1) n ∈ ρ(n)
(2) ∀m ∈ ρ(n) \Comp. succ(m) ⊆ ρ(n)
(3) ∀m ∈ ρ(n). pred(m) ∩ ρ(n) � φ

⇒ pred(m) \ UpSafe ⊆ ρ(n)
Down-safety region R is defined using down-safety closure as

follows:
(1) RelComp ⊆ R ⊆ DnSafe \ UpSafe

(2) ρ(R) = R

Also, the SCM defines a set of the program points R-Earliest

that is the closest to the start node s in down-safety region R. The
definition from Ref. [1] is shown below.
R-Earliest(n)⇔d f n ∈ R ∧ ((n = s) ∨ ∃m ∈ pred(n).

¬Transp(m) ∨ m � R ∪ UpSafe)
The SCM finds sparse insertion points of an expression in the

down-safety region.
5.1.4 Determination of a Sparse Insertion Point

Using the predicates and down-safety region mentioned above,
we find sparse insertion points of expression, transforming a pro-
gram based on them. First, we select the down-safety region
where the number of R-Earliest points for RelComp points is
the fewest. Second, we insert an expression at R-Earliest points
in the down-safety region and remove expression occurrences
at RelComp points. Through the transformation, we reduce the
number of occurrences of the expression most. In this process,
because the SCM inserts expressions into program points in the
down-safety region as well as the LCM, it does not perform spec-
ulative code motion that may increase the execution of expres-
sions on some execution paths. See Ref. [1] for details of how to
find insertion points in SCM.

Example. The LCM transforms a program shown in Fig. 4 (a)
into the program shown in Fig. 4 (b). Then, we find the down-
safety region for the CFG in Fig. 4 (b) so that we get two regions
that consist of node 3 and nodes 6, 7, and 8, respectively. Fi-
nally, we find sparse insertion points of expression for the CFG
in Fig. 4 (b). Consequently, we get node 6, i.e., the SCM trans-
forms the CFG in Fig. 4 (b) into the CFG in Fig. 4 (c) by inserting
an expression into node 6 in Fig. 4 (b), and removing expression
occurrences in nodes 7 and 8. Compared with the number of oc-
currences of the expression in Fig. 4 (b), the SCM can decrease it
from three to two, as shown in Fig. 4 (c). Notice that the number
of the expression occurrences can decrease to one if insertion to
node 1 is allowed. However, because it is not down-safe, it results
in speculative code motion, which introduces a new expression on
an execution path 1 → 2 → 4 → 5 → 10. The LCM and SCM
do not perform such speculative code motion. �

5.2 Speculative Sparse Code Motion
In this section, we extend the SCM described in the previ-

ous section to SSCM to allow speculative code motion. Like the
SCM, SSCM consists of the following four steps:
(1) Application of LCM,
(2) Computation of a safe moving point,
(3) Computation of down-safety closure and down-safety re-

gion, and
(4) Determination of a sparse insertion point.

Steps (1), (3), and (4) are similar to the SCM; we omit their

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

explanation in this section but present step (2) in detail.
5.2.1 Computation of a Safe Moving Point

In SSCM, the dataflow equations shown in Fig. 5 of the SCM
are changed to ones in Fig. 6. As shown in Fig. 6, Eq. (2) in
Fig. 6 (a) is added to the equations of down-safety in Fig. 5 (a),
where the other equations are the same as ones in the SCM. Equa-
tion (2) in Fig. 6 (a) is computed when B ends with a divergent
branch instruction. In this case, if B is partially anticipated at
the exit insertion point, it is regarded as a down-safe node. In
other words, if branch divergence occurs, statements included in
the true and false sides of the branch are executed. Thus, specula-
tively hoisting expression before the branch does not decrease ex-
ecution efficiency, which means that an expression can be safely
hoisted out of the branch. In SCM, regardless of the branch di-
vergence, a node that is partially anticipated at the exit insertion
point is not down-safe. That is, the SSCM considers a larger
down-safety region than the SCM does. Particularly, this prop-
erty enables the SSCM to achieve more sparse code motion than
the SCM.

Also, for a non-divergent branch, the SSCM applies the same
equation as one in the SCM, as shown in Fig. 6 (a) (3), which does
not perform speculative code motion that may decrease the exe-
cution efficiency. The extension also contributes to the selective

Fig. 6 Dataflow equations for SSCM.

Fig. 7 Effects of speculative sparse code motion.

application of SSCM and SCM depending on the occurrence of
branch divergence.

Example. Fig. 7 (a) shows the CFG in which the shaded nodes
cause branch divergence. Consider the application of SSCM to
the CFG. First, the application of LCM results in the CFG shown
in Fig. 7 (b). Then, computing the dataflow equations in Fig. 6,
XdSafe at node 4 becomes true through Fig. 6 (a) (2) because
node 4 is a divergent branch. Once XdSafe becomes true, which
means the exit insertion point at node 4 is down-safe, the entry
insertion points of nodes 2 and 6 also become down-safe by com-
puting the XdSafe, so that the exit insertion point at node 1 be-
comes down-safe though node 1 is non-divergent branch. Second,
we find the down-safety region for the CFG in Fig. 7 (b), which
consists of nodes 1, 2, 3, 4, 6, 7, and 8. Exploring the sparse in-
sertion point of an expression in the down-safety region, we find
node 1 as the insertion point. Finally, we obtain the CFG shown
in Fig. 7 (c) by inserting an expression in node 1 and removing
expressions in nodes 3, 7, and 8 from the CFG in Fig. 7 (b). Com-
paring the number of occurrences of the expression in Fig. 7 (b)
with Fig. 7 (c), we find that the number decreases from three to
one. Moving a+b at node 3 in Fig. 7 (b) before the branch at node
4 is a speculative code motion that introduces new computations
on the execution path 1 → 2 → 4 → 5 → 10. In the PRE and
SCM, such speculative code motion is not allowed. Furthermore,
because branch divergence also occurs at the branch at node 6,
both expressions at nodes 7 and 8 in Fig. 7 (b) are executed in or-
der. The SSCM hoists such expressions out of the branch with
them, as well as SCM, shown in Fig. 7 (c), which directly con-
tributes to reducing branch divergence. �

Although we do not discuss the termination of this algorithm,
the SCM and our extended version, SSCM, have monotonicity of
the dataflow analysis [13], which guarantees that a solver of the
dataflow analysis terminates.

6. Experiments

To evaluate the effectiveness of our method, we conducted two
kinds of experiments: a comparison of execution efficiency for
the eight benchmarks and a comparison of execution efficiency
based on the number of threads. We used the open-source soft-
ware Ocelot CUDA compiler [9] for the experiments. The Ocelot

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

is a backend for PTX similar to GPU assembly code, and also
works as a PTX optimizer. Further, we used the divergence analy-
sis [3] implemented in Ocelot to identify divergent branches. The
description of an environment where we conducted the experi-
ments are as follows:
• OS: Ubuntu 16.04 LTS,
• CPU: Intel Core i7-4770K,
• GPU: Geforce GTX TITAN Black, and
• CUDA Toolkit 5.0.

6.1 Experiment A
In the experiment, we implemented the proposed SSCM

method and the traditional methods, with which we compared
the execution time of object code for the eight benchmarks. The
benchmarks are two programs (barnshut, knn) of Treelogy bench-
mark [5], one program (cfd) of Rodinia benchmark [6], two pro-
grams (FDTD3D, eigenvalues) of Nvidia SDK Sample code, and
two programs (histo, mri-q) of Parboil benchmark [7]. Moreover,
we measured two kernel functions for eigenvalues.

First, we applied these methods to the PTX code obtained
by the Nvidia CUDA compiler, nvcc, with optimization option
O3. Figure 8 shows the results of the experiment. In that fig-
ure, O3 represents the execution time of object code generated
from the benchmarks with nvcc using the optimization option
O3, where O3 is used as a baseline in the evaluation. The LCM,
SCM, SPRE, and SSCM represent the execution time when ap-
plying LCM, SCM, speculative PRE, and SSCM, respectively, to
PTX generated by nvcc with O3. Each result is shown as the
ratio of each execution time for O3. As shown in Fig. 8, our
method achieved more efficient execution than O3, LCM, SCM,
and SPRE for six programs: barnshut, knn, cfd, FDTD3D, eigen-
values(MultiIntervals), and histo. In particular, we improved
by 8.07% with FDTD3D. For the programs of barnshut, knn,
FDTD3D, and eigenvalues(MultiIntervals), our method performs
speculative code motion that is never performed by the LCM or
SCM at divergent branches. Therefore, it could decrease the static
number of expressions more in addition to suppressing branch di-
vergence, which contributes to execution efficiency. For the pro-
gram of cfd, all the methods of LCM, SCM, SPRE, and SSCM

improved the execution efficiency by removing redundant expres-
sions. Also, comparing SPRE with SSCM, they have almost the
same effect for the programs of barnshut, knn, cfd, histo, and mri-

Fig. 8 Experiment A: comparison of execution speed.

q. However, for the FDTD3D program, the execution efficiency
of SPRE is lower than the one of SSCM. The SPRE performed
speculative code motion without considering the occurrences of
divergent branches. Besides, our method can improve the execu-
tion efficiency by performing speculative code motion for diver-
gent branches. For the program of histo, the execution efficiency
decreased when applying the LCM, especially. This is due to the
increase of branch divergence by inserting expressions into the di-
vergent branches. However, SCM, SPRE, and SSCM improve the
efficiency of histo by hoisting an expression before the branches.

Although our method improved the execution efficiency of the
above mentioned six programs, it was not able to improve that of
eigenvalues(bisectKernelLarge) and mri-q. The SSCM performs
code motion based on the results of divergence analysis, which
determines each branch that causes branch divergence in uncon-
servative [3]. Therefore, our method might perform speculative
code motion for branches that do not cause branch divergence to
decrease the execution efficiency.

6.2 Experiment B
In this experiment, we compared the improvement in execu-

tion efficiency by changing the number of blocks and the number
of threads. In GPU program, as the number of threads per block
increases, the number of registers that can be used by one thread
decreases. Because the method with code motion tends to ex-
tend the lifetime of variables and increase register pressure, this
experiment is important to know the effect of the method with
code motion on GPU. We used the sample program, MCML
(Monte Carlo Modeling of Light Transport in Multi-Layered Tis-
sues) [10], which is relatively less tuned than the benchmarks
used in Experiment A. We applied our method to the PTX code
obtained by using nvcc with the optimization option O3 to the
sample program and compared the execution efficiency of them
for setting the number of blocks in starting the kernel function to
1, 30, 60, 120, and 240, and setting the number of threads to 32,
64, 128, 192, and 256.

Figure 9 shows the results of the experiment. The execution
efficiency decreased when the number of blocks was 30 and the
number of threads was 128 and 192, when the number of blocks
was 60 and the number of threads was 32, and when the number
of blocks was 120 and the number of threads was 32. The de-
crease in execution efficiency was up to 8.9%. However, in other
cases, the efficiency was improved. In particular, we obtained

Fig. 9 Experiment B: comparison of execution speed.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

66.4% improvement when the number of blocks was 240, and the
number of threads was 128. The reason why execution efficiency
decreased is that some register spilled over because of the lack of
register resources shared by threads in one block. Then, the rea-
son why the efficiency increased is that the efficiency improved
by applying our method and suppressing branch divergence ex-
ceeded the efficiency decreased by the lack of register resources.

7. Related Works

The Branch Fusion [3] reduces the computational cost of a di-
vergent branch by combining computations with the same opera-
tor in the true and false sides of the branch into a single instruc-
tion. However, this method may need to insert new branches and
select instructions. The number of the insertions depends on the
instruction order in the original branch. Even though there are
many expressions with the same operator at the branch, it may
be necessary to insert many branches for sequences of expres-
sions. However, since our method hoists expressions with the
same operator and operands before a divergent branch, as a sin-
gle expression, combining it with the branch fusion may suppress
more branch divergence than the branch fusion.

The iteration delaying method [8] is applied to the divergent
branch within a loop. In each iteration of the loop, the method
delays some statements such that they can be executed together
with other unexecuted statements on the same side in subsequent
iterations. It enables more threads to execute in parallel so that
it can suppress branch divergence, and improve execution effi-
ciency. Then, because our method can be applied with the itera-
tion delaying, it is possible to suppress more branch divergence.

Furthermore, the branch distribution method [8] hoists the
computations with the same operator in a divergent branch as
a single computation out of the branch. When the distribution
finds the computation with the same operator in a branch, it in-
serts a new branch with the same condition as the original branch
and then moves the target computations out of the branch. If
the operands of the target computations are different, it is nec-
essary to introduce temporary variables to retain the suitable val-
ues. Thus, the branch distribution may insert many new branches;
therefore, it is effective only when the effectiveness of hoisting
instructions out of a branch is greater than the cost of the in-
serted branches and the concentration of hoisted instructions to
one place. Applying our method before the branch distribution,
it suppresses the insertions of branches for branch distribution by
hoisting expressions with the same operator and operand to over-
come additional branch divergence.

8. Conclusions

In this paper, we presented an SSCM method to suppress
branch divergence by decreasing the static number of expressions
without decreasing execution efficiency. Moreover, our method
can selectively apply SCM, i.e., a kind of PRE decreasing the
static number of expressions and SSCM, i.e., SCM with spec-
ulative motion, to the programs with both of non-divergent and
divergent branches. We implemented our method and traditional
approaches with code motion, and conducted experiments with
them. The results show that our method can improve the perfor-

mance of the programs with branch divergence. However, be-
cause our method uses the result of the static divergence analysis,
it may apply speculative motion to non-divergent branches. In
the future, we hope to perform selective application based on dy-
namic checking of branch divergence to address the same issue.

References

[1] Rüthing, O., Knoop, J. and Steffen, B.: Sparse Code Motion, Proc.
27th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages (POPL 2000), pp.170–183, ACM (2000).

[2] Knoop, J., Rüthing, O. and Steffen, B.: Lazy Code Motion, Proc. ACM
SIGPLAN 1992 Conference on Programming Language Design and
Implementation (PLDI 1992), pp.224–234, ACM (1992).

[3] Coutinho, B., Sampaio, D., Pereira, M.Q.F. and Meira, Jr., W.: Di-
vergence Analysis and Optimizations, Proc. 2011 International Con-
ference on Parallel Architectures and Compilation Techniques (PACT
2011), pp.320–329, IEEE (2011).

[4] Nakata, I.: Compiler Construction and Optimization, Asakura Pub-
lishing Co., Ltd. (1999).

[5] Hegde, N., Liu, J., Sundararajah, K. and Kulkarni, M.: Treelogy: A
Benchmark Suite for Tree Traversals, Proc. IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS
2017), pp.227–238, IEEE (2017).

[6] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, W.J., Lee, S. and
Skadron, K.: Rodinia: A Benchmark Suite for Heterogeneous Com-
puting, Proc. IEEE International Symposium on Workload Character-
ization (IISWC 2009), pp.44–54, IEEE (2009).

[7] Stratton, A.J., Rodrigues, C., Sung, I., Obeid, N., Chang, L., Anssari,
N., Liu, D.G. and Hwu, W.W.: Parboil: A REvised Benchmark
Suite for Scientific and Commercial Throughput Computing, IMPACT
Technical Report, IMPACT-12-01, University of Illinois, at Urbana-
Champaign, March 2012, available from 〈http://impact.crhc.illinois.
edu/parboil/parboil.aspx〉.

[8] Han, D.T. and Abdelrahman, S.T.: Reducing Branch Divergence in
GPU Programs, Proc. 4th Workshop on General Purpose Processing
on Graphics Processing Units (GPGPU-4), pp.1–8, ACM (2011).

[9] Diamos, G., Kerr, A., Yalamanchili, S. and Clark, N.: Ocelot: A
Dynamic Optimization Framework for Bulk-Synchronous Applica-
tions in Heterogeneous Systems, Proc. 19th International Conference
on Parallel Architectures and Compilation Techniques (PACT 2010),
pp.353–364, ACM (2010).

[10] Ito, T.: Introduction to GPU Programming, Implementation by
CUDA5, Kodansha Ltd. (2013).

[11] Cai, Q. and Xue, J.: Optimal and Efficient Speculation-Based Par-
tial Redundancy Elimination, Proc. International Symposium on Code
Generation and Optimization (CGO 2003), pp.91–102, IEEE (2003).

[12] Gupta, R., Berson, A.D. and Fang, Z.J.: Path Profile Guided Partial
Redundancy Elimination Using Speculation, Proc. 1998 International
Conference on Computer Languages (ICCL 1998) (1998).

[13] Aho, V.A., Lam, S.M., Sethi, R. and Ullman, D.J.: Compilers: Prin-
ciples, Techniques and Tools, Addison Wesley (1986).

Junji Fukuhara received his B.S. degree
from Tokyo University of Science in
2018. He is currently in the second year
of the master’s course at Tokyo University
of Science.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Munehiro Takimoto is a professor in the
Department of Information Sciences from
Tokyo University of Science. His research
interests include theory and practice of
programming languages, and the various
things derived from them, which include
mobile agent systems and their applica-
tions. He received his Ph.D., M.S., and

B.A. in Engineering from Keio University. He is a member of
ACM, IEEE Computer Society, IPSJ, JSSST, and IEICE.

c© 2020 Information Processing Society of Japan

