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Abstract: Since 2010, in-memory cluster computing platform has been increasingly used in firms and research insti-
tutions to analyze large amounts of datasets within a short amount of time. In these methods, unexpected errors cause
the load to exceed the assumption for computer infrastructures such as a monitoring system, owing to the execution of
multithreading, assigning divided datasets to multiple nodes, and storing them in in-memory spaces. In this research,
we propose a method that notifies administrators with only information needed to understand the situation in a short
period by eliminating duplications of numerous application error logs for that period and clustering messages using an
unsupervised learning k-means method with an in-memory cluster computing framework “Apache Spark.” By imple-
menting this method, we can demonstrate that it is possible to eliminate duplications of error messages by 93% on an
average compared with conventional methods. Further, we can extract significant messages from the application error
messages and notify the administrators in an average of 4.2 min from the time of occurrence of the error.
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1. Introduction

Since 2010, companies have increasingly been analyzing large
numbers of collected datasets statistically and utilizing them
in order to implement behavioral targeting advertisements and
biometoric recognition with fourth-generation mobile network
technologies. Research institutions also utilize such analysis in
tandem with high performance computer (HPC) to perform sim-
ulations for drug discovery or to predict climate changes. And
these data often have the property of streaming data generated
continuously. To bring these to fruition, the following functional
programming model such as MapReduce [1] in 2004 is widely
used. (1) Divide the dataset consisting of key-value pairs into a
predetermined number and pass over to a worker node composed
of multiple computers starting with. (2) Perform processes such
as totaling on the worker node and save the intermediate results
on the local disk of the computer (Map Task). (3) List the pro-
cess results of (2) in the master node, and save it to the file as
persistent data (Reduce Task) [2].

By adopting such methods, enterprises and research institu-
tions can easily construct large-scale clusters on general-purpose
computers and process large numbers of datasets. Further, en-
gineers can easily implement a parallel/distributed information
system as the framework has abstracted functions that originally
require considerable effort in design such as parallel processing,
fault tolerance, data distribution, and load balancing. Further-
more, Spark in 2014 achieved higher performance and latency by
basing the MapReduce model and using the resilient distributed
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datasets (RDD) collection that share data in the memory across
clusters [3]. During the execution of such cluster computing, the
total number of threads is simply represented by the expression
(1), as multithreading is performed using multiple nodes.

TotalThreadCount = NodeCountPerCluster

∗ThreadCountPerNode (1)

NodeCountPerCluster indicates the number of nodes that make
up the cluster and ThreadCountPerNode indicates the number of
threads executed on one node.

While multiple threads can achieve high throughput by refer-
ring low-latency in-memory data, numerous error logs will be
output as files owing to programming errors or input data that
was not anticipated by the designer, and the following problems
may occur.
• Notification to the administrator is delayed as the error log

reading of the monitoring system stagnates.
• It becomes difficult for administrators to analyze error logs

in a short time.
• Conventional incident management methods can’t be ap-

plied because errors and incidents simply do not link one
on one.

Accordingly, we poropose the methods that enables the infor-
mation system administrater to understand the failure situation in
a short time through summary of redundant error messages and
notification in time according to the user’s service level.

This method resolves the operational problems in the in-
memory cluster computing in the following steps.
( 1 ) Collect the error messages output by the worker node, for-

mat the collected message, and deduplicate these messages
to obtain only the necessary messages. The monitoring sys-
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tem refers to these deduplicated messages, thereby reducing
the load.

( 2 ) For messages that cannot be deduplicated, convert the mes-
sage string to a feature vector using the TF-IDF algorithm,
and then perform clustering using an unsupervised learning
k-means algorithm. Among the grouped messages, those
nearest to the centroid of the cluster are defined as repre-
sentative values and extracted.

( 3 ) Send EMail notification to the administrator after adding up
the messages dedpulicated in ( 1 ) and messages extracted in
( 2 ).

These methods can be implemented in a short time using in-
memory computing Spark application and these implementation
assumes general purpose use case.

For the evaluation, we deployed the Spark application that im-
plemented the proposed methods in Amazon Elastic MapReduce
and compared it with conventional methods. As a result, it was
verified that it is possible to achieve the deduplication of 93.2%
on average for the output error messages, and only representative
messages including deduplicated messages can be notified to the
administrator in an average of 4.2 min after the error messages
are output to the files. Although this research is focused on ap-
plication error log including applicaiton framwork error log on
in-memory cluster computing environment, these method can be
applied for various types of logs with pre-defined format such as
OS log, database log and hardware log.

2. Relevant Study

2.1 Error Detection
Research has been conducted on methods to efficiently detect

errors in large-scale systems in conjunction with American su-
per computer projects. Iyer et al. [4] sequentially grouped error
logs into time series, mutual correlation, and repeated patterns in
a multiprocessor system environment of IBM in a statistical way
in 1990, and proposed a method to isolate grouped error logs into
temporary signs or ongoing signs, and then ongoing signs into
single or multiple signs.

Zheng et al. [5] categorized hardware error events such as
Cache Failure and DDR Register Failure in the supercomputer
environment of Cray XT 4 and IBM Blue Gene/ L, and devised a
method that extracts errors occurring at the same time and defines
them as the same cause, after excluding the redundancy of similar
errors that occurred in different places.

Gurumdimma et al. [6] created a matrix of message types and
window times in the IBM Blue Gene/L environment in the same
way as Zheng et al., and tried to improve the error detection effi-
ciency in a large-scale parallel/distributed system by deriving an
approximation between message sequences, based on the Jensen-
Shannon divergence algorithm.

2.2 Streaming Data Process
Research on methods to process large-scale data generated

continuously have been mainly conducted by the enterprises that
actually have to process massive data. Toshniwal et al. [7] pro-
posed Storm as a tool for aggregating and analyzing Tweets that
are massively and continuously generated on Twitter platform.

Storm achieves fault-tolerant streaming data process by express-
ing the data source as Spouts and process as Bolts and execut-
ing Spouts and Bolts in parallel on the Directed Acyclic Graph
(DAG) topology across the worker nodes in the cluster.

Meanwhile, Xin et al. [8] also executed SQL queries on Spark’s
in-memory storage RDDs that were also designed on the DAG
topology, and improved the latency of data extraction, which
has been regarded as a trade-off of data distribution in the con-
ventional MapReduce. This research facilitated data extrac-
tion/processing during the streaming data process.

Armbrust et al. [9] developed relational database queries
and high-performance SQL code generation engines in Spark’s
streaming data process using high-level API structured streaming,
and expanded the range of applications to business applications of
the streaming data process executed on the DAG topology.

2.3 Message Categorization
Research on message categorization can be considered from

two stages: information retrieval and clustering of retrieved data.
Regarding information retrieval, TF-IDF is widely used as an al-
gorithm for evaluating the importance of words in corpus docu-
ments, but in data streams, there are problems that it is not possi-
ble to define knowledge of static document collections and avail-
able memory size is smaller than the size of data stream. Erra
et al. [10] proposed Approximate TF-IDF method based on Sort-
based Frequent Items algorithm [11] which finds an approximate
solution from preset memory size in continuous data stream to
solve these problems.

k-means is prevalent as clustering algorithm for message cate-
gorization. Meng et al. [12] developed machine learning library:
MLlib on Apache Spark which includes k-means method to clus-
ter large-scale data. MLib on Spark could be used integrated with
other Spark APIs to operate large-scale data such as Spark SQL.

Svyatkovskiy et al. [13] provided analysis workflow to detect
policy diffusion of legislative proposals in the United States on
Spark ML. On this research, they proposed k-means as a method
to categorize each vectors which was converted using TF-IDF
method from the raw text for the purpose of estimating the similar
diffusion topics.

3. Problems of Current Methods

3.1 Problems of Error Detection
As the problem of current error detection, the trade-off relation-

ship between immediacy and message extraction that administra-
tor can understand is thought as a theme to be solved. The error
message in the information system is immediately notified to ad-
ministrators via the monitoring tool after the file output. Admin-
istrators scrutinize the notified messages and isolate the incidents
in a short period of time whether they should ignore messages
owing to assess these messages don’t affect service continuity or
require any urgent actions.

Meanwhile, in the case of a system that clustered by a plurality
of nodes and executed by multithreading per node, a large num-
ber of error messages are issued when an error of the same cause
such as incorrect input data occurs. In that case, the administrator
that receives a large amount of messages through the monitoring

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

tool need to spend much time and workload to isolate the inci-
dent. Also, the approach of extracting messages that administra-
tor can understand from a large number of error messages based
on statistical rules such as Jensen-Shannon divergence algorithm
does not conform to error detection required urgency because it is
necessary to analyze error messages for a fixed time. Therefore,
there is a need for a solution that analyzes a large number of er-
ror messages at short time intervals and notifies the administrator
immediately.

3.2 Problems of Streaming Data Process
Regarding operation of streaming data process on the par-

allel/distributed system, aggregation of logs that are output on
each node is considered as a major issues. Clustered system con-
sists of a plurality of nodes, so output logs on each node need to
aggregate to single data storage for analysis. At same time, out-
put logs on streaming data process need to be delivered through
same kind of streaming data process tool in order to suppress re-
tency of log processing. Once output logs have to be persisted
in local disk on each node for troubleshooting, these logs are also
collected to single data storage through data collection tool imme-
diately. Although there are log collection tools like FluentD [14]
or Kafka [15], log collection platform connected these tools each
other asynchronously need to be designed.

3.3 Problems of Message Categorization
There are two problems of message categorization in error de-

tection. First is the number of clusters set in advance that catego-
rize error messages according to the type of message. The cluster
number depends on number of triggers for message output be-
cause administrator that responds to failures have to reach their
cause. These cluster number need to define based on some rules
or machine learning methods.

Second is the message to notify administrator that is extracted
from clustered messages. Clustered messages have different
properties depending on the distance from the centroid of clus-
ter. Messages need to be extracted randomly or based on some
rules from each cluster according to actual use case.

4. Proposed Method

4.1 Proposal
The proposed method solves the following problems regarding

in-memory cluster computing.
( 1 ) A large amount of error messages are output to local disk at

application failure in a short time, so monitoring tool can’t
read these messages.

( 2 ) It is difficult for administrators to isolate failures from a large
amount of error messages in a short period.

( 3 ) Architecture design in applicaiton log management of in-
memory cluster computing system isn’t clarified generally.

This proposed method will de-duplicate the error messages
output to storage to the extent that they don’t load the monitor-
ing tool, and summarize the deduplicated messages and notify
the administrator in a short time to analyze failures. At the same
time, this proposal present system design to manage applicaiton
log in in-memory cluster computing system.

4.2 System Design
The proposed method collects several messages that are simul-

taneously output to files from multiple nodes in a cluster com-
puting environment that executes the process by referring to in-
memory data, and extracts and notifies the representative error
messages after deduplicating the redundant error messages and
clustering messages.

To deduplicate error messages, a label is given to the error mes-
sage string and an aggregate query is executed based on the la-
bel key information. Further, the clustering of error messages
is performed using the k-means algorithm after converting mes-
sages into a feature vector using the TF-IDF algorithm in units
of windows (tabulation frames), and the message located at the
Euclidean distance nearest to the centroid of the cluster is defined
as the representative value, and then extracted and notification is
sent via EMail. The relationship between functions in the pro-
posed method and in the external system is summarized in the
sequence diagram in Fig. 1.

Log Collector collects error meseages from each node on clus-
ter and sends their messages to Log Processor. Log Processor

pools streaming error messages on pub/sub message queue. Log

Deduplicator subscribs error messages from Log Processor and
deduplicate their messages. Deduplicated messages are stored on
Amazon S3 as object storage. Log Marshaller picks out dudu-
plicated messages from Amazon S3 storage and summarize their
messages as representative values throuth TF-IDF and k-means
clustering method. Summarized messages instantly notify ad-
ministrator by EMail using Amazon SNS service. The above is a
series of flows of this proposal.

Only Log Collector runs on the application server that outputs
logs in a production environment. All functions except for Log

Collector run on another servers. Since Log Collector is FluentD
developed on the assumption that it is executed concurrently with
the application server, this system has very little impact on the re-
sources of the collocated application that outputs logs. Although
this architecture is designed on the premise of a cloud platform
and will be verified on a cloud platform, it is possible to applly
for on-premise platform used similar open source architectures.

4.3 Message Deduplication
4.3.1 Labeling and Data Collection

Labels are given to error messages that are converted and out-
put according to a certain rule by Log Collector as shown in Ta-
ble 1 when the error messages are collected to deduplicate error
messages using aggregate queries.

Here, a delimiter was used when labeling a blank character
string in the message sequence. Data are collected using FluentD
as Log Collector, and then streamed to the Kafka message queue
of Log Processor in JSON format, after assigning labels to mul-
tiple log lines using FluentD’s Multiline Parser Plugin.
4.3.2 Message Deduplication

For the deduplication of messages, we use Spark Streaming
to acquire error messages in JSON format from Kafka message
queue of Log Processor in a 2-minute cycle and perform aggre-
gation and deduplication on Log Deduplicator. As shown in Al-
gorithm 1, error messages from the Kafka message queue are ob-
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Fig. 1 Sequence diagram.

Table 1 Message label.

Label Message Sequence
Date Time 18/03/09 14:58:52
Level ERROR
Thread ID Streaming$:

Message Body EXP-E000001 “Tweet word is too long”
Stack Trace 1 jp.ac.keio.sdm.ConcurrentLogControl.WordLengthException:
Stack Trace 2 at jp.ac.keio.sdm.ConcurrentLogControl.Streaming$$anonfun$4.apply(Streaming.scala:51)

Stack Trace 3 at jp.ac.keio.sdm.ConcurrentLogControl.Streaming$$anonfun$4.apply(Streaming.scala:27)

Stack Trace 4 at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)

Stack Trace 5 at scala.collection.Iterator$$anon$11.next(Iterator.scala:409)

Stack Trace 6 at org.apache.spark.util.collection.ExternalSorter.insertAll(ExternalSorter.scala:194)

Stack Trace 7 at org.apache.spark.shuffle.sort.SortShuffleWriter.write(SortShuffleWriter.scala:63)

Stack Trace 8 at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)

Stack Trace 9 at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:47)

Stack Trace 10 at org.apache.spark.scheduler.Task.run(Task.scala:86)

Stack Trace 11 at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:274)

Stack Trace 12 at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)

Stack Trace 13 at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)

Stack Trace 14 at java.lang.Thread.run(Thread.java:745)

tained as streaming data in step 2, and then error messages are
aggregated/dedpulicated using Spark SQL after converting the
streaming data to Spark Dataframe for each RDD function af-
ter step 3. Input data is interpreted as structured data consisting
of rows and columns on Spark Dataframe. The error messages
deduplicated in step 8 are output to Amazon S3 storage in Par-
quet format.

On the contrary, all error messages before deduplication are
also output to Amazon S3 storage at the same time into text file
format for archiving. Because messages before deduplication are
needed as an applicataion trail.

4.4 Representative Value Extraction
Execute Log Marshaller as a Spark application to read the

Parquet file from Amazon S3 storage and convert it to Spark
Dataframe. Next, perform extraction process according to the
number of cases as follows, and notify the results to the adminis-

trator.
( 1 ) If duplicated error messages are greater than two items, ex-

tract all deduplicated messages
( 2 ) In case of an error message without duplication, perform

clustering and extract only representative messages
4.4.1 Extraction of Duplicate Error Messages

Extract errors greater than two items using the filter method of
Spark Dataframe. Then, combine the Dataframe string of error
message that was first output to the file with the extracted mes-
sage using Spark SQL, and extract the original message.
4.4.2 Extraction of Error Messages without Duplication

Perform clustering after converting the message character
strings excluding the error messages extracted in Section 4.4.1 to
the feature vector, and extract only the error message at Euclidean
distance nearest to the centroid of cluster.
4.4.2.1 Feature Extraction

Convert the error message string to feature vector using the TF-
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Algorithm 1 Message Deduplication algorithm
1: function main
2: ds← readKa f ka

3: ds. f oreachRDD(JsonRDD => {
4: d f ← readJsonRDD

5: if d f .count > 0 then
6: result ← d f .groupBy(

level

, thread id

, stack trace 1
, stack trace 2
, stack trace 3
, stack trace 4
, stack trace 5
, stack trace 6
, stack trace 7
, stack trace 8
, stack trace 9
, stack trace 10
, stack trace 11
, stack trace 12
, stack trace 13).agg(min(Message))

7: end if
8: result.write(S 3FileDirectory)
9: end function

IDF library of SparkML. The number of feature dimensionality
is set to 10,000 against the default value of 262,144 in Spark’s
TF-IDF library. This setting is based on the assumption that only
messages that could not be deduplicated are subject to clustering,
and that many character strings are repeatedly output in the log
characteristics. The expressions are shown in Eqs. (2) and (3).

IDF(t, d) = log
|D| + 1

DF(t,D) + 1
(2)

Document Frequency (DF) represents the number of docu-
ments d including words t. The DF value increases as words
with less information such as “the” and “of” frequently appear in
corpus D. Dividing DF from the total number of documents |D|
in the corpus in inverse document frequency (IDF) is interpreted
as having special information in certain documents for words that
do not appear frequently in the corpus. The value increases as
long as the word is interpreted as special.

T FIDF(t, d,D) = T F(t, d) ∗ IDF(t,D) (3)

Term Frequency (TF) represents the number of word t appear-
ing in document d. T FIDF(t, d,D) is obtained by multiplication
of T F and IDF, and the importance of a word appearing in a
document in the corpus can be indicated by a feature.
4.4.2.2 Clustering Method

Clustering is performed for error messages converted to the
feature vector of TF-IDF using Spark ML unsupervised learning
k-means method library. The equation for determining the cen-
troid of each cluster is shown below.

C(i) := arg min
j
||x(i) − µ j||2 (4)

Fig. 2 Within set sum of squared error.

||x(i) − µ j|| represents the Euclidean distance between each data
point x(i) and the arbitrarily allotted cluster centroid µ j, and the
process is repeated until the cluster centroid C(i) with the shortest
distance is allocated to each data point. The Spark ML library
performs the initialization process to optimize the allocation of
cluster centroid µ j and uses the k-means|| algorithm to speed up
the initialization process when processing large-scale data, as the
centroid of the first cluster depends on the arbitrary allocation
in this algorithm [16]. The clustering image is shown in Fig. 3.
Vertical and horizontal axis in the Figure mean a measure of the
distance between each data point. Each error message converted
into a feature vector is plotted as a data point and grouped based
on the Euclidean distance from the centroid, which is the number
of the predetermined cluster size k.
4.4.2.3 K Size

In evaluating the k size, the Within Set Sum of Squared Errors
(WSSSE) was computed using input data. WSSSE is the sum of
the square error of the set of input vectors and the centroid of the
cluster to which it belongs. The value of WSSSE has the nature
decreasing as the value of k increases. The number of clusters
where the decrease in WSSSE converges is the optimal k. Con-
vergence point is expressed as “elbow”.

The k size was designed by multiplying the number of dedupli-
cated messages in Section 4.3.2 by a factor. Because the number
of output error messages changes dynamically according to the
failure status. It was assumed that the number of deduplicated
messages was proportional to the volume of output messages.

Figure 2 shows the results of calculating WSSSE using three
different batch data that were deduplicated. The transition was
shown by multiplying the number of each message by a factor,
but a convergence point enough to be seen as an “elbow” could
not be found. On the other hand, in the range of “N * 0.75” to
“N * 1” of the 1st evaluation, it seems that it is more convergent
than other ranges, Therefore, in this method, the value multiply-
ing the number of deduplicated messages by 0.75 is defined as
the dynamic k size.
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Fig. 3 Message clustering.

Algorithm 2 Representative Extraction algorithm
1: procedure main
2: centroids← model.clusterCenters

3: distance← d f .withColumn(”square distance”)
,CalDistance(col(”prediction”)
, col( f eatures))).distinct()

4: nearestdistance← distance

.groupBy(”prediction”)

.agg(min(”square distance”))

5: for i← 0, ksize − 1 do
6: if nearestdistance.groupBy(”prediction”).count()

. f ilter( f inalData(”prediction”) = i) � 0 then
7: messages← nearestdistance

. f ilter(nearestdistance(”prediction”) = i)

.select(”messages”). f irst()
8: end if
9: end for

10: function CalDistance(cluster, datapoint)
11: return Vectors.sqdist(centroids(cluster), datapoint)
12: end function
13: end procedure

4.4.2.4 Extraction of Representative Value
The Euclidean distance is obtained from each clustered error

message and centroid of cluster, and the feature vector of the
shortest error message is extracted as a representative value. The
original error message is extracted corresponding to the feature
vector of the extracted error message from Spark Dataframe.

As shown in Algorithm 2, the centroid of each cluster and
the Euclidean distance between each message are calculated by
the CalDistance method of step 3, and retained as a Dataframe
string. In step 4, Spark SQL is used to determine the message
with the shortest distance for each cluster, and the message body
with the shortest distance for each cluster is acquired from Spark
Dataframe in step 7.

In the machine learning use cases using the conventional k-
means algorithm, it was common to interpret the data point with
the longest distance from the centroid of cluster such as anomaly
detection in network traffic as an outlier [17]. However, here we

Fig. 4 Message extraction.

adopt a method of interpreting data with the shortest distance
from the centroid of a cluster as a representative value. An image
of acquiring representative value is shown in Fig. 4.

On the other hand, it is also possible that important messages
need to be extracted are not extracted in this representative value
extraction phase. Therefore, the message read by the monitoring
system needs to be set the message after deduplication in Sec-
tion 4.3 and the message before clustering in Section 4.4. By
having the monitoring system read the message after deduplica-
tion and the messages before clustering, all kinds of messages
can be finally notified to the administrator through the monitor-
ing system instead of taking operation time.
4.4.3 EMail Notification

Inquire the error message extracted in Sections 4.4.1 and 4.4.2,
call Amazon Simple Notification Service from Log Marshaller

with the error message as an argument and notify it to the EMail
address of the administrator. These messages are formatted in
advance for recipient visibility in this message merge process.

4.5 Expected Latency
Estimated breakdown time throughout the workflow is shown

in Fig. 5. Log Collector and Log Processor respectively takes
only several seconds to process log messages in sequential and be
influenced by computional and network overhead. Log Dedupli-

cator is a streaming process that acquires data from Kafka as Log

Processor. Therefore, Log Deduplicator is required to get stream
data on Log Processor at certain intervals and is designed to in-
voke every 2 minutes with Spark’s micro batch. Log Marshaller

is a batch process that acquires data as files from Amazon S3.
So, Log Marshaller is started every 2 minutes by Linux crontab
scheduler. Since start interval time of Log Deduplicator and Log

Marshaller depends on administrator’s requirement, we set to 2
minutes as provisional minimum value for batch process. No-

tification Service takes only several seconds to process message
strings in sequential and be influenced by computional and net-
work overhead. The entire workflow is designed with a latency
of just over 4 minutes from error occurrence to notification to the
administrator.
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Fig. 5 Expected latency.

Fig. 6 Expected extraction result.

5. Verification and Evaluation

5.1 Verification Method
5.1.1 Verification Data

For the evaluation, the Spark application which implemented
the proposed methods was deployed to Amazon Elastic MapRe-
duce. In addition, a Spark application Error Generator is created
to implement logic to output large number of error files in a short
time, and the following items are verified.
( 1 ) Error message deduplication rate
( 2 ) Accuracy of representative value extraction
( 3 ) Latency from when an error occurs until it is notified to the

administrator
“Error message deduplication rate” verifies effect to eliminate

redudancy of large number of error messages in units of windows
based on rules. “Accuracy of representative value extraction”
tests accuracy of retrieving only the required messages based on
machine learning method. “Latency from when an error occurs
until it is notified to the administrator” verifies whether this tools
output is notified to end user in short preriod. These items were
designed from the administrator’s perspective who isolate failures
in a short period of time.

For Error Generator, Spark Streaming is used to receive the

streaming data of tweets in Japanese from Twitter, and the fol-
lowing check is conducted for the tweet string, and an exception
is thrown explicitly. The type of exception that occurs depends
on the string of tweets, and there are also tweets that pass all the
checks.
( 1 ) Check exception based on the presence/absence of hash tag
( 2 ) Check exception due to Japanese character code
( 3 ) String length check exception
( 4 ) Check exception due to presence/absence of number
( 5 ) Runtime exception due to invalid index
( 6 ) Runtime exception due to invalid data type conversion

Error messages generated by Error Generator is transferred to
Log Processor in JSON format using FluentD as Log Collector

that is installed at each node and temporarily retained in Kafka’s
messaging queue.
5.1.2 Verification Method

Log Deduplicator uses Spark Streaming to acquire error mes-
sages from Log Processor at 2-minute intervals, performs dedu-
plication, and sends the results to Amazon S3 storage in Parquet
format. By doing so, data before deduplication are also simulta-
neously output to Amazon S3 storage, and the deduplication rate
is derived by comparing with the results after deduplication.

Log Marshaller extracts deduplicated results from Amazon S3
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storage and extracts error messages. In addition to extracting
three or more deduplicated error messages, error messages that
were not subject to deduplication are clustered and only repre-
sentative values are extracted. The extracted error message are
notified via EMail to the administrator from Log Marshaller via
Amazon SNS, and then the accuracy of representative value ex-
traction is confirmed by matching the notification contents with
the contents output from the Log Deduplicator.

The latency from the time when the errors occur to the time
when the administrator is notified is derived by subtracting the
time stamp of the file output to the local disk of Error Generator

from the time stamp of the EMail sent to the administrator.

5.2 Expected Value
Figure 6 shows the expected extracted result. No.1 to No.4 Ap-

plication Exceptions and No.5 and No.6 Runtime Exceptions are
expected to be deduplicated or extracted as representative values.

Fig. 7 Deduplication result.

Fig. 8 Extraction result.

In addition, No.7 and No.8 Application Framwork Errors when
jobs fail are deduplicated or extracted as representative values.
The number and type of error messages to be extracted depends
on the nature of each tweet message string that happen to be ac-
quired from Twitter used as input data. However, these messages
output to the file once needs to be notified to be deduplicated or
extracted as a representative value to administrator.

5.3 Verification Results
5.3.1 Deduplication Rate of Error Messages

In the experiment, we changed the number of threads of Error

Generator to 4, 8, 16 and observed the results of deduplication.
The results are shown in Fig. 7.

The graph is the average value of the result of executing Log

Deduplicator five times for each thread number. Increasing the
thread number from 4 to 8 will increase the number of output er-
ror messages by 38.8%, but if the thread number increases from
8 to 16, the “Total” number of output error messages remains un-
changed. This is due to the CPU performance limit of the Error

Generator node that generates the error. Meanwhile, expected
results are shown for the deduplication rate “Dedupe,” which is
92.5% for the thread number 4, 93.7% for the thread number 8,
and 93.3% for the thread number 16. These results indicate that
the method adequately reduces load on the monitoring system
that reads error messages.
5.3.2 Accuracy of representative value extraction

In the experiment, we changed the number of threads of Error

Generator to 4, 8, 16 and observed the results of deduplication.
The results are shown in Fig. 8.

698 error messages that are actually obtained as the output are
organized into 10 messages and extracted. Category D (Dupli-
cation) denotes the data deduplicated in Section 4.4.1, and cate-
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Fig. 9 Notification latency.

Fig. 10 Notification image.

gory R (Representative) denotes the data not deduplicated in Sec-
tion 4.4.1 but extracted as representative values after clustering.
Figure 8 presents the result of executing eight threads; however,
the data that were output in three or more messages were sim-
ply deduplicated in the error message with extraction category D.
Alternatively, category R error messages are not duplicated more
than twice and nonstandard error messages in an application are
ignored as noise. Instead, they are error messages explicitly gen-
erated in large quantities and extracted as representative values.

Comparing Fig. 8 with Fig. 6, it can be seen that seven of the
eight messages in Fig. 6 are extracted. The message No.1 in Fig. 6
was not actually output to the file since an error related to the
string length did not happen. Owing to these reasons, it can be
judged as a valid result.
5.3.3 Notification Time (Latency)

The error generated by executing Error Generator in Tokyo
node is sent to American Oregon Region of Amazon Web Ser-
vices, deduplication/abstraction processes are executed, and the
results are received by EMail in a smartphone in Japan. Figure 9
shows the latency from the occurrence of an error to the receipt

of the summary of errors by EMail.
The graph shows the average values of the results of executing

in each of the thread numbers for five times. The results show
that the EMail notification was sent 4.0 to 4.4 min after the error
occurrence. In the experiment, the average latency of 4.0 to 4.4
minutes is a reasonable result, because Log Deduplicator and Log

Marshaller are executed in 2-minutes cycles as seen in Fig. 5. La-
tency becomes lower as the thread number increases from 4 to 8
and from 8 to 16, but it depends on the periodic execution timing
of the Log Deduplicator and Log Marshaller jobs, and the correla-
tion between the thread number and latency cannot be perceived.
Moreover, the image of the actual notification results is shown
in Fig. 10. The details of error message are displayed following
the guidelines. It is also possible to send notification messages
via Short Message Service (SMS) in a manner similar to EMail
messages.

6. Conclusion and Upcoming Challenges

In this research, we proposed and verified methods to collect
streaming error messages in the in-memory cluster computing
environment and perform deduplication after labeling as a pre-
process. Clustering is performed for error messages that could
not be deduplicated after converting a message string to a feature,
extracting a representative value from that, and notifying the sum-
marized content to the administrator in a certain amount of time.
The following knowledge was obtained through verification.
( 1 ) As long as the log format is predetermined for error mes-

sages that are output in large quantities in an in-memory
cluster computing environment, over 90% of the messages
can be summarized and managed through the deduplication
process.

( 2 ) Representative value can be estimated by extracting error
messages in the shortest distance from the central axis in
each error message plotted by k-means clustering for man-
aging unexpected types and numbers of error messages.

( 3 ) Streaming process using in-memory cluster computing is ef-
fective in system design for managing error messages in in-
memory cluster computing environment.

The challenges in the future can be examined by dividing them
into clustering algorithms and verification data. Regarding clus-
tering algorithms, this research uses the k-means algorithm of un-
supervised learning of the Spark ML library; however, it is pre-
sumed that the accuracy in the extraction of representative value
can be improved by using supervised learning, creating models
based on training data in advance, and deploying the created data
on Spark cluster. It is also possible to improve the clustering
accuracy by reducing the dimensionality of the feature values ex-
tracted by TF-IDF.

Regarding the verification data, the exception that was gen-
erated continuously in a pseudo manner were logged and used
in this research; however, error messages in an in-memory clus-
ter computing environment operated by actual companies and re-
search institutions are more diverse. Although it can be consid-
ered that the effect of deduplication processing does not change
significantly if the error message is output in the format decided at
the time of logging beforehand, improvement is required by tun-
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ing the clustering algorithm in the production environment as it
depends on the type of the error message and size of the k-means
cluster during production.
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