
Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

Region-based Detection of Essential Differences
in Image-based Visual Regression Testing

Haruto Tanno1,a) Yu Adachi1,b) Yu Yoshimura1,c) Katsuyuki Natsukawa1,d)

Hideya Iwasaki2,e)

Received: August 1, 2019, Accepted: January 16, 2020

Abstract: Visual regression testing (VRT) is a useful method for confirming that application screens are correctly
displayed. VRT systems detect differences between the screens of an old version and a new version of an application
to support the tester in detecting failures on the screen of the new version. One approach to VRT is image-based; i.e.,
before and after screenshot images are compared. It is particularly promising because screenshots are independent
of the application’s environment (operating system, web browser, etc.). Existing image-based VRT systems simply
compare two images in pixel units and highlight pixels with differences, so if there are changes that affect the entire
screen (e.g., parallel movements of screen elements), a large number of unessential differences are detected, and the
essential differences are buried within them. An image-based VRT method named ReBDiff is presented that solves
this problem. Before and after screen images are each divided into multiple regions, and appropriate matchings are
made between corresponding regions in the two images. For each matching, differences such as shift, alteration, and
addition, if any, are detected. In addition, suitable views are provided on the basis of the detected differences. By
observing these views, the tester can efficiently identify the essential differences even when there are changes that af-
fect the entire screen, e.g., parallel movements of screen elements. Experiments on a prototype system using websites
for PCs and smartphones and an application screen of an Electron application demonstrated the effectiveness of the
proposed method.

Keywords: image-based visual regression testing, essential differences, region pairs, difference type, pixel matching

1. Introduction

To ensure the reliability of application software, it is necessary
to test the functionality of the software frequently during its life
cycle, not only at the time of its initial release but also whenever
new functionalities are added, the underlying operating system
(OS) is updated, and so forth. The frequency of such testing is
increasing due to shorter and shorter intervals between software
releases. Furthermore, more and more tests are required to en-
sure the stability of the software due to the diversification of the
system environments on which the software is deployed. For ex-
ample, an environment might consist of a desktop PC, a tablet PC,
and a smartphone and/or feature a software platform combining
an OS and a web browser. Regression testing is widely used to
ensure that a change made to the software does not negatively af-
fect the system. However, the same tests must be repeated every
time a new version of the software is released, and consequently
the effort spent on regression testing is increasing with the scale
of the target software. Automating this regression testing would

1 NTT Laboratories, Minato, Tokyo 108–0023, Japan
2 The University of Electro-Communications, Chofu, Tokyo 182–8585,

Japan
a) haruto.tanno.bz@hco.ntt.co.jp
b) yuu.adachi.gx@hco.ntt.co.jp
c) yuu.yoshimura.zk@hco.ntt.co.jp
d) katsuyuki.natsukawa.cg@hco.ntt.co.jp
e) iwasaki@cs.uec.ac.jp

thus be an effective way to save time and effort.
In the regression testing of a GUI-based application such as

a web application, it is necessary to ensure that the application
screens are displayed correctly. This involves two confirmations:
confirming whether the application logic works correctly and the
calculation results are correct and confirming whether the screen
elements are laid out correctly on every application screen. The
former can be automated by using a test automation tool, e.g.,
Selenium *1, Appium *2, and Sikuli *3 [8], with suitable assertions
in the scripts executed by the tool. In contrast, the latter requires
that the tester carefully examines and compares the displayed lay-
outs, which is a difficult task.

Visual regression testing *4, or VRT for short, is a method for
semi-automating the latter confirmation process. VRT detects dif-
ferences between two screens of an application, typically corre-
sponding ones before and after changes, on the basis of image
information, structural information, and so forth for the screens.
We call this approach to VRT in which two screenshot images
are compared and only this information is used for confirmation
image-based VRT. Since image-based VRT is applicable as long
as screenshot images of application screens are available, it can be
used independently of the operating environment (such as the OS

*1 https://docs.seleniumhq.org
*2 http://appium.io/
*3 https://launchpad.net/sikuli
*4 https://github.com/mojoaxel/awesome-regression-testing

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 1 Using existing image-based VRT to compare two screens in pixel units.

Fig. 2 Problems in comparing two screens in pixel units with existing image-based VRT.

or web browser) in which the application is executed. In addition,
it can be easily used because many test automation tools provide a
way to take screenshots of applications under test. Thus, there are
many image-based VRT tools such as jsdiff *5 and BlinkDiff *6.
These tools compare two images in pixel units and highlight the
ones with differences to help the tester easily and clearly identify
places with differences.

As an example of applying VRT, let us consider the login
screen of an authentication system for some imaginary applica-
tion. Figure 1 presents an example of differences detection by
an image-based VRT system. Figures 1 (a) and (b) are screenshot
images before and after changes to the application, respectively,
while Fig. 1 (c) is a screenshot image in which differences are dis-
played. The VRT system compares the pixels in Figs. 1 (a) and (b)
at the same absolute coordinate, where the origin of the coordi-
nates is the upper-left corner. If they are the same, the system
displays the pixel in grayscale in the differences image; other-
wise the system displays it in red. By looking at the differences
image, the tester can see at a glance that the “Sign in” button has

*5 https://github.com/kpdecker/jsdiff
*6 https://github.com/yahoo/blink-diff

somehow vanished in the new version of the application. In this
way, image-based VRT enables the tester to recognize differences
visually and, as a result, efficiently.

Unfortunately, image-based VRT systems can be problematic;
if there are changes that affect the entire screen, it is difficult for
the tester to identify the essential differences easily. Consider
the case in which the screen design was changed by adding the
header “ABCDE Portal Site” in the authentication system de-
scribed above. This design change resulted in the entire (un-
changed) content of the application screen being moved down-
ward, as illustrated in Fig. 2. As a result, quite a large number of
unessential “differences” are detected and displayed on the dif-
ferences screen. The essential differences are difficult to identify
because they are buried within a large number of detected differ-
ences. There are three main reasons for this problem.
• Screen elements are added or deleted in the new version in

accordance with changes in functionality, screen design, and
so forth, as exemplified by the case shown in Fig. 2.

• There is a region of the screen in which variable-sized el-
ements such as advertisements and the latest news are dis-
played. We call such a region a dynamic region hereafter.

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

• A bug in the screen element layout results in element mis-
alignment and/or disappearance.

In these cases, it is difficult for the tester to find the essential
differences by using an existing VRT system. Thus, the tester
must examine the two corresponding screens carefully but is apt
to overlook essential differences.

To resolve this problem, we have developed a method for mak-
ing image-based VRT systems effective even in such cases. The
proposed method enables the tester to compare two correspond-
ing screens and efficiently find the essential differences.

The contributions of this paper can be summarized as follows.
• We present an image-based VRT method and its prototype

system named ReBDiff (Region-based Differences detector)
that enables testers to efficiently find essential differences be-
tween before and after screenshot images of an application
that has been changed. It divides each image into multiple
regions and makes appropriate matchings between the cor-
responding regions of the two images, and detects such a
difference as a shift, an alteration, and an addition.

• We explain how ReBDiff can provide suitable views on the
basis of the detected difference types and detailed informa-
tion about them. By observing these views, the tester can
find essential differences between two corresponding screens
efficiently even when there are changes that affect the entire
screen such as parallel movements of screen elements.

• We describe the experiments we conducted that used web-
sites for both PCs and smartphones, and an Electron appli-
cation. The results demonstrate the effectiveness of the pro-
posed method.

Since the implementation of the proposed method is ReBDiff,
we use “ReBDiff” both to indicate the method and to indicate the
tool.

2. Related work

Many studies have been carried out on automating or support-
ing the judgment of test results [6]. This section overviews related
research and tools, focusing on VRT.

2.1 Implementation-dependent VRT Systems
First we describe VRT that depends on the specific implemen-

tation technologies of the target application.
There are VRT systems that use both application screens and

structural information at the same time. For web applications, the
method proposed by Hori et al. [11] identified screen elements on
the basis of document object model (DOM) tree information and
compares two corresponding elements to determine whether the
web application had been degraded. For cross-browser testing,
WEBDIFF [17] and X-PERT [9] identify those places where fail-
ures have occurred by comparing the images and DOM trees of
the two application screens to detect presentation failures. Ramler
et al. [16] presented a method for detecting presentation failures
after the user changed the magnification of the desktop in the
Windows environment that utilizes both image information and
screen element information.

Other approaches exploit only the structural information of
application screens. The snapshot test in the JavaScript testing

framework (JEST) *7 provides a function that helps the tester en-
sure the absence of unexpected breakages in the UI layout on
the basis of the serialized information of the displayed structures
obtained in the tests. Spenkle et al. [18] presented a method for
detecting differences by comparing the HTML structures of two
corresponding application screens. Takahashi [19] presented a
method for recording the history of API calls used for drawing
an application screen and comparing the histories for two cor-
responding application screens. Alameer et al. [2] presented a
method for detecting presentation failures after the locale of the
application had been changed. A graph is constructed for each
screen on the basis of the positional relationships of the elements
in the corresponding DOM tree. The graphs of the correct screen
and the target screen are then compared. The HTML elements
with a changed appearance or a relative position are regarded as
being responsible for the observed problem. Walsh et al. [22] pre-
sented a method for extracting a “responsive layout graph (RLG)”
from a DOM tree and then comparing two corresponding RLGs
to detect any undesired distortion of the layout in responsively
designed pages.

Several methods for detecting presentation failures, which typ-
ically appear in responsively designed pages, work with only the
target screen to be tested. ReDeCheck [21] detects overlapping
screen elements on the basis of DOM information. VISER [4]
goes even further by investigating overlapping at the pixel level,
resulting in a higher precision.

These methods are useful for detecting presentation failures in
regression testing, but they depend on the specific implementa-
tion technology. This means that multiple platform-dependent
implementations must be prepared to enable them to be used on
various platforms such as Android, iOS, and Windows.

2.2 Implementation-independent VRT Systems
Several approaches are independent of the implementation

technology. They attempt to identify the problem from only the
application screen images.

The jsdiff and BlinkDiff image-based VRT tools detect differ-
ences between two images in pixel units. Similar approaches
were taken in VISOR [12] and by Mahajan and Halfond [14].
These tools and methods focus mainly on comparing old and new
versions of an application in regression testing. They are effec-
tive when the two images to be compared are almost the same,
with only minor differences, as exemplified in Fig. 1. They are
not effective when there are changes that affect the entire screen,
as exemplified in Fig. 2. Mahajan and Halfond [15] adjusted their
method to absorb small differences at the pixel level, but it is still
not effective when the positional shift is more than negligible.
Lin et al. [13] presented a method that calculates the similarity
between the correct screen and the target screen by using several
indices such as a histogram of similarity. If the similarity falls be-
low a certain threshold, the target screen under test is presumed
to have problems. Although this method can be used to roughly
estimate the similarity between two screens on Android terminals
with different resolutions, it cannot localize the differences.

*7 https://jestjs.io/

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Other approaches do not depend on image-based VRT. Vi-
sual GUI testing tools [3] such as Sikuli [8] make use of image
recognition techniques. Since they treat matching objects on an
application screen as images, they can only be used as long as the
target objects are present on the screen. They are aimed at ensur-
ing that images are displayed on the screen as expected; they can-
not ensure that the screen elements are properly placed without
distortion of the screen’s appearance. Bajammal and Mesbah [5]
presented a method that analyzed a screenshot image of canvas
elements in HTML5, identified every visual object and its at-
tributes, and constructed a layered structure of the visual objects
for use in generating suitable assertions for the image. Assertions
generated for the image of the correct screen can be applied to
the image of the target screen to be tested. Unfortunately, their
method is applicable only to the canvas in HTML5.

Image-based VRT is flexible and offers two advantages in par-
ticular.
• It can be used as long as screenshot images of the applica-

tion screens are available. Thus, it does not depend on spe-
cific implementation technologies such as the OS and web
browser.

• It can be easily combined with test automation tools for prac-
tical application because such tools generally provide a func-
tionality for obtaining screenshot images.

We have developed a method for making image-based VRT
applicable to situations in which there are changes that affect the
entire screen and have therefore expanded the scope of its poten-
tial application.

3. Proposed method

3.1 Scope and Requirements
To summarize the discussion in Section 2, there are two use

cases for VRT. One use case is comparing two corresponding
screen images of the old and new versions of an application in the
same environment. For example, the “Sign in” screen of the old
version is compared with that of the new version in the Chrome
browser. The other use case is testing the same version of the
target application in various environments, in which a screen im-
age for one environment is compared with the corresponding one
for another environment. This includes cross-browser testing and
testing on various Android devices.

The application scope of ReBDiff is the first use case with the
aim of applying image-based VRT techniques to regression test-
ing even when there are changes that affect the entire screen, ex-
emplified by the three cases described in Section 1. The second
use case is outside the application scope of ReBDiff. Please note
that our aim is to detect differences between two given images,
not to determine whether each detected difference is a bug. We
assume that the tester is responsible for making that determina-
tion.

The application scope defined for ReBDiff means that there are
three requirements for a system that supports the tester in detect-
ing and checking essential differences between two application
screens by using image-based VRT.
Requirement 1 Each difference can be detected at a level of

granularity that makes it easy for the tester to identify the

difference.
Requirement 2 All the regions shifted due to changes that af-

fected the entire screen can be checked together.
Requirement 3 Detected differences are displayed with good

visibility.

3.2 Features of ReBDiff
ReBDiff has three features in particular.
First, it detects essential differences in two stages. In the first

stage, it roughly detects differences between two corresponding
regions, one in the correct screen and the other in the target screen
under test, and labels each detected difference with one or two
difference types among Shift, Addition, Deletion, Alteration, and
Scaling. Here, a region is a rectangular section in an image in an
application screen. In the second stage, ReBDiff applies an exist-
ing image-based VRT method to a pair of corresponding regions.
This two-stage process enables the tester to check the differences
roughly at the region level (Requirement 1). In addition, the tester
can identify parallelly moved regions easily in the first stage (Re-
quirement 2).

Second, ReBDiff groups together regions labeled Shift that
have the same direction and amount of movement. Thus, the
tester can check these regions together, not one by one (Require-
ment 2). This feature contributes not only to making detected
differences visible (Requirement 3) but also to reducing the bur-
den on the tester.

Third, ReBDiff highlights each difference in accordance with
its type. Thus, the tester can recognize detected differences with
good visibility (Requirement 3).

Figure 3 shows an overview of ReBDiff. Given two images,
one of the correct screen and one of the target screen, ReBDiff

displays two views; one for differences at the region level and
the other for differences between corresponding regions in pixel
units.

3.3 Difference Types
ReBDiff divides the correct and target screens to be tested into

regions and detects differences, as presented in Fig. 4. For every
detected difference, ReBDiff assigns one or two difference types.
Currently there are five difference types.
Shift There are highly similar regions in the correct and target

screen images, but their positions differ.
Addition The target screen image has a region with no corre-

sponding region in the correct screen image.
Deletion The correct screen image has a region with no corre-

sponding region in the target screen image.
Alteration There are similar regions in the correct and target

screen images, but their similarity is not high.
Scaling There are similar regions in the correct and target

screen images, but their sizes differ.
Types Shift, Scaling, and Alteration are cases in which there

are very similar but not the same regions in both screens. Types
Addition and Deletion are exemplified by Region 4’ and Region
2 in Fig. 4, respectively.

These five difference types should suffice for the following rea-
son. Differences can be divided into two groups: 1) those between

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 3 Overview of ReBDiff.

Fig. 4 Detecting differences in region pairs.

corresponding regions in the correct and target screen images and
2) those without corresponding regions in the two screen images.
The former can be further classified into Scaling and Alteration

on the basis of the similarity level. In addition, if the positions of
corresponding regions are not the same, Shift is added. For the
latter group, the differences can be further classified into Addition

in which a new region is added to the target screen, and Deletion

in which a region is deleted from the correct screen.
Precisely speaking, a difference type is assigned to a region

pair explained in Section 4. For the example shown in Fig. 4, re-
gion pairs (null, 4′) and (2, null), where null means that there is no
corresponding region, are associated with Addition and Deletion,
respectively. ReBDiff regards regions with high similarity, i.e.,
greater than a predefined threshold, and with a sufficiently small
size difference, i.e., within a predefined threshold, as the “same”
and does not detect them as a difference.

The similarity of two regions is calculated on the basis of
whether the larger region in height includes an area similar to
the smaller region. This is described in more detail in Section 4.
Thus, there may be cases where similarity is high for regions with
different heights. Since such regions need to be checked by the
tester, Scaling is added for the regions (a region pair) as a differ-
ence type.

Among the five types, Shift, Scaling, and Alteration have ad-
ditional information on the difference. This information is made
explicit by using the following notations.
• Shift (dx, dy): dx and dy are the amounts of movement in the

horizontal and vertical directions, respectively.
• Scaling (sx, sy): sx and sy are the scaling factors in the hor-

izontal and vertical directions, respectively.
• Alteration d: d represents detailed information on differ-

ences at the pixel level.

Fig. 5 Shift-checking view (group identifier is 1).

Please note that two types, namely “Alteration and Shift” or
“Scaling and Shift,” might be assigned to a detected difference.
The details are described in Section 4.3.

3.4 Difference Checking by Tester
First, the tester checks the Shift differences (Fig. 3 (1-1)). The

tester can check each group of region pairs with the same direc-
tion and amount of movement as a whole by using the Shift-
checking view. For example, Fig. 5 presents an instance of this
view when the input screens are those in Figs. 2 (1) and (2). In
this example, both the correct and target screens are divided into
five regions. Since four region pairs except the upper-most one
move together vertically a distance of 57 pixels, they are dis-
played within a red frame. Seeing this view, the tester judges that
this difference is not a problem because the movement of these
four region pairs is the result of the change in the upper-most part
of the screen. In this example, there is only a single group of
region pairs. When there are multiple groups, the tester checks
them one by one by using the Shift-checking view.

After checking the Shift differences, the tester proceeds to
check Addition, Deletion, and Alteration differences in the
Addition/Deletion/Alteration-checking view (Fig. 3 (1-2)). For the
example in Fig. 2, Fig. 6 presents the view used for this check,
where two differences in Region pairs 1 and 5 are detected. The
tester is shown the type of each difference at the right side of
the view. When the tester selects a difference in the list (the se-
lected difference is displayed in yellow), the corresponding region
is highlighted.

The tester can see the details for an Alteration difference in two
ways.
• The tester can compare two regions in pixel units by investi-

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Fig. 6 Addition/Deletion/Alteration-checking view.

Fig. 7 Checking for Alteration differences.

gating their overlapped image generated by ReBDiff. When
the differences are local and not so large, the place where
changes occur can be easily recognized.

• The tester can check the differences by visual examination.
Although a visual examination is burdensome, ReBDiff re-
duces the burden because the area of the region to examine
is (much) smaller than the entire screen.

For the example in Fig. 7, region pair 5, where the “Sign in”
button has vanished in the test screen, can be checked by exam-
ining the overlapped image. In contrast, region pair 1’s change is
difficult to grasp by examining the overlapped image, so a visual
examination is needed.

Finally the tester checks for Scaling differences by using the
Scaling-checking view (Fig. 3 (1-3)). For each Scaling difference,
scaling factors (both horizontal and vertical) in percentage are
displayed in the list at the right side of the view.

In this way, comparing differences at the region level makes it
possible to roughly check the differences in accordance with the
type(s) of each difference.

4. Differences Detector

We implemented our differences detector, shown in Fig. 3, by
utilizing computer vision techniques [10]. Specifically, we used
the Python bindings of OpenCV 3.1.0.

Let C be the image of the correct screen and T be the image
of the target screen under test. Differences between C and T are
detected automatically in three steps.
Step 1 ReBDiff divides C into m regions c1, . . . , cm and T into

n regions t1, . . . , tn.
Step 2 ReBDiff extracts region pairs, each of which consists of

a region in C and a region in T that are similar to each other,
and creates a list PL of region pairs.

Step 3 ReBDiff assigns one or two difference types to every pair
in PL.

Let r, r1, and r2 be regions. We assume that ul(r) and lr(r)
represent the coordinates of the upper-left corner of r and that
of the lower-right corner of r, respectively. In addition, wd(r),
ht(r), and size(r) represent the width, height, and size (number
of pixels) of r, respectively. We also assume that sim(r1, r2) is
the similarity of r1 and r2. We calculate sim(r1, r2) by using the
cv2.matchTemplate method, which performs template match-
ing, and the cv2.minMaxLoc method, which obtains the maxi-
mum value of the similarity from the template matching results.

Hereafter, we will explain each step.

4.1 Step 1: Divide Images into Regions
The first step is to divide C and T into regions in accordance

with sub-steps 1-1 to 1-4 below. There are two modes for divid-
ing an image into regions. One is H-mode, which divides an im-
age horizontally. This mode is used for vertical screen images in
which their contents are horizontally arranged such as web pages
for mobile devices and screens of Android/iOS applications. The
other is HV-mode, which divides an image horizontally first and
then further divides each divided region vertically. This mode is
used for screen images in which the contents are both vertically
and horizontally arranged such as web pages for PCs and Win-
dows native applications. The tester can specify which mode to
use in accordance with the features of the screen under test.

The procedure for dividing an image into regions comprises
four steps.
Sub-step 1-1 ReBDiff applies Canny edge detection [7] to C

to detect the edges. Specifically, by using the cv2.Canny
method, ReBDiff generates a binary image in which pixels
representing the edges are white and the other pixels are
black. Then, ReBDiff performs line detection in the hori-
zontal direction on C as follows. If there is a row where
the number of white pixels, which represent edges, exceeds
wd(C) × SL in the generated binary image, ReBDiff regards
the row as a line. If multiple consecutive rows are regarded
as lines, only the middle one is taken and the others are
deleted. SL is a predefined parameter with a value that should
be empirically determined so that an appropriate division of
images into regions can be obtained. In our experiments, de-
scribed in Section 4, we set SL to 0.8. Line detection is used
to divide C into K1 regions: C = r1

1 , . . . , r
1
K1

.
Sub-step 1-2 Starting from r1

1, ReBDiff repeatedly concatenates
adjacent regions until the area of the concatenated region ex-
ceeds a predefined threshold. Let the concatenated region be
r2

1. Then ReBDiff performs the same process starting from
the region in which the concatenation had terminated. Repe-
tition of this process until no region remains results in C hav-
ing K2 regions: C = r2

1 , . . . , r
2
K2

. The threshold is wd(C)×SR,
where SR is a predefined parameter. The following is the
pseudo code for this process.

limit ← wd(C) ∗ SR;
h← 0; f rom← 1; j← 1;
for i← 1 to K1 do begin

h← h + ht(r1
i );

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

if h ≥ limit then begin
r2

j ← a region where r1
f rom to r1

i are combined;
h← 0; f rom← i + 1; j← j + 1;

end;
end;
if from ≤ K1 then begin

rest ← a region where r1
f rom to r1

K1
are combined;

r2
j−1 ← a region where r2

j−1 and rest are combined;
end;
K2 ← j − 1;

If the value of SR is too small, many small regions are gen-
erated. As a result, it would take much time to calculate the
region pairs in Step 2. In addition, the correspondence ac-
curacy for region pairs would be reduced. Therefore, it is
necessary to set an appropriate value of SR empirically to
generate moderately sized regions. In our experiments, we
set SR to 0.1.

Sub-step 1-3 From r2
1 , . . . , r

2
K2

, ReBDiff creates C = r3
1 , . . . , r

3
K3

by merging a single-colored region and an adjacent multi-
colored region into a single region. This step is necessary
because if many single-colored regions are eventually gen-
erated in Step 1, it is likely that Step 2 cannot properly asso-
ciate a region in the correct image with a region in the target
image under test. As a result of this merging, C does not
contain a single-colored region if the processing image is not
single-colored. Pseudo code for this process is as follows.

f rom← 1; j← 1;
for i← 1 to K2 do begin

rr ← a region where r2
f rom to r2

i are combined;
if rr is a multi-colored region

r3
j ← rr;

f rom← i + 1; j← j + 1;
end;

end;
if from ≤ K2 then begin

rest ← a region where r2
f rom to r2

K2
are combined;

r3
j−1 ← a region where r3

j−1 and rest are combined;
end;
K3 ← j − 1;

Sub-step 1-4 For H-mode, r3
1 , . . . , r

3
K3

is directly the resulting
list of regions. For HV-mode, ReBDiff performs the same
process (Sub-steps 1-1 to 1-3) for every r3

i (1 ≤ i ≤ K3),
where line detection in Step 1-1 is done in the vertical direc-
tion.

Following the above steps, ReBDiff obtains a list of regions for
C, i.e., c1, . . . , cm. ReBDiff performs a similar process for T and
obtains t1, . . . , tn.

4.2 Step 2: Generating List of Region Pairs
The next step is to create a list of region pairs by repeatedly

associating a region in C with a region in T one by one on the
basis of the similarity between the two regions. Since the cost of
calculating similarities for all possible pairs is too large, ReBDiff

calculates the similarity only for those regions with coordinates
close to each other.

Let RH and RV be ranges in the horizontal and vertical direc-
tions, respectively, used to search the corresponding region, and
let SP be the similarity threshold used to judge whether two re-
gions are pairable. As before, PL is a list of region pairs, which
is initially empty.

We define the similarity between two regions as the result of
template matching [10] on one region using the other region as
a template image. Of the two regions, the one with the smaller
area is used as the template image. PL is created using a two-step
process.
Step 2-1 For region c in C, ReBDiff selects regions t from T ,

each of which satisfies three conditions: (1) t exists in a rect-
angular region for which the upper-left coordinate is ul(c) −
(RH ,RV ) and the lower-right coordinate is lr(c) + (RH ,RV );
(2) wd(c) = wd(t); and (3) sim(c, t) > Sp. Let t be the region
with the highest value of similarity with c among the regions
selected from T . If such a t exists, ReBDiff adds a region pair
(c, t) to PL and removes t from T ; otherwise, ReBDiff adds
a region pair (c, null) to PL. This procedure is performed in
order from c1 to cm.

Step 2-2 For every region t in T that was not selected in Step
2-1, ReBDiff adds a region pair (null, t) to PL.

If the value of SP is too small, many inappropriate region pairs
that do not contain null may be created. On the other hand, if the
threshold is too large, two regions that should be paired and la-
beled Scaling or Alteration may not be paired, resulting in many
(c, null) and (null, t) region pairs (Deletion and Addition) being
generated. Because the former situation is more serious, it is nec-
essary to empirically determine that SP is sufficiently large, but
not too large. In our experiments, we set SP to 0.5.

4.3 Step 3: Assigning Difference Types to Region Pairs
The final step is to assign one or two appropriate difference

types to every region pair in PL. Let SM (SM > SP) be the thresh-
old for similarity. The following logic is used to assign difference
type(s) to every region pair p = (c, t) in PL, where attach(p, ty)
assigns ty to p.

if c = null then begin attach(p, Addition); return end
else if t = null then begin attach(p, Deletion); return end;
if ul(c) � ul(t) then begin

(dx, dy)← ul(t) − ul(c);
attach(p, Shift (dx, dy)) end;

if sim(c, t) < SM then begin
d ← differences between c and t in pixel units;
attach(p, Alteration d) end;

else if size(c) � size(t) then begin
(sx, sy)← (wd(t)/wd(c), ht(t)/ht(c));
attach(p, Scaling (sx, sy)) end

return;
Please note that both Shift and Scaling or both Shift and Al-

teration might be assigned to a pair. In fact, changes that can be
regarded as a parallel movement and also regarded as an alter-
ation or a scaling are commonly seen. Even for such cases, the
tester can check each difference type assigned to the pair by us-
ing the checking view corresponding to the type, as described in
Section 3.4.

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Table 1 Target screens.

Experiment Target screen App. type Screen size No. of type 1 change(s) and description No. of type 2 change(s)
1 Am Mobile 411 × 1327 1: Change in design in upper side 1

Ap PC 839 × 928 1: Change in design in upper side 1
Bm Mobile 411 × 2061 1: Deletion of logo at top 1
Bp PC 1042 × 1813 1: Deletion of logo at top 1
Cm Mobile 411 × 5672 1: Deletion of advertisement at top 1

Cm11 Mobile 411 × 5672 1: Deletion of advertisement at top 10
Dp PC 1097 × 4200 1: Deletion of advertisement in upper side 1

Dp11 PC 1097 × 4200 1: Deletion of advertisement in upper side 10
Em Mobile 411 × 4490 2: Deletion of advertisement in upper side and link button in middle of screen 2

2 Xe Electron 765 × 593 2: Change in UI in upper and bottom side 0

Finally, ReBDiff assigns the same group identifier to all pairs
in PL with Shift that have the same movement amounts, i.e., the
same (dx, dy) value.

5. Experiments

5.1 Research Questions
To evaluate the effectiveness of ReBDiff, we conducted exper-

iments to answer two research questions.
RQ1 Can ReBDiff detect all differences between the correct

screen and the target screen under test? Is the number of de-
tected differences as small as possible? Is the tester’s effort
for confirming the detected differences sufficiently small?

RQ2 What are the differences in the discovery rate and confir-
mation time compared with those for manual confirmation?

5.2 Method
To answer RQ1, we conducted two experiments.
The first one used target screens with embedded artificial mu-

tations representing changes. We prepared images of correct
screens by taking screenshots of real-world applications. We then
created target images by embedding changes (described below)
into the correct images.
• Additions, deletions, shifts, and scalings of screen elements.

In some cases of shifting, two screen elements became over-
lapped.

• Slight alterations of screen elements.
• Changes in line feed positions and fonts.
The second experiment used screens in which there were ac-

tual changes in a real-world application. We prepared screenshot
images of corresponding old version and new version screens.

To answer RQ2, we asked four participants to detect differ-
ences in two ways, i.e., by visually checking the entire image
manually and by using ReBDiff. We then measured the rate of
differences discovery and the time required for confirmation. For
each manual detection, we prepared an Excel sheet with the cor-
rect image and the target image side by side so that the partic-
ipants were able to perform visual confirmation as efficiently as
possible not only by looking at the display but also by referring to
the Excel sheet. For each participant, the target screen for ReB-

Diff confirmation differed from that for manual confirmation to
prevent learning effects.

The parameters and thresholds at each step in the differences
detection were adjusted by using data from real-world websites
for PCs and smartphones (excluding websites related to the target
screens used in this experiment) so that differences were prop-
erly detected. The parameter and threshold values were SL = 0.8,

SR = 0.1, SP = 0.5, and SM = 0.97.

5.3 Target Screens
Table 1 lists the target screens used in the experiments. Am

and Ap are login screens for the Japan Pension Service Nenkin
net (mobile and PC versions, respectively). Bm and Bp are login
screens for the Internet banking service of the Japan Post Bank
(mobile and PC versions, respectively). Cm and Cm11 are the
top pages of NTT East’s mobile web service, Dp and Dp11 are
the top pages of NTT DOCOMO’s “My docomo” service for PC
web, and Em is the top page of NTT West’s mobile web service.
Am and Ap have a rather simple design and a small screen. Dp,
Dp11, and Em have more complicated designs and larger screens.

For each target screen, the target image had
• changes that affected the entire screen (type 1 changes) such

as insertion of a logo at the top of the page, and
• changes that did not affect the entire screen (type 2 changes)

such as deletion of the login button.
For Cm11 and Dp11, type 2 changes were embedded as much

as possible in the entire screen. There were ten such changes.
Xe is the screen of an Electron application (2 KL), which had

been developed at NTT. Its target image had two type 1 changes
and no type 2 changes. Since the Xe screen was modified by the
addition of a new function to the application, it was necessary to
confirm that unexpected changes on the new version’s screen did
not occur elsewhere.

For all target screen displays, we observed that the problem
shown in Fig. 2 occurred when using an existing image-based
VRT that performed difference detection in pixel units.

We obtained screenshot images of PC and mobile web screens
on the Chrome browser in Windows 10 by using Full Page Screen
Capture, which is a Chrome extension. For the mobile web pages,
we used Chrome’s developer tool to display the pages with the
screen size of the mobile version (we used the size of the Pixel2
XL terminal) and then captured screenshot images. For the Elec-
tron application, we obtained screenshots by pushing the Alt and
PrintScreen keys, the traditional way to get screenshots in Win-
dows.

In addition, for Cm11 and Dp11, we asked the participants to
detect differences in two ways: by using ReBDiff and by manual
checking of the entire image.

5.4 Results
5.4.1 RQ1

Table 2 presents the results of applying ReBDiff to each tar-
get screen: the number of detected differences for each difference

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

Table 2 Results for RQ1.

Target screen No. of detected differences Ratio of area Difference
Shift Addition Deletion Alteration Scaling Shift Addition Alteration Alteration Scaling detection

Deletion (confirmable (not confirmable rate
in pixel units) in pixel units)

Am 2 1 1 1 0 90.3% 5.8% 11.7% 0% 0% 2/2
Ap 1 0 0 2 0 62.7% 0% 38.6% 23.7% 0% 2/2
Bm 1 2 2 0 0 93.2% 6.8% 0% 0% 0% 2/2
Bp 1 0 0 1 1 87.6% 0% 76.4% 0% 12.4% 2/2
Cm 1 0 1 1 0 99.6% 0.4% 2.3% 0% 0% 2/2

Cm11 2 3 4 7 0 96.4% 3.6% 13.4% 0% 0% 11/11
Dp 1 1 1 1 0 92.9% 4.3% 2.8% 0% 0% 2/2

Dp11 1 1 1 10 0 93.0% 4.3% 23.1% 0% 0% 11/11
Em 2 0 0 4 0 92.2% 0% 13.1% 0% 0% 4/4
Xe 1 0 0 2 0 68.2% 0% 0% 56.6% 0% 2/2

Fig. 8 Difference detection rates and confirmation times for RQ2.

type and the ratio of the area of the regions in which differences
were detected to the total area. Here, the total area is the sum of
the area of the correct image and that of the target image under
test, which can be regarded as the entire area to be checked in
order to detect differences. Since manual checking without ReB-

Diff requires that the total area be entirely checked, the smaller
the area of the regions for which ReBDiff will be used to detect
differences, the greater the effectiveness of ReBDiff.

For all target screens, ReBDiff detected all (type 1 and type
2) changes. Though the ratios of the area of detected Shift were
large, i.e. over 90% for seven cases and at least 62.7%, the num-
ber of detected Shift differences in each case was 1 or 2. There-
fore, these differences should be confirmable without much effort
by the tester.

Examining the Addition and Deletion differences in detail, we
see that two regions that should have been paired to form a re-
gion pair and detected as a single Alteration difference were de-
tected as an Addition difference and a Deletion difference. This
was because they were not similar enough to be paired. In such
cases, the tester must expend much effort in checking them be-
cause the contents of both the Addition region and the Deletion

region must be visually checked to identify the differences be-
tween them. However, the ratio of each area for the Addition and
Deletion differences was less than 6.8% of the total area, which
is not particularly large.

The Alteration differences that were confirmable by compari-
son in pixel units would not impose a large burden on the tester
even though the ratio of the area was as high as 76.4%. This is
because ReBDiff provides an overlapping view (Fig. 7) that helps

the tester compare the two regions.
The Alteration differences for Ap and Xe were impossible to

confirm by comparison in pixel units. Though the tester would
have to visually check these differences, the burden would be
greatly reduced by using ReBDiff because ReBDiff narrowed
down the region to be checked (to 23.7% for Ap and 56.6% for
Xe). This means that the tester would not need to visually check
the entire screen.
5.4.2 RQ2

The difference discovery rate and time required for confirma-
tion are plotted in Fig. 8 for both using ReBDiff and manual con-
firmation. In both cases, there were (the same) four participants,
referred to here as P, Q, R, and S. The target screens were Cm11
and Dp11, both of which had one type 1 change and ten type 2
changes. A plotted point labeled “X-Y-ReBDiff” indicates that
participant Y confirmed target screen X by using ReBDiff and a
plotted point labeled “X-Y-Manual” indicates that participant Y

confirmed target screen X manually. When ReBDiff was used, all
differences were detected by all participants, whereas when man-
ual confirmation was used, some differences were overlooked. In
addition, the times required for confirmation using ReBDiff were
much shorter than those using manual confirmation. These results
show that ReBDiff improves the difference detection rate and re-
duces the confirmation time.

Six differences were overlooked in the manual confirmation.
• Differences in font type: 2 instances
• Difference in font size: 1 instance
• Difference in sentence content: 1 instance
• Change in icon position: 1 instance

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

• Change in logo position: 1 instance
Two participants failed to manually detect differences in font
type. Though such differences are difficult to detect visually, they
are easily found by ReBDiff by using overlapping and comparing
the two regions in pixel units. Some participant also overlooked
differences that were relatively easy to find such as a difference in
font size and changes in an icon’s/logo’s position. For such cases,
by using ReBDiff, the participants had only to check a limited part
of the entire screen and were able to compare an Alteration differ-
ence in pixel units. As a result, they found the differences. This
demonstrates the effectiveness of using ReBDiff.

5.5 Discussion
In the experiments, ReBDiff was able to detect all differences

as shown Table 2. However, in some cases ReBDiff may over-
look a difference. For example, if the area of changes in a region
in the target screen is very small relative to the area of the re-
gion, this difference might not be detected. Adjusting the thresh-
old values (SP and SM) enables the alteration of regions to be
judged more strictly, which reduces such missed detections. Such
stricter judgment of equivalences can cause many unessential dif-
ferences. There is thus a trade-off between reducing the number
of oversights and reducing the number of detected unessential dif-
ferences. An appropriate policy for this might be, in tests where
even a few oversights are unacceptable, the equivalence of the
two sections should be strictly determined. In tests where time is
a priority and a few oversights are acceptable, the equivalence of
the two sections should be determined less strictly.

In the experiments, we used screens for PC web and mobile
web services and an Electron application with different display
sizes and different implementation technologies. The embedded
change patterns were created on the basis of interviews with de-
velopers who had been mainly developing mobile web applica-
tions. Since the effectiveness of the proposed method was demon-
strated using these screens and change patterns, the proposed
method should be widely applicable. To verify that it can be
applied more widely and more generally, it needs to be evalu-
ated using a wide variety of application types, e.g., Android and
iOS native applications. Future work also includes interviewing
testers at a wider variety of development sites.

As described in Section 1, there may be dynamic regions such
as those for advertisements and news articles within a screen, and
these regions are detected as differences. If many such differences
are detected in practical use of ReBDiff the time for checking dif-
ferences will be longer. A promising method for overcoming this
problem is to specify a mask area on the basis of the relative po-
sitional relationships of multiple screen elements and use it to
remove the dynamic regions from the screen [1].

If the correct screen and the target screen greatly differ, two
problems may occur.
• The coordinates of the corresponding regions in the two

screens would be too far apart. As a result, a large number of
Addition and Deletion differences would be detected because
ReBDiff would be unable to create region pairs properly.

• ReBDiff would create an incorrect region pair and detect it as
an Alteration difference. If many such Alteration differences

are detected, the tester would probably get confused.
A practical solution when more than a certain number of dif-

ferences are detected for the target screen is to carry out a visual
confirmation without using ReBDiff’s checking views.

6. Conclusion

Our proposed image-based visual regression testing system,
ReBDiff, divides each of the images of the two application screens
to be compared into multiple regions, makes appropriate match-
ings between corresponding regions in the two images, and de-
tects differences on the basis of the matchings. By using ReBD-

iff, the tester can identify essential differences between the two
screens efficiently even when there are changes that affect the
entire screen, e.g., parallel movements of screen elements. Ex-
periments using screens for PC web and mobile web services and
an Electron application demonstrated the effectiveness of the pro-
posed method.

A product [20] incorporating the technology used in ReBDiff

is currently being used at NTT group companies. Future work
includes improving ReBDiff by reflecting the feedback and com-
ments of actual users.

References

[1] Adachi, Y., Tanno, H. and Yoshimura, Y.: Masking Dynamic Content
Areas Based on Positional Relationship of Screen Elements for Visual
Regression Testing (in Japanese), JSSST Computer Software, Vol.36,
No.4, pp.53–59 (2019).

[2] Alameer, A., Mahajan, S. and Halfond, W.G.J.: Detecting and Local-
izing Internationalization Presentation Failures in Web Applications,
2016 IEEE International Conference on Software Testing, Verification
and Validation, ICST 2016, pp.202–212 (2016).

[3] Alegroth, E., Feldt, R. and Ryrholm, L.: Visual GUI Testing in Prac-
tice: Challenges, Problems and Limitations, Journal of Empirical
Software Engineering, Vol.20, No.3, pp.694–744 (2015).

[4] Althomali, I., Kapfhammer, G.M. and McMinn, P.: Automatic visual
verification of layout failures in responsively designed web pages,
12th IEEE Conference on Software Testing, Validation and Verifica-
tion, ICST 2019, pp.183–193 (2019).

[5] Bajammal, M. and Mesbah, A.: Web Canvas Testing Through Visual
Inference, 11th IEEE International Conference on Software Testing,
Verification and Validation, ICST 2018, pp.193–203 (2018).

[6] Barr, E.T., Harman, M., McMinn, P., Shahbaz, M. and Yoo, S.: The
Oracle Problem in Software Testing: A Survey, IEEE Trans. Software
Engineering, Vol.41, No.5, pp.507–525 (2015).

[7] Canny, J.: A Computational Approach to Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, Vol.8, No.6, pp.679–698
(1986).

[8] Chang, T., Yeh, T. and Miller, R.C.: GUI Testing Using Computer Vi-
sion, 28th International Conference on Human Factors in Computing
Systems, SIGCHI 2010, pp.1535–1544 (2010).

[9] Choudhary, S.R., Prasad, M.R. and Orso, A.: X-PERT: Accurate Iden-
tification of Cross-Browser Issues in Web Applications, 35th Interna-
tional Conference on Software Engineering, ICSE 2013, pp.702–711
(2013).

[10] Kaehler, A. and Bradski, G.: Learning OpenCV: Computer Vision with
the OpenCV Library, O’Reilly Media (Aug. 2009).

[11] Hori, A., Takada, S., Tanno, H. and Oinuma, M.: An Oracle based
on Image Comparison for Regression Testing of Web Applications,
27th International Conference on Software Engineering and Knowl-
edge Engineering, SEKE 2015, pp.639–645 (2015).

[12] Kıraç, F., Aktemur, B. and Sözer, H.: VISOR: A Fast Image Process-
ing Pipeline with Scaling and Translation Invariance for Test Oracle
Automation of Visual Output Systems, Journal of Systems and Soft-
ware, Vol.136, pp.266–277 (2017).

[13] Lin, Y., Rojas, J.F., Chu, E.T. and Lai, Y.: On the Accuracy, Efficiency,
and Reusability of Automated Test Oracles for Android Devices, IEEE
Trans. Software Engineering, Vol.40, No.10, pp.957–970 (2014).

[14] Mahajan, S. and Halfond, W.G.J.: Finding HTML Presentation Fail-
ures Using Image Comparison Techniques, 29th ACM/IEEE Interna-
tional Conference on Automated Software Engineering, ASE 2014,

c© 2020 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.28

pp.91–96 (2014).
[15] Mahajan, S. and Halfond, W.G.J.: Detection and Localization of

HTML Presentation Failures Using Computer Vision-Based Tech-
niques, 8th IEEE International Conference on Software Testing, Veri-
fication and Validation, ICST 2015, pp.1–10 (2015).

[16] Ramler, R., Wetzlmaier, T. and Hoschek, R.: GUI Scalability Issues of
Windows Desktop Applications and How to Find Them, Companion
Proc. ISSTA/ECOOP 2018 Workshops, pp.63–67 (2018).

[17] Roy Choudhary, S., Versee, H. and Orso, A.: Webdiff: Automated
identification of cross-browser issues in web applications, 2010 IEEE
International Conference on Software Maintenance, ICSM 2010,
pp.1–10 (2010).

[18] Sprenkle, S., Pollock, L., Esquivel, H., Hazelwood, B. and Ecott,
S.: Automated Oracle Comparators for TestingWeb Application, 18th
IEEE International Symposium on Software Reliability, ISSRE 2017,
pp.117–126 (2007).

[19] Takahashi, J.: An Automated Oracle for Verifying GUI Objects,
ACM SIGSOFT Software Engineering Notes, Vol.26, No.4, pp.83–88
(2001).

[20] Tanno, H. and Adachi, Y.: Support for Finding Presentation Failures
by Using Computer Vision Techniques, 2018 IEEE International Con-
ference on Software Testing, Verification and Validation Workshops,
ICSTW 2018, pp.356–363 (2018).

[21] Walsh, T.A., Kapfhammer, G.M. and McMinn, P.: ReDeCheck: An
Automatic Layout Failure Checking Tool for Responsively Designed
Web Pages, 26th International Symposium on Software Testing and
Analysis, ISSTA 2017, pp.360–363 (2017).

[22] Walsh, T.A., McMinn, P. and Kapfhammer, G.M.: Automatic Detec-
tion of Potential Layout Faults Following Changes to Responsive Web
Pages, 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2015, pp.709–714 (2015).

Haruto Tanno is currently a researcher
in the Software Innovation Center at
Nippon Telegraph and Telephone Corpo-
ration (NTT), Tokyo, Japan. He received
B.E. and M.E. degrees from The Univer-
sity of Electro-Communications, in 2007
and 2009. He joined NTT in 2009. His
research interests include software testing

and debugging. He is a member of the IPSJ.

Yu Adachi is currently a researcher in
the Software Innovation Center at Nippon
Telegraph and Telephone Corporation
(NTT), Tokyo, Japan. He received B.E.
and M.E. degrees from The University of
Electro-Communications, Tokyo, in 2007
and 2009. He joined NTT in 2009. His
current research area is software engineer-

ing.

Yu Yoshimura is currently a researcher
in the Software Innovation Center at
Nippon Telegraph and Telephone Corpo-
ration (NTT), Tokyo, Japan. He received
B.E. and M.E. degrees from the Tokyo
University of Science in 2012 and 2014.
He joined NTT COMWARE Corporation,
Tokyo, in 2014. His current research in-

terests include software engineering.

Katsuyuki Natsukawa is a project man-
ager in the Software Innovation Center at
Nippon Telegraph and Telephone Corpo-
ration (NTT), Tokyo, Japan. He received
an M.E. from the Nara Institute of Science
and Technology in 1996. He joined NTT
in 1996. His current research interests in-
clude software engineering.

Hideya Iwasaki is a professor in the
Graduate School of Informatics and En-
gineering at the University of Electro-
communications. He has been a mem-
ber of the Science Council of Japan since
2011. He received an M.E. degree in 1985
and a Dr. Eng. degree in 1988 from The
University of Tokyo. His research inter-

ests include programming languages and systems, parallel pro-
cessing, systems software, and constructive algorithmics. He is a
member of the IPSJ and ACM.

c© 2020 Information Processing Society of Japan


