
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Software Analytics for Manual Activities using Developer
Work Elements

Peraphon Sopahtsathit1,a)

Received: April 27, 2019, Accepted: January 16, 2020

Abstract: Software Engineering is a diverse and highly flexible discipline that can be practiced using a development
model of the developer’s choosing. Unfortunately, existing state-of-the-practice software engineering development
models do not take human effort into consideration since there are no applicable metrics to gauge the associated man-
ual activity. This study presents a novel discretization technique as a software analytic to estimate the manual effort
expended on software development process. The proposed technique classifies three manual activity domains, namely,
abstract, concrete, and unclassified. The units of classification are called Developer Work Elements (DevWE). The
sequence of DevWE denotes a development analytic in three visual aids, namely, symbolic flow map, operation chart,
and workload breakdown chart. These give rise to the determination of efforts expended which are measured by
COSMIC Function Point. The result can be combined with those traditional software measurable activities to yield
accurate total project effort estimation. Major contributions of this prospectus encompass (1) discretization DevWE
analytic for manual effort estimation, (2) visual chart aids for operation tracing, monitoring, improving, and control,
and (3) discovering that almost half of the estimation effort stems from manual activity.

Keywords: developer work elements, symbolic flow map, operation chart, workload breakdown chart, COSMIC
function point, manual activity

1. Introduction

Software development is one part of a lengthy, costly, and hu-
man intensive process, regardless of the underlying model be-
ing implemented, i.e., traditional waterfall, object-oriented, or
agile approach. These models require extensive human involve-
ment which makes them difficult to automate. Despite numer-
ous CASE tools for development assistance, manual activity is
still a prevalent part of the development effort. One cannot en-
tirely remove the human factor out of the project management
equation and fully automate the process using machine learning
technology. One compelling issue persists—effort estimation. In
principle, effort estimation method is an essential software pro-
cess to predict how much resources are required to complete
the project as accurately as possible. These estimation meth-
ods are, in many cases, model-based estimation that is confined
to model characteristics, nature of application coverage, assump-
tions, quantitative setting, etc. They might fit one project but fail
in another. Consequently, the predicted effort usually suffers from
error, model over/under-fitting, and other variations of wrong es-
timations.

Meanwhile, to reach an agreed-upon effort estimation out-
come, some forms of measurement must be established as base-
lines for estimation analytics. A common handle that character-
izes most estimation methods is the use of output or end-result
measures for effort estimation. Lines-of-code (LOC) [7], [8],

1 Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University, Phayathai Road Bangkok 10330, Thailand

a) sperahon@gmail.com

function point (FP), use case point (UCP) [26], object point
(OP) [4], and COSMIC function point (CFP) [1], [29], [35] are
a few popular process effort estimation analytics.

The motivation of this work stemmed from newly Computer
Science/Software Engineering graduates who are embarking on
their professional career in IT business and software industry.
They usually work with state-of-the-practice models and tech-
niques that mainly involve rewriting patched code to maintain ag-
ing software [32] or existing production applications. The main-
tenance process incorporated considerable manual activities such
as meeting with writers of the old code, users, project man-
ager, planning the new patches, adjustments, reviews, etc. Exist-
ing state-of-the-practice effort estimation models, methods, tools,
and on-going related researches have been attempted over the
years to reckon with accurate estimation. In fact, the sheer vol-
ume of a project involves many subjective and human-oriented
operations that are hard to quantify procedurally, and therefore
the project cost could not be accurately estimated.

Consider two practical maintenance change examples. How
long will it take to decide on choosing ‘Yes’ or ‘OK’ as the la-
bel for the accept button that would fit different users’ culture,
background, and familiarity? This could take as few as 5 min-
utes to discuss and reach the conclusion. On the contrary, a more
extensive change customization of web layout to fit individual lo-
cales might involve users from relevant cultures and ethnic back-
grounds to collaborate. This could take days or weeks to plan,
lookup/search, think/analyze, meeting/discussion, before arriving
at the final specifications. How do these two analyses account for
the effort spent? The answer is based on performance measure-

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 1 The four types of data movements in CFP [35].

ment which in this study will adopt data movements of COSMIC
Function Point (CFP) metrics [35] as illustrated in Fig. 1.

Both tasks require one entry (the problem), one read (problem
requirements), one write (the analysis result), one exit (conclu-
sion), and lots of discussions in between that cannot be taken
into account. The total data movements in terms of CFP for
both tasks are the same. Hence, these examples represent innu-
merable manual activities that are not straightforward enough to
measure the effort required. The first well-established standard
for discretizing manual operations is Method-Time Measurement
(MTM) [13] in Industrial Engineering. It is the time required to
perform a specific task depending on the method chosen for the
activity. The basic building blocks of all 18 manual motions or
Therbligs [15] are defined as shown in Fig. 2.

Therbligs came about after the industrial revolution in the 19th
century to automate factory systems. Today, manual operations
still persist in some factories. The need to measure performance
of these activities remain. For example, moving object X (small
enough to be picked up by fingers) from point A to B can be dis-
cretized as follows (all italicized terms are Therbligs definition):
move the empty hand (transport empty) toward point A where
object X is located—position above object at point A—pick up
(grasp) the object—hold the object—move the hand holding the
object toward point B (transport loaded)—position at point B—
put down object X (release load) for a total of seven operations.
In MTM, icons are used to represent the above motions in a vi-
sually succinct manual operation chart without the need for any
descriptions that are subject to confusion, ambiguity, or varia-
tions of interpretation. This research attempts to delve into such
human-oriented activity (the term will be used interchangeably
with manual activity, or manual operation) to create a measurable
set of iconic operations that represent human-oriented activities
called developer work elements or DevWE.

Major contributions of this study are: (1) discretization
DevWE analytic for manual effort estimation, (2) the visual three
charts serve as a tool for operation trace, monitor, improve, and
control, and (3) discovering that almost half of the estimation ef-
fort stems from manual activity. The prospectus also lends itself
to future automation if these DevWEs and the processes are rec-
ognized and standardized.

The remaining portion of this article is organized as follows.
Section 2 describes some related work to this research. Section 3
elucidates the basis, rationale, and configuration development of
the manual operations. Section 4 exhibits the experimental re-

Fig. 2 Definition of Therbligs [15].

sults of the proposed approach in comparison with the conven-
tional estimation approach. A few final thoughts and future work
are summarized in the Conclusion Section.

2. Related Work

There have been numerous research attempts to establish
project effort estimation, thereby project cost can be derived ac-
cordingly. Several well-established models have been practiced
such as SLIM model [33], COnstructive COst MOdel or CO-
COMO 81 [7], and COCOMO II [8], Walston-Felix model [36],
Bailey-Basili model [3], Albrecht-Gaffney model [2], Kemerer
empirical model [27], and Matson, Barrett and Mellichamp
model [28]. These models are supported by extensive research
that corroborate practical costing formula based on well-defined
software metrics, namely, lines of code (LOC), function point
(FP), use case point (UCP) [26], application point (AP) [8], and
their variants such as source lines of code (SLOC), delivered
source instructions (DSI), and unadjusted use case point (UUCP).
These forerunners set a common ground on many state-of-the-
practice software estimation techniques, ranging from effort mea-
surement techniques [16], effort/cost estimation techniques [9],
predictive models for effort/cost estimation [18], [31], and phase-
wise cost estimation [37], etc.

Perhaps one of the most systematic guidelines for estimation
methods was introduced by Briand et al. [10], who proposed a
straightforward and systematic classification schema for cost es-
timation methods, namely, model based and non-model based
methods. The former was further broken down into generic (pro-
prietary and not proprietary) and specific (data driven and com-
posite) methods. Further study on some definitions of the above
methods from references provided by Jorgensen et al. [24] found
that suitable estimating criteria would help decide what method
to choose. A few suggested methods summarized by Kalach [25]
were bottom-up, 3-point, parametric, and analogous estimates.
Billows [6] explained 3-point estimating which took risk factor
into account. Chung [14] provided some comparative bases for
analogous and parametric estimating methods such as similar

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 1 Comparison of bottom-up [17] and DevWE.

scope from past projects/activities and scaling. Despite their de-
pendence on historical data, analogous estimating is based on
‘analogy’, whereas parametric estimating relies on a unit cost of
historical data that can be scaled to give the estimation. Unfortu-
nately, these methods from past studies did not provide any esti-
mating schemes for manual activity.

Guerrera [17] elucidated bottom-up estimating in 5 steps,
namely, (1) identify all project tasks, (2) estimate them using
work breakdown structure (WBS), (3) identify task dependencies,
(4) identify the resources required to compute all tasks, and (5)
determine when resources were needed to complete these tasks.
These steps exhibited some resemblance to the MTM framework
that was adopted as the basis for the proposed DevWE develop-
ment.

The bottom-up method takes WBS artifacts to look for any
similar, applicable, or matching methods that subsume those ar-
tifacts. An estimate of each artifact is derived using some of the
above methods such as 3-point, analogous, or parametric. For
example, to compute the estimate of a story (which is a WBS ar-
tifact), the participating team members might use planning poker
scoring to vote, namely, 0, 1/2, 1, 2, 3, 5, 8, 13, 20, 40, 100, ?,
Break (details are omitted for brevity). The final estimate of each
story represents a working increment, when combined with other
working increments, make up the product backlog and eventu-
ally the project estimate. The philosophy of DevWE is simi-
lar. It starts from defining each manual activity using a succinct
and measurable element. Then applies some predetermined rat-
ing to determine the standard estimate. This standard estimate
is substituted into the DevWE activity breakdown. By assem-
bling all the DevWEs (by way of bottom-up integration), the final
estimate will represent a manual measurement of work. Simi-
lar parts of both processes lie in the use of estimating scheme
and bottom-up integration to obtain the final estimate. Nonethe-
less, the major difference is that current bottom-up methods do
not account for manual activity, whereas DevWE is pure manual

orientation. Since DevWEs are predefined and work with three
visual charts to assist the effort estimation process, the visibil-
ity and straightforward estimating computations make them less
complex, transparent, and repeatable by estimation method cri-
teria [10]. Table 1 summarizes the comparison between Guer-
reras’s bottom-up method [17] and the proposed DevWE.

A noteworthy observation from software development cost
studies [24] is the explicit treatment of manual activity in the
proposed DevWE. As exemplified earlier, this treatment could
render the manual activity to stand out as an observable process
that is manageable to achieving better estimating accuracy. This
is what makes the proposed DevWE analytics different from all
software project cost estimating methods.

The method of operation breakdown to discrete motion ele-
ments [34] are procedurally set up and carried out in the design
process with the help of Little-JIL [12]. Details will be described
in the sections that follow.

3. Fine-grained Developer Work Elements

This section will elucidate the problem statement, the proposed
model, the detailed breakdown of DevWe framework, the activity
trace, the analysis of performance assessment, and the application
to manual operation estimation.

3.1 Problem Statements
Suppose an estimated 1-day login story for an ordinary web

application took 2 programmers to do, given the wage of
$100/man-day. This login story would be counted as 2 man-days
and costed $200.
1. How does one obtain the 1 day estimation as the operating

time?
2. In addition to the determination of conventional develop-

ment effort such as LOC or FP count, are there any manual
activities performed for which have never been accounted?

What is important is not just being able to compute the sum of
effort estimation, but how the systematic procedure of the man-
ual process is broken down and enumerated. This study will di-
chotomize the manual and functional activities (described in Sec-
tion 3.3) by breaking down the process into developer work el-
ements (DevWE) so as to determine the manual effort involved.
Details will be further described in the next sections.

3.2 The Proposed Model
The proposed model, as shown by a Use Case diagram

in Fig. 3, accounts for quantitatively measurable (or concrete)
and quantitatively non-measurable (or abstract) measurements of
work or domains to cover the manual activities performed by hu-
man within a project. The terms are defined as follows:
1. The abstract domain refers to activities that are subjective,

somewhat intangible or unclear, and indirectly measurable.
2. The concrete domain refers to activities that are objective,

tangible, and directly measurable.
3. An unclassified domain is furnished to accommodate activi-

ties that are hardware-oriented or difficult to logically define.
In this figure, the project manager (PM) computes conventional
measures (non-manual load) in terms of LOC, FP, etc., for project

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 3 Use Case of the proposed model.

sizing estimation, denoted by A. In the meantime, manual activ-
ities, designated by three lines connecting to concrete, abstract,
and unclassified activity group, denoted by 1, 2, and 3, respec-
tively, will be determined for additional inputs to project estima-
tion. The intermediate outputs of the manual effort computed by
the proposed approach are concrete (4), abstract (5), and unclassi-
fied (6) efforts, respectively, where the numbers and letters denote
labelling for easy reference. The resulting directly measurable ef-
fort estimation by the proposed model is equal to B = A + 4 + 5
units. The indirectly measurable effort estimation is equal to 6.
Thus, the total effort estimation of this project becomes B + 6
units. It can be seen that the benefits from the proposed model
are (i) separation of manual activity estimations (4, 5, 6) from
conventional model-based estimation (A) and (ii) visual break-
down of manual activities which give rise to better monitoring
and control of these activities. Such benefits will materialize in
the sections that follow.

The above model can be broken up into three steps by adopt-
ing the experimentation established by Basili-Selby-Hutchens
(BSH) [5], denoted in parenthesis, (1) define the domain of cov-
erage (definition and planning), (2) trace the activity via visual
aids (operation), and (3) perform the assessment (interpretation).
This setup is depicted in Fig. 4. The first step defines the elements
of DevWE and plans the corresponding process, accompanied by
relevant metrics to be used in effort estimation. The second step
expresses the division of manual operation in terms of DevWE
using three visual aids. The last step sets up the equivalent ef-
fort and measurement with respect to conventional methods to
interpret the results obtained from those visual aids. The three
steps constitute the Programmer Work Elements (ProWE) which
culminate in the ten DevWEs. Note that all italicized PWE pro-
cesses signify the correspondence with BSH processes, i.e., def-
inition, planning, operation, and interpretation. Details on each
step will be described below.

3.3 Detailed Breakdown of DevWE Framework
The manual operation breakdown starts from classification of

various development process activities based on the proposed
model. The first two classifications are to some extent sizable-
which can be measuredby conventional software metrics, namely,
LOC and FP. This work employs CFP as the starting mea-
surement metric during the early stages of the development pro-
cess. The result will then be compared with the well-established
standard FP metric to demonstrate their benchmarking conver-

Fig. 4 Breakdown of the proposed model.

Table 2 Function point allocation (FP) [16].

sion. Consider the standard FP allocation which is illustrated in
Table 2 [16], where quantifiable weights are allotted to different
complexity levels of estimation factors.

To illustrate how FP allocation is computed. Suppose a ‘sim-
ple’ program consists of two inputs, two outputs, three inquiries,
one interface file, and one internal file. The size of this program
is 35 FP (2 ∗ 3 + 2 ∗ 4 + 3 ∗ 3 + 1 ∗ 5 + 1 ∗ 7).

Based on the above related works in Section 2 and the pro-
posed model reference architecture depicted in Fig. 3, ten ele-
ments of DevWE are categorically derived as follows. The ab-
stract domain encompasses four major manual activities, namely,
operation (that subsequently may be tallied, checked, or obtained
the result), read/inquire (that may be tested, or answered), meet-
ing/discussion (that subsequently may be reported or summa-
rized), and planning/decision (that indirectly may be verified,
acted upon, or followed). The concrete domain accounts for
adjustment (that can be specifically noted), code (that can be
counted using proper metrics), and inspection/review (that can
be prepared in advance). An unclassified domain consists of
storage (what media, ownership), movement (from/to designated
source/destination), transfer (to where, speed, volume, QoS, re-
liability), and personal delay. All DevWE elements along with
their descriptions are summarized in Table 3.

These elements of activities are grouped into two groups for
practical adoption, namely, manual (MP + RDAI) and functional
(OSTC) activities. The former combines two abstract domains
that are difficult to quantify, i.e., M, P, and one abstract (R), one
unclassified (D), two concrete domains (A, I) that are somewhat
objectively measurable. The latter combines one abstract (O), one
concrete (C), and two unclassified (S, T) domains that are func-
tionally technology oriented. This will be visibly clearer during
the experiment.

In this study, the “Forgotten password” story [30] is used as an
explanation-by-example to describe the prospectus detail shown

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

in Table 4. There are six columns denoting (1) Traditional phase
encompassing four steps, namely, requirements gathering, de-
sign, code, and unit testing, (2) DevWE equating to traditional
phases as think/analyze, plan, discuss, lookup/search to require-
ments gathering, design to design, code to code, and debug, test,
allowance to unit testing. This logical work flow is methodi-
cally set up by means of Little-JIL technique as demonstrated in

Table 3 The 10 developer work elements (DevWEs).

Table 4 DevWE breakdown with estimated working time and performance measurement.

Fig. 5 to transform procedural data and control flows into COS-
MIC statistics for subsequent analysis and evaluation. (3) De-
scriptions of the steps being broken down, where square brackets
and parentheses denote measurable manual efforts by CFP and
FP, respectively, (4) Activity measures of each phase in FP, (5)
Approximate duration by DevWE, and (6) corresponding CFP
measures. This story is estimatedto take one day to complete.

The design process can be broken down (based on an 8-hour
or 480-min working day) into DevWE according to the ProWE
process shown in Fig. 4 as follows. In stage 1, proper DevWE
is selected to represent the activities to be compared with tradi-
tional approach. The structure of the activity breakdown for stage
2 consists of two inputs from user information read (IR) in unit

testing, one output for result message (RM) in unit testing, one in-
quiry for prompt (P) in requirements gathering, one internal file
for password read (PR) in code, and one external interface file for
user GUI screen (UI) in requirements gathering. The total effort
amounts to 2∗3+1∗4+1∗3+1∗5+1∗7 = 25 FP. By comparing
with DevWE measure, think/analyze use 1 read and 1 write for 2
CFP. Design takes 3 writes for 3 CFP, code takes 1 write for 1
CFP. Debug uses 1 read and 1 write, while test uses 1 read and 1
write for 2 CFP each. The total effort amounts to 10 CFPs. This
is shown in Table 4.

The work time of stage 3, i.e., analysis, planning, and search
activities are estimated at 1/3 [11] of one-day work or approxi-
mately three hours. Design activities take one and a half hours.
Coding and debugging are counted for 1/6 [11] or one hour. Test-

Fig. 5 Login validation exhibited in Little-JIL.

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 6 A symbolic flow map of ‘forgotten password’ breakdown to DevWE.

ing consumes 1/4 [11] or two hours. Hence, the total equiv-
alent effort becomes 7.5 man-hours. The half hour different
between working time and equivalent effort will be allocated
for allowances. From the above time allotment, both measure-
ments yield different effort estimations, i.e., FP gives 480/25 =
19.2 min/FP and CFP becomes 480/10 = 48 min/CFP, or equiva-
lently 1 CFP = 2.5 FP for this study.

Note that all descriptions and symbols in Table 3, representing
stage 4, are the results obtained from the BSH planning step.

3.4 Activity Trace
This step focuses on the visual aids of activities for operation

management, covering stage 5–6. The process must already be
represented in DevWE symbols to furnish good visibility. This
step adopts MTM process chart that will visually interface be-
tween information flow and operation.

There are three charts involved in activity trace, namely, a sym-
bolic flow map, an operation chart, and a workload breakdown
chart. A symbolic flow map furnishes a visual trace of the infor-
mation flow and manual operation to discover any inherent ineffi-
ciencies that are created by human. Figure 6 shows the symbolic
flow map that denotes the sequence of DevWEs constituting the
forgotten password story. The first four symbols (O, R, M, P) are
concrete types and the last three (A, C, I) are abstract types. The
only observable but unaccountable symbol is delay (D) which is
a sizable element that can happen any time for any random du-
ration. Hence, they are setup in the symbolic flow map based on
DevWE descriptions in Table 3.

In this figure, each activity, denoted by a filled DevWE sym-
bol, is successively connected to the next symbol that represents
the succeeding activity. For example, Step 1 password mech-
anisms/authentication is denoted by P (decision) for password
checking, so the diamond symbol of P is filled and the rest of
the symbols are left blank in line 1. Step 2 is also denoted by
P (decision), and is connected to the first step P (diamond) by a
short vertical line to demonstrate the flow of event from step 1
to step 2. Step 3 is an M (discussion), so the cross-circle sym-
bol on line 3 is filled with a line connecting to step 2 to denote

the continuation of the flow of events. This process continues in
succession until reaching the I (inspection) of step 12. Hence,
the flow of events connecting all the symbols will convey a visual
operating sequence of the designated task. This will enhance in-
depth discussion for better task planning and improvement which
will be demonstrated in Section 3.6.

Table 5 shows an operation chart that describes effort con-
straints for each DevWE as part of the built-in measures. This
chart serves as a worksheet for estimated effort, performance rat-
ing, and standard effort derivation. A dark filled estimated effort
cell denotes the prime DevWE, representing manual activity that
involves direct effort conducive to project success. A gray filled
estimated effort cell denotes idling (due to delay) or overhead
(due to discussion) that somehow is inherent to humans. The fu-
ture machine learning substitute (if it is realized) might not need
these gray filled elements and could be eliminated.

Each DevWE performed by an average (qualified and trained)
developer is measured as the normal effort bearing the relation-
ship

Normal effort (NE)

= estimated effort ∗ performance rating (pr) (1)

where estimated effort is the effort required to perform the
DevWE, pr is the performance rating as decided by the project
manager (PM). An average developer is rated at 100%. The stan-
dard effort of each DevWE is an unstressed achievable effort by
the average developer plus allowances expressed in fractions (%)
of NE. That is,

Standard effort = NE + (allowances ∗ NE) (2)

Therefore, the operation chart expresses every measurable
DevWE of the process under investigation. Computations are
carried out as follows. The normal effort of password mecha-
nisms/authentication operation (#1) is equal to 0.50 ∗ 100% =

0.50, which gives the standard effort of 0.50+(5%∗0.50) = 0.525.
Other operations proceed in the same fashion. The activity oper-
ation summary is the sum of all prime DevWEs, that is, the sum

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 5 Operation chart.

of #1, 2, 4, 5, 7, 8, 10, and 12 = 9.503. Idle is taken from the two
delays, namely, #6 and #11, yielding 0.111 + 0.111 = 0.222. The
overhead comes from discussion/technical resolution (#3) and ad-
justment meeting (#9), that is, 0.667 + 0.667 = 1.334. The op-
erating time is 9.503 + 1.334 = 10.837 and the overall task time
is 10.837 + 0.222 = 11.059. Therefore, the utilization percentage
of effort and yield effort are 9.503/10.837 ∗ 100 = 87.69% and
10.837/11.059 ∗ 100 = 97.99%, respectively.

3.5 Performance Assessment
Performance evaluation can be determined quantitatively in a

step-by-step standard effort yield by Eq. (2). The procedure can
be extended to cover multiple task assignments or project level as
follows.

Let Xk j, k = 1, . . . ,Q denotes the effort expended on
DevWE(Xk), and j denotes programmer j performing Xk. The
estimated effort E j of programmer j participating in a project can
be determined by

E j = X1 j + X2 j + · · · + Xk j, k = 1, . . . ,Q, j = 1, . . . ,m
(3)

where m denotes the number of programmers in the team. The
normal effort (NE) of programmer j becomes

NE j = E j ∗ Pr j (4)

where Pr j denotes the performance rating of programmer j.
Hence, the total normal effort (TNE) of the project can be com-
puted by

TNE =
∑m

j=1
NE j (5)

The total standard effort (TSE) is therefore equal to

TSE = TNE + (Aw ∗ TNE) (6)

where Aw denotes the allowances for all personnel. One may con-
tend that the allowance factor should not be made ‘one size fits
all’. Mathematically, this factor can be established on an individ-
ual basis. In this article, it is intended to simplify some compli-
cated issues such as ‘Why did testers get higher allowances than
programmers?’

This generalization can serve as a trace back to the above task
assignment by means of a workload breakdown chart of stage 7 as
shown in Table 6. This chart not only provides work load break-
down information to all parties involved, but also reveals potential
process improvement since inefficient bottlenecks will be uncov-
ered from the analysis of each story. All of these results demon-
strate the equivalent effort computation in stage 8. The shaded
slots denote the person in charge of the designated DevWE. For
example, P1 (blue/gray) is in charge of task #3, 9, 11, 12. Note
that some DevWEs, such as meeting/discussion (#3 and #9), call
for all members to participate. Thus, the total percentage of work
load distribution tallied from all members may exceed 100% scal-
ing. For example, participation of P3 is (0.67+2.00+2.00+0.11+
1.00+1.00+0.67+1.00)∗100/10.56 = 80.02%, and the total par-
ticipating proportion becomes 23.20+ 21.16+ 80.02 = 124.38%.

Consider the effort expended by each programmer. The to-
tal standard effort of this forgotten password story can be deter-
mined from Eqs. (3)–(6), assuming the performance rating of P1,

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 6 Workload breakdown chart by team member.

P2, and P3 are 100%, 100%, and 120%, respectively, and the al-
lowances are set to 5%.

EP1 =M3+M9+D11+I12 = 0.67+0.67+0.11+1.00 = 2.45

NEP1 = 2.45∗1.0 = 2.45

NEP2 = (P1+P2+M3+M9)∗1.0
= (0.5+0.5+0.67+0.67)∗1.0 = 2.34

NEP3 = (M3+O4+O5+D6+C7+A8+M9+I10)∗1.2
= (0.67+2.00+2.00+0.11+1.00+1.00+0.67+1.00)∗1.2
= 10.14

TNE = 2.45+2.34+10.14 = 14.93

TSE = 14.93+(0.05∗14.93) = 15.677 m-h

Note that M3 of NEP2 stands for operation M#3 or ‘discussion,
technical resolution’ of programmer P2, while A8 of NEP3 stands
for operation A#8 or ‘debug with test cases’ of programmer P3,
and so on. The full subscript notation of Xk j, i.e., M3P2 or A8P3,
is omitted for brevity.

The standard effort will be converted to monetary terms by
‘piecework’ in stage 9. Let p j be the pay rate for job classifi-
cation j, e.g., system analyst, tester, programmer, etc. The cost
(Ct) of this task can be determined as follows:

Ct = standard effort j ∗ p j (7)

The only concern of this assessment scheme is a fair pay rate
for all job classifications of the development process. How this
amount should be allotted is beyond the scope of this work. Using
the above example, the cost of this story becomes

Ct = SEP1 ∗ p1 + SEP2 ∗ p2 + SEP3 ∗ p3

= (2.45 + 0.05 ∗ 2.45) ∗ 18 + (2.34 + 0.05 ∗ 2.34) ∗ 15

+ (10.14 + 0.05 ∗ 10.14) ∗ 15

= 242.865

assuming p1 of P1 = $18/m-h, p2 of P2 = $15/m-h, and p3 of
P3 = $15/m-h.

3.6 Application
In order to see how this novel prospectus is applied in real

project effort estimation, a closer look into the symbolic flow
map, operation chart, and workload breakdown chart of the for-
gotten password story demonstrates a methodical process by
means of a UML activity chart in Fig. 7.

The figure reflects the process control of activities in the for-
gotten password story (see Fig. 5 for procedural detail). From the
entry point in main activity section, the process details exhibit
a visual trace of activities in input and refresh sections that are
performed by the developers. This process trace reveals a few
activity checkpoints [19] for design improvements. The first im-
provement has to do with concurrency of user and CAPTCHA
tests (steps 2 and 8). If this application were to run on a limited
resource mobile device, the concurrency would be rendered un-
necessary since it required too much computation resources. In
light of Green Technology, the less power consumed, the higher
the consumption economy becomes. Thus, the process can be
sequentially re-ordered to perform user test first, followed by
CAPTCHA test.

The second improvement could consider the sequence of pro-
cess control flow in the above activity chart that jumped from one
stage to the next. This pattern could be visualized from the sym-
bolic flow map where process flow sweeps from one side to the
other, changing flow direction intermittently. Consider swapping
between #9 (adjustment meeting) and #10 (perform unit test),
the zigzag flow will alter the work pace as follows: #8 (debug
with test cases), #9 (perform unit test), and #10 (adjustment meet-
ing). That is to say, the original ordering started from A-M-I-D,
that is, sitting down to debug, getting up and left for adjustment
meeting, and coming back to sitting down again to perform unit

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Fig. 7 Forgotten password process layout improvement.

test, while the re-group ordering became A-I-M-D, that is, sitting
down to debug, continue sitting down to perform unit test, and
getting up and leaving for adjustment meeting. Apparently, the
re-group ordering was physically less disruptive than the original
ordering. However, if the project mandates required that there
should be a formal review (‘adjustment meeting’ in this example)
before any tests can begin, then the swap cannot be carried out.

4. Experiment and Results

Two experiments were setup to compare the proposed and tra-
ditional analytics as illustrated in Fig. 8. Details will be described
in the sections below.

4.1 Subjects
Since this was a pioneer attempt to explore these fine-grained

building blocks for manual operations, there were no existing
software standards, disciplines, or practices to gauge the novelty
of the proposed approach. Consequently, no industrial software
organization was willing to participate since they could not afford
the expenses and losses of productivity.

It was decided to carry out the experiment on senior students
in computer science (CS) major as they were ideal representatives
of this study. For one thing, these students have undergone rig-
orous test and train processes. The host Mathematics and Com-
puter Science Department is highly ranked of the nation. The
applicants’ entrance exam score had to be in top ranking to be
admitted. Their collegiate training underwent many mathemat-
ics and computer science mandatory classes such as Calculus I,
II, III, Probability and Statistics, Differential Equations, Linear
Algebra, Discrete Mathematics, Programming Techniques, Data
Structures and Fundamental Algorithms, Computer Systems, Op-
erating Systems, Database Systems, Theory of Computations,
Algorithm Designs and Analysis, Programming Languages and
Compiler, etc. All of them were in average standing as the aca-
demic atmosphere was highly competitive. In addition, the stu-
dents have gone through their junior summer internship in many
local organizations which prepared them to be qualified work-

Fig. 8 Comparison of DevWE and conventional analytics.

force for the industry. Hence, they were not just any IT enthusi-
asts who volunteered to participate in this study.

4.2 Experimental Setup
Setup of the proposed approach was arranged as follows. (1)

assigned a small sized software project so that it could be com-
pleted in four months by a team of 5 members. Due to the limited
number of 10 members to be allocated, the team was organized
as follows: divided the 5-member into two groups of 2 members
and a shared PM per group, i.e., 2 + PM and PM + 2. The shared
PM could oversee activities of both groups to ensure proper load
balancing with the help of the instructor. His role was somewhat
demanding in that he had to switch his thoughts, planning, as-
sisting, and supervising each group when he was engaging with
the group. Fortunately, the nature of experiment was relatively
straightforward. As such, there would be no psychological dif-
ferences between both groups as they worked toward a common
goal. The workload spanned 3 hours per day, 13 days per month.
Should this be a real life production software project (having am-
ple members to select), it would be better to employ two inde-
pendent members since the shared member might not be able to
fulfill his assigned responsibilities well. (2) measured manual and

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

functional activities.

4.3 Procedures
Two semester class experiments were conducted using one

team per class. The first semester experimented on team i (E1)
while the second semester experimented on team ii (E2). Vari-
ations among member qualifications of the two teams were neg-
ligible owing to the aforementioned stringent subject selection
process. In order to minimize differences between the two teams,
both experiments worked on familiar web-based applications to
avoid any unfamiliar guesswork and difficulties on the project
problem and the results so obtained. From Fig. 8, team E1 em-
ployed Little-Jill to set up the procedure as demonstrated in Ta-
ble 4. They then deployed DevWE analytic using the three charts
as their performance assessment aids, made necessary adjust-
ments on flow improvements with a lot of communication among
the small teams. All manual activities represented by DevWEs
resulted in output measurement statistics to be compared with the
other team’s output. Team E2, on the other hand, worked on a
similar assignment using conventional approach and sizing met-
rics, i.e., COCOMO, organic mode, LOC, and FP, to arrive at a
total effort estimation. In the meantime, both teams had to pro-
duce four deliverables, namely, software requirements specifica-
tion (SRS), design, an interim report which summarized all the
problems, modifications, and corrections to the previous two de-
liverables, and complete documents. Every member also served
in the role of a document writer to describe their own assignment,
hence first-hand data was being recorded.

4.4 Results
The following descriptions and statistics were collected from

team i. Students started by breaking down requirements into ac-
tivities based on the procedures described in Table 4. They built
symbolic flow map and operation chart. The PM collected project
data to build workload breakdown chart of the members, sum-
mary of frequency count, and effort by DevWE measured in man-
hours. The class overall results are shown Fig. 9 (a), and 9 (b),
respectively.

The results show that O (operation) and R (read) dominate the
most frequently performed DevWE, while C (code) and I (in-
spect) take the heaviest and second heaviest effort, respectively.
Further analysis revealed that the frequency dominant O and R
turned out to be relatively short and easy DevWE from an ef-
fort standpoint, they would not noticeably slow the team perfor-
mance down. In the meantime, I surpasses C to expend the heav-
iest effort per frequency count. The rationale is because conven-
tional coding focuses on pure quantitative coding measurement
in the form of LOC/man-day, the fine-grained scrutiny of DevWE
separates manual I into code organization planning and reviews.
Hence, both manual activities were revealed to use up higher ef-
fort than the rest of manual activities. The average overall effort
is 865.4 man-hours per team.

Figure 10 summarizes the statistics according to the experi-
mental setup, i.e., manual versus functional activities. Manual
activities encompass MP + RDAI for a total of 2,612 man-hours,
while the functional activities encompass OSTC for 3,776 man-

(a)

(b)

Fig. 9 (a) Class overall frequency count, (b) Class overall effort.

(a)

(b)

Fig. 10 (a) Frequency count of manual vs. functional activities, (b) Effort
by hour of manual vs. functional.

hours. From Fig. 10 (a), the ratio of manual activity frequency to
functional activity is 2612/3776 = 69%. That is to say, manual
activity occurs 2612/(2612 + 3776) = 41% of the time in the en-
tire project activities. A similar story holds for the effort by hour
depicted in Fig. 10 (b), that is, the ratio of manual effort to func-
tional effort is 1735/2592 = 67% and the effort by hour for the
entire project is 1735/(1735 + 2592) = 40%. What these pic-
tures convey is that almost half of the effort estimation actually is

manual activity.
The experiment of team ii was considerably more straightfor-

ward than that of team i since there was no explicit treatment of
manual operations. Planning was performed at the outset of the
project to set up FP estimation for early sizing since there was no
coding to collect the corresponding LOC. All necessary functions
were tallied to obtain project FP estimate which subsequently was
converted to equivalent LOC (see Table 7). For example, sup-
pose the project contained 66 function points, if it were using VB

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Table 7 Ratios of logical source-code statements to function points for se-
lected programming languages (Jones, 1995).

(Windows) low 20 statements per function point, the converted
LOC would have become 66 ∗20 = 2,952 LOC. For team ii, their
estimated sizing became 2.952 KDSI.

Since the project was a familiar web-based application, stu-
dents found no difficulty in getting themselves up to speed. This
was treating as an organic mode work effort according to CO-
COMO estimation as follows:

Effort = A ∗ (KDSI)b (8)

where A denotes processing mode, i.e., organic = 2.4,
semi-detach = 3.0, and embedded = 3.6, b denotes a process-
ing mode constant corresponding to organic, semi-detach, and
embedded modes, i.e., 1.05, 1.12, and 1.20, respectively. Effort
is measured in man-month (MM), yielding

Effort = 2.4 ∗ (2.952)1.05

= 4.537 MM

= 884.8 man-hours

The effort of team ii did not deviate much from that of team
i, i.e., 864.4 vs. 884.8 man-hours. The fact that team member

(a)

(b)

Fig. 11 (a) Number of errors, (b) Number of reworks.

qualifications were quite uniform owing to the university highly-
valued admission criteria contributed to their output deliverables
of comparable quality in accordance with the project SRS. The
only difference was the execution exercised by both teams. Thus,
the number of errors and reworks committed by them was com-
parably consistent. Figure 11 (a) and 11 (b) show the amount of
errors and reworks for both experiments. The error counts stem-
ming from typographic, parameter setup, syntax, etc., were rela-
tively comparable from various standpoints, e.g., project assign-
ment, team ability, size, and complexity. The rework tallies of the
second experiment (E2), on the other hand, turned out to be some-
what higher since it was less thorough, detailed, and monitored
than the first one (E1). This was due to traditional project set-
ting of E2 that encompassed phase-wise execution where design
and logical coding errors that needed to be reworked might not
be unveiled until late in the project. The proposed approach scru-
tinized every step using DevWE breakdowns that could uncover
the errors to be reworked early. Fortunately, since the project
was small, straightforward, and familiar to the teams, the extra
reworks produced by team E2 did not require any higher efforts
to be expended than team E1. All in all, effort estimation was
relatively close and team E1 demonstrated slightly better perfor-
mance than their E2 counterpart. For production scale projects,
however, the amount of errors and reworks could adversely affect
the accuracy of project effort estimation.

5. Conclusion

A routine car tune-up usually costs the same at any certified
auto shops that does such work. Why should technology-oriented
estimation of manual operations be unpredictably different, es-
pecially in an outsourcing situation? What hinders the standard
costing to be established?

This study introduces a novel analytic to measure manual activ-
ity that is inherent to software development by means of a set of
quantifiable metrics called Developer Work Elements (DevWE).
Two experiments were conducted to gauge the efficacy of the pro-
posed analytics in comparison with traditional approach and met-
rics. The results show that DevWE helps reduce the number of

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

errors and reworks of the project considerably. The benefits are
attributed to fine-grained scrutiny of manual work that helps spot
early human errors before they slip through subsequent phases.
In addition, the visual charting technique offers discretization and
traceability of human-oriented operations.

By virtue of the proposed analytics, many manual activities
pertaining to the development process can be compiled into a
checklist that is easily verified according to DevWE definitions.
As a consequence, the manual operating costs of estimation effort
can be standardized in the same manner as car tuning.

Future prospect could focus on computerizing this DevWE
measurement methodology to lessen the manual burden of soft-
ware developers so that they can spend more time and effort on
production work. Hence, the quality of work product or service
can be accomplished by any software development teams in the
same way as the Therbligs have contributed to the Industrial En-
gineering counterpart.

References

[1] AACE International Recommended Practice No.74R-13, TCM
Framework: 7.3—Cost Estimating and Budgeting (2014).

[2] Albrecht, A. and Gaffney, J.J.: Software function, source lines of
code, and development effort prediction: A software science valida-
tion, IEEE Trans. Software Engineering, Vol.SE-9, No.6, pp.639–648
(1983).

[3] Bailey, J.W. and Basili, V.R.: A meta-model for software development
resource expenditures, Proc. 5th International Conference on Software
Engineering, pp.107–116 (1981).

[4] Banker, R., Kauffman, R. and Kumar, R: An empirical test of object-
based output measurement metrics in a computer aidedsoftware engi-
neering (case) environment, Journal of Management Information Sys-
tems, Vol.8, No.3, pp.127–150 (1991).

[5] Basili, V.R., Selby, R.W. and Hutchens, D.H.: Experimentation in
Software Engineering, IEEE Trans. Software Engineering, Vol.SE-12,
No.7, pp.733–743 (1986).

[6] Billows, D.: How To Do 3 Point Estimating, Project Management
Tools (2018), available from 〈https://4pm.com/2018/01/05/3-point-
estimating-2〉 (accessed 2019-10-02).

[7] Boehm, B.: Software Engineering Economics, Upper Saddle River,
NJ: Prentice Hall PTR (1981).

[8] Boehm, B., Abts, C., Brown, A., Chulani, S., Clark, B., Horowitz, E.,
Madachy, R., Reifer, D. and Steece, B.: Software Cost Estimation with
COCOMO II, Upper Saddle River, NJ: Prentice Hall PTR (2000).

[9] Briand, L.C., Emam, K. and Bomarius, F.: COBRA: A hybrid
method for software cost estimation, benchmarking, and risk manage-
ment, Proc. 20th International Conference on Software Engineering,
pp.390–399 (1998).

[10] Briand, L.C. and Wieczorek, I.: Resource Estimation in Software
Engineering, International Software Engineering Research Network,
Technical Report, also appears in Encyclopedia of Software Engineer-
ing, New York, John Wiley & Sons, pp.1160–1196 (2002).

[11] Brooks, F.P.: The Mythical Man-Month, An Essays Software Engi-
neering Anniversary Edition, Addison-Wesley (1995).

[12] Cass, A.G., Lerner, B.S., McCall, E.K., Osterweil, L.J., Sutton Jr.,
S.M. and Wise, A.: Little-JILJuliette: A Process Definition Language
and Interpreter, Proc. 22nd International Conference on Software En-
gineering, Limerick, Ireland, pp.754–757 (2000).

[13] Christmansson, M., Falck, A.C., Amprazis, J., Forsman, M.,
Rasmusson, K.L. and Kadefors, R.: Modified method time measure-
ments for ergonomic planning of production systems in the manufac-
turing industry, International Journal of Production Research, Vol.38,
No.17, pp.4051–4059 (2000).

[14] Chung, E.: Analogous Estimating vs Parametric Estimating for
PMP Exam, The Complete PMP Certification and Study Guide 2019
(2019), available from 〈https://edward-designer.com/web/analogous-
estimating-vs-parametric-estimating-for-pmp-exam〉 (accessed 2019-
10-02).

[15] Ferguson, D.: Therbligs: The Keys to Simplifying Work, The Gilbreth
Network (2000), available from 〈http://gilbrethnetwork.tripod.com/
therbligs.html〉 (accessed 2017-08).

[16] Finnie, G.R., Wittig, G.E. and Desharnais, J.M.: A Comparison of
Software Effort Estimation Techniques: Using Function Points with

Neural Networks, Case-Based Reasoning and Regression Models, J.
Systems Software, No.39, pp.281–289 (1997).

[17] Guerrera, G.: 5 Steps to Bottom-Up Estimating, IT Project Blog
(2010), available from 〈http://www.nuwavetech.com/it-project-blog/
bid/44872/5-Steps-to-Bottom-Up-Estimating〉 (accessed 2019-10-01).

[18] Heiat, A.: Comparison of artificial neural network and regression
models for estimating software development effort, Information and
Software Technology, Vol.44, pp.911–922 (2002).

[19] Humphrey, W.S.: Introduction to the Personal Software Process, Ad-
dison Wesley Longman, Inc. (1997).

[20] International Function Point Users Group (IFPUG): Function Point
Counting Practices Manual, Release 4.0, Blendonview Office Park,
5008-28 Pine Creek Drive, Westerville, OH 43081-4899 (1994).

[21] Johnson, P.M.: Searching under the Streetlight for Useful Software
Analytics, IEEE Software, pp.57–63 (2013).

[22] Jones, C.: Software Cost Estimating Methods for Large Projects,
CrossTalk: The Journal of Defense Software Engineering, pp.8–12
(2005).

[23] Jones, C.: Backfiring: Converting lines of code to function points,
Computer, pp.87–88 (1995).

[24] Jørgensen, M. and Shepperd, M.: A Systematic Review of Software
Development Cost Estimation Studies, IEEE Trans. Software Engi-
neering, Vol.33, No.1, pp.33–53 (2007).

[25] Kalach, M.: Bottom-Up estimating, Techniques Wiki (2019), available
from 〈https://www.projectmanagement.com/wikis/368761/Bottom-
Up-estimating〉 (accessed 2019-10-02).

[26] Karner, G.: Resource estimation for objectory projects, Objective Sys-
tems SF AB (1993).

[27] Kemerer, C.F.: An empirical validation of software cost estimation
models, IEEE Trans. Software Engineering, Vol.30, No.5, pp.416–429
(1987).

[28] Matson, J.E., Barrett, B.E. and Mellichamp, J.M.: Software devel-
opment cost estimation using function points, IEEE Trans. Software
Engineering, Vol.20, No.4, pp.275–287 (1994).

[29] nesma, Early Function Point Analysis, version: July 15, 2015,
available from 〈https://nesma.org/wp-content/uploads/2015/11/Early-
Function-Point-Analysis-vs-2015-07-15-EN.pdf〉 (accessed 2019-10-
01).

[30] Newkirk, J. and Martin, R.C.: Extreme Programming in Practice,
Addison-Wesley (2001).

[31] Park, H. and Baek S.: An empirical validation of a neural network
model for software effort estimation, Expert Systems with Applica-
tions, Vol.35, pp.929–937 (2008).

[32] Parnas, D.L.: Software Aging, Proc. 16th International Conference
on Software Engineering (ICSE ’94), pp.279–287 (1994).

[33] Putnam, L.: A general empirical solution to the macro software sizing
and estimating problem, IEEE Trans. Software Engineering, Vol.SE-4,
No.4, pp.345–361 (1978).

[34] Sophatsathit, P.: Fine-Grained Work Element Standardization for
Project Effort Estimation, Journal of Software Engineering and Ap-
plications, Vol.7, pp.655–669 (2014).

[35] Symons, C.R. and Lesterhuis, A.: COSMIC: Introduction to the COS-
MIC method of measuring software, version 1.1 (2016), available from
〈https://cosmic-sizing.org/publications/〉 (accessed 2019-10-01).

[36] Walston, C.E. and Felix, C.P.: A method of Programming Measure-
ment and Estimation, IBM Systems Journal, Vol.16, No.1, pp.54–73
(1977).

[37] Yang, Y., He, M., Li, M., Wang, Q. and Boehm, B.: Phase distribu-
tion of software development effort, Proc. 2nd ACM-IEEE Interna-
tional Symposium on Empirical SoftwareEngineering and Measure-
ment, pp.61–69 (2008).

c© 2020 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.28

Peraphon Sophatsathit received his
B.S. in Industrial Engineering from Chu-
lalongkorn University, Thailand, his M.S.
degrees in Industrial Engineering and
Computer Science from University of
Texas at Arlington, and his Ph.D. degree
in Computer Science from Arizona State
University. He is an associate professor

of computer science at the Department of Mathematics and Com-
puter Science, Faculty of Science, Chulalongkorn University. His
research interests include software engineering, design, and con-
struction.

c© 2020 Information Processing Society of Japan

