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Abstract: Packing optimization is a challenging and time-consuming task for a number of industry and logistics ap-
plications. Efficient packing can reduce the cost of storage and shipping and also guarantee that damage will not occur
during shipping. To help address this problem, we propose a spatial augmented reality-based support system for assist-
ing workers with packing optimization. Our packing support system first uses an RGB-D camera to acquire color and
depth information of the items to be packed and the destination container. Then, object segmentation and dimension
estimation are simultaneously carried out, and the position and orientation of packing items inside the container are
calculated using a bin-packing algorithm. Finally, the optimized packing instructions are projected onto the user’s
work area. We then developed and tested two user interfaces (UI) for visualizing instructions called Rotation and
Object Movement. Experimental results showed that both methods help reduce packing time up to 57.89% in Rotation

and 55.63% in Object Movement, compared to a non-UI method.
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1. Introduction

Packing, defined simply for the purposes of this paper as the
process of arranging smaller items into a larger container, is
both a complex and prevalent issue in logistics management due
to the fact that it is an NP-hard problem [8]. Ensuring proper
packing solutions allows workers, and hence the company, to
optimize shipping and transportation costs [1]. In mathematics,
many heuristic algorithms [9], [11], [14] have been developed to
solve for the optimal solution of packing problems. These algo-
rithms have sometimes been applied for large-scale packing op-
erations, for example when loading thousands of containers onto
ships or airplanes. For smaller scale packing problems such as
those faced by consumer-oriented delivery or local shipping car-
riers [16], fewer methods are currently available for logistics and
optimization. Moreover, methods for real-time presentation or
display of instructions have not been applied or tested.

Overlaying a task solution visualization onto the workspace
helps reduce both completion time and the number of errors [19],
[23]. Such a real-time support or worker training system would
be useful to individual workers and scalable across the entire sup-
ply chain. As a potential solution, we have developed a real-
time packing guidance system using Spatial Augmented Reality
(SAR), a branch of Augmented Reality (AR) that involves over-
laying computer-generated information onto the real world using
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Fig. 1 Model of the use case for our packing support system in a typical
fulfillment center (top). Projection onto a sample workspace with
virtual overlays provides real time instructions to guide users to the
optimal packing solution (lower right).

projection techniques [7]. The image in Fig.1 provides an ex-
ample of the system’s functionality and operation for assisting a
warehouse shipping task.

The hardware for the system primarily consists of two parts,
the first being an RGB-D camera that can ascertain and seg-
ment packing items. This camera is coupled with a projector that
projects packing guidance onto the user’s workspace. The soft-
ware includes several primary methods to facilitate support. First,
color and depth information of the items to be packed and a tar-
get container are acquired using the RGB-D camera. Next, object
segmentation and dimension estimation are computed using the
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segmented point cloud, and finally the optimal packing solution
is found using the bin-packing algorithm proposed by Baltacioglu
et al. [5]. We also designed two packing overlays (virtual instruc-
tions) called Rotation Instruction (RI) and Movement Instruction
(MI). These overlay techniques are then combined with the pack-
ing optimization algorithm into a single real-time system. When
the user begins packing, step-by-step visualizations of package
placements and orientations are projected onto the workspace.
To test how well these visualizations could assist users, we con-
ducted experiments to evaluate the performance of our system
by comparing two overlay methods and the unsupported packing
process. Results showed that overlays reduced packing time and
the number of moves required per object versus a baseline, but
that no single type of instruction significantly outperformed any
other.
Our contributions in this paper include:
e the hardware setup and implementation of our packing sup-
port system as a whole,
e algorithms that obtain and segment objects and output an op-
timized packing solution in real time, and
o the design and evaluation of two types of virtual overlays
that guide the user during the packing process.

2. Related Work

2.1 The Packing Problem

In mathematics and computing, the packing problem is typ-
ically described as the general goal of packing smaller items
into a larger container, and the problem can often be multi-
dimensional. For example, a simple one-dimensional pack-
ing problem is disk partitioning on traditional computing sys-
tems [18]. Two-dimensional packing problems would include
tasks such as efficient cutting of wood or metal plates [22]. Three-
dimensional packing problems are most typically found in logis-
tics, and the goal is almost always to reduce the cost of packag-
ing materials, vehicles, and fuel, hence the overall cost of trans-
portation. This class of problems is typically categorized by in-
put minimization and output maximization [34] based on the type
of logistics problem being solved. Input minimization is an ap-
proach that takes into account the packing all of the items using
the smallest number of containers possible (as e.g., bin-packing),
whereas output maximization seeks to pack the largest possible
subset of items into a single container (e.g., the knapsack prob-
lem).

Packing algorithms are usually executed in two steps, includ-
ing container selection and packing position determination. A
sorting step is sometimes included since the ordering can poten-
tially increase packing efficiency [9]. In the case where more than
one container is used, a method such as branch and bound [25]
or heuristics such as first-fit-decreasing or best-fit-decreasing [9]
are often used for selecting a container. In order to decide an
item’s position inside a container, placement heuristics such as
Wall-building [14], Layer-building [5], Corner points [25], and
Extreme points [9] have been developed in the past.

Though wall-building and layer-building approaches pack
items using a “guillotine” partitioning method, this does not nec-
essarily utilize the entire volume of the container. Both the cor-
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ner point and extreme point methods are generally able to utilize
a container space more effectively, but have a non-rotation con-
straint. Therefore, for cases with the same input, the wall building
and layer building methods with a rotation constraint would pro-
vide a more optimal packing solution. Because packing problems
are inherently NP-hard, none of the existing methods are always
guaranteed to result in a perfect solution. At the same time, all of
them have been applied to real packing problems by constraining
the problem to the requirements for the particular application.

Most of the packing solutions are typically provided in a format
such as a text file [9], [25], which normally contains a percentage
of bin utilization and details of each packing item that are listed
by their dimensions, position, orientation, and container number.
By providing these data, it is easy to compare efficiency between
different packing methods by listing them in a table [34]. How-
ever, in practical use, it is hard for humans to comprehend what
a particular packing solution looks like or how it was ordered or
packed. Erick et al. introduced a method using OpenGL to draw
three-dimensional computer graphics for simulating a packing so-
lution [11]. Observing a graphical simulation not only allows a
user to better identify free space in a container or how to pack
the item, but also helps developers and researchers check their
packing algorithm’s precision and efficiency. Moreover, with the
visual and interactive capabilities of a simulated model, the user
is able to understand and learn a more disciplined approach to
solve 3D packing problems.

Nowadays, 3D simulation of packing solution services are
available in both non-commercial [28] and commercial [21], [27].
However, existing systems display their solutions on a flat moni-
tor. Thus, the user needs to switch his or her attention between the
screen and the workspace, which can be time-consuming and pre-
vent spatial learning. Alternatively, displaying the solution onto
the workspace can potentially be more efficient for both time, ef-
fort, and learning of the packing task.

2.2 Information Visualization

Augmented Reality (AR) is a technology that displays virtual
information onto the real world environment [20]. A variety of
display devices are used in AR to display visual information, such
as a hand-held display, a head-mounted display (HMD), or a pro-
jector. By using a smartphone or a tablet device with a built-in
camera, people can access richer information from the real en-
vironment through AR applications such as real-time signboard
translation [13] or a touring guide [33]. In the case of an HMD,
the user does not need to hold the device so that one can get guid-
ance information and work at the same time. For example, a
user can assemble objects while viewing the assembly solution
through an HMD [19], machine maintenance [10], or manipulate
objects while seeing an instruction [4].

Although the user is able to work hands-free by wearing the
HMD, the field of view is limited and may not cover the whole
work area, causing potential issues like eye fatigue or unneces-
sary head movement. These issues can often be mitigated by us-
ing projection-based AR, or Spatial Augmented Reality (SAR),
which has a great potential to increase efficiency by allowing peo-
ple to view the entire work space efficiently without wearing any



Electronic Preprint for Journal of Information Processing Vol.28

Input Object Segmentation

RGB-Dfamera ] Cluster extraction ]
Point cloud data

Object’s dimension
estimation

Packing Solution Calculation
Bin-packing
Algorithm
Packing order
arrangement

Packing Visualization

Rotation Indication
] (R1) -
Movement Indication
(M1)

Output

Projection image
]

Projector

device. One example includes interior architecture design sys-
tems [24]. Projecting a mock cabinet layout onto a potential room
space can enable designers to modify the layout to fit the room
environment or a potential client’s preferences in real-time, and
also ensure that drawers or doors do not interfere with normal op-
eration of other objects. In the case of manufacturing, SAR has
been applied in a spot welding inspection support system [35].
Projections of a target position for inspection and a path to the
next position help a worker avoid misses and prevent duplication
of work for welding position inspections.

Another advantage of SAR is the ability to indicate or guide a
remote user. For example, Tsimeris [30] developed a number of
SAR visual cues that convey translation and rotation information
to instruct object arrangement. Adcock et al. [2] used semantic
information of object physical properties, by drawing a shape of
the manipulating object at the work area. Uranishi et al. [31] used
a grid-pattern to help both instructor and user and to indicate and
identify the position of the object. However, these systems gen-
erally use translational or 2D rotation cues, and require manual
operation on the part of an instructor or professional user. This
motivated us not only to propose 3D rotation cues for manipulat-
ing objects using SAR, but also to automate the process of opti-
mizing a packing solution.

3. System Design

Our projection-based packing support system is designed to
help users pack items into a container as densely and quickly
as possible without the assistance of a remote collaborator. A
flowchart outlining the entire process flow is depicted in Fig. 2.
The system first starts by using the overhead RGB-D camera to
acquire workspace and object information as inputs. We then
use an object segmentation algorithm to estimate each object’s
dimensions and calculate a packing solution. Finally, the pack-
ing solution is displayed to the user in a step-by-step fashion by
projecting the instructions (visualizations) directly onto the work
area and updating after every completed step.

When testing our prototype system, we selected items and a
container that were rectangular solids, which are often found in a
number of real packing scenarios because they can be used to
minimize open space in a container in comparison with other
shapes. During experimentation, all items were initially placed
orthogonally to the table and with enough space between them to
facilitate segmentation. We did this so that the scanning process
only has to happen once, as opposed to requiring the user to scan
each item individually.
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(c) Cluster extraction

(d) Bounding box estimation

Fig. 3 The object segmentation process. Showing the capture of point cloud
data, estimation of the workspace plane, segmentation of the con-
tainer and packing items, and bounding box estimation with overlaid
textures.

3.1 Object Segmentation

In this step of the process, we extract information about each
packing item from an input point cloud image, divide these
into individual point cloud segments, and calculate dimensions
through the Point Cloud Library [26].

We first estimate the table surface from the input point cloud,
as shown in Fig.3 (a), by using the Random Sample Consen-
sus (RANSAC) algorithm [12]. RANSAC is an iterative method
that estimates parameters of a mathematical model from the data,
which in our case is used to fit all points from the point cloud into
possible plane models. After a number of iterations, it returns the
plane model of best fit as well as the points fitted to that model,
referred to as inliers. A sample result of the planar model from
the RANSAC algorithm is shown in Fig. 3 (b), where red points
are the group of inliers included in the plane model and all other
points are outliers. The estimated plane parameters a, b, ¢, and
d of this inliers group in ax + by + cz + d = 0 form are —0.035,
—-0.377,0.925, and —0.8263, respectively.

We then remove the plane inliers (table) from the point cloud so
that only objects that align on table remain. This allows us to use
the Kd tree search method [6] to find clusters of point cloud data
that represent individual objects. The results of a sample clus-
ter extraction are shown in Fig. 3 (c), where different groups of
clusters are shown in different colors. In each cluster, the biggest
point cloud segment is selected as the container. Other remain-
ing clusters are labeled as packable items, and we store each item
and container cluster with a reference (x,y,z) position relative
to the workspace. Finally, we assign the smallest bounding box
possible to each cluster and set each object’s dimensions equal to
its bounding box size, as shown in Fig. 3 (d). In order to correctly
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Fig. 4 Simulated visualizations of a packing solution showing segmented point cloud data fit into the
container (left) and the sequential packing solution at each step (right), with the red bounding box

signifying the outer regions of the container.

orient and display visualizations, we also extract Eigen values and
vectors for each object, and use them to rotate the object to align
the axis in the target container. Note that in the experiments, we
found 1-2 mm of error in the estimation of each bounding box
dimensions from the real object, therefore we adjusted the di-
mensions manually to more accurately represent the items being
tested.

3.2 Packing Solution Calculation

To find the densest packing solution for a particular container,
we apply the bin-packing algorithm by Baltacioglu et al.[5],
which is a heuristic that employs a layer packing approach and
packs rectangular boxes in any orthogonal orientation. We in-
put the X, y, and z dimensions of the container, total number of
items, and lists of the item’s dimensions into the algorithm. Out-
puts from the algorithm include the x, y, and z positions and di-
mensions of each item to be packed in the container. A visual
representation of one of these packing solutions along with each
packing step is shown in Fig. 4.

The process behind the packing algorithm is described as fol-
lows. First, we define n as the total number of items and {d;;, d;,,
d;3} as the three dimensions of a particular item i. We then define
DIM as the set of unique dimensions for all items as calculated
by the following formula:

— 3
DIM = Uy, U,

d;j (D

The variable m represents the total number of members in DIM,
and k is the index of members ranging from 1 to m. We then de-
fine VAL as a set of the average free space values for each DIM,.
The variable ¢; is set to the dimension from item i that is closest
to the DIM value, and the value of ¢; is from {d;;, d;», d3}. Each
member of VAL is calculated by using the following formula:

VAL, = Z IDIM, - ¢;| 2)
i=1

We then construct, LAYER(), an array of candidate layers height
using the following formula:

LAYER() = U (DIM,, VALy) 3)

Afterwards, LAYER() members are arranged by increasing the
value of VAL. A small VAL value represents lower remaining free
space between packing item and layer height DIM. We use the
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Fig.5 The six possible rotations for any packing item, which determine
how the algorithm handles the instruction at a particular step.

first DIM of candidate layers that has the smallest VAL as the
first layer height. The algorithm then repeatedly tries packing
solutions by selecting items that can fit into the layer along X di-
mension and repeats placement operations into the current layer
along Z dimension until the layer surface is full. When no space
remains to pack items into the current layer, a new upper layer
along Y dimension is created, and the process is continued for
the current layer. This bin-packing algorithm also tries to pack
items with six different orthogonal rotations of the container as
depicted in Fig. 5, then compares each rotated container utiliza-
tion and selects the container rotation that has the best packing
utilization as the optimal solution.

After obtaining the optimal packing solution, we arrange the
order of packing items as determined by the algorithm. Simply
put, we follow the rules stating that lower item positions should
be packed before upper item positions and that packing order
should start from one side to opposite side of the container.

Now that we could automatically obtain an optimal packing
solution, we needed an intuitive way to present this to the user.
In order to effectively convey the item’s destination packing po-
sition and orientation, packing instructions should be both easy
to understand and at the same time indicate sequential progress
for the item to pick up. We then went on to design two different
types of virtual overlays to convey information, as described in
the following section.

4. Virtual Instructions and Overlay

As a user progresses with the packing task, steps toward reach-
ing the optimal solution need to be displayed item by item, in real
time, from start to finish. Our previous work [29] uses point cloud
images that were captured during object segmentation process to
visualize a packing solution. However, this type of interface has
many demerits. Due to its pixel-based image, the projected image
is hard to see, especially when it is overlaid on a textured item.
Moreover, if the packing solution shows the rotated point cloud
image, the user will see a sparse point cloud because it was only
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(b) Movement Instruction

(a) Rotation Instruction

(c) Calibrated coordinate plane

Fig. 6 Images of the packing visualizations in-use, showing the two overlays we designed (left and cen-
ter) and a calibrated coordinate plane system for reference (right).

(a) Rotation at Y-axis (b) Rotation at X-axis

COCHICECD

(c) Rotation at Z-axis

(d) Rotation at X and Y-axis (e) Rotation at Z and Y-axis

Fig. 7 Rotation Instructions: in each sub-image, the yellow box with blue/red target rotation markers on
the left is projected over the physical object’s original position, and the right image is projected in
the destination container at the target orientation and position.

captured from a single view of the RGB-D camera.

In this study, we proposed two user interfaces, called Rotation
Instruction (RI) and Movement Instruction (MI). Representative
images of each of these techniques are shown in Fig. 6 (a) and
6 (b), respectively. These methods are interactive that the user
can advance or return via keyboard.

Prior to rendering, we obtain item and container positions
and dimensions to locate the physical positions on the user’s
workspace. Container positions and dimensions in the real world
are then used as reference positions for the final packing solution
obtained from packing solution calculation described previously.
We use the coordinate system depicted in Fig. 6 (c) to project item
positions and orientations, where the positive X-axis is a horizon-
tal line aligned with the workspace from right to left. The pos-
itive Y-axis is a vertical line passing through the center of the
workspace upwards into the air. The positive Z-axis is a horizon-
tal line through the center of the workspace pointing away from
the user.

4.1 Rotation Instruction

In some situations, packing items may have similar faces and
dimensions, so it can be hard to distinguish differences in orien-
tation simply by observing images from the virtual overlays. For
example, consider a plain, square box of a single color in which
one side is only slightly longer than the other. By only looking
at the item image itself, users may feel uncertain as to which ori-
entation is actually being indicated. To solve this potential ambi-
guity, we designed the Rotation instruction, which uses graphical
images to help identify the entire transformation of the packing
item. For any given packing task, there are six possible orthogo-
nal rotations in three dimensions of any object, which are shown
in Fig.5. Much like algorithmic solutions to Rubik’s cubes are
divided into specific rotations, We classify these six possible or-
thogonal rotations into two-dimension rotations between the X-,
Y-, and Z-axes as follows:

e case:1 no rotation

e case:2 rotate 90 degrees at Y-axis
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e case:3 rotate 90 degrees at X-axis

e case:4 rotate 90 degrees at Z-axis

e case:5 rotate 90 degrees at X-axis and Y-axis

e case:6 rotate 90 degrees at Z-axis and Y-axis
In other words, a combination of rotations on any two axes can
cover six different possible target orientations for any packing ob-
ject.

The visualization of RI technique consists of 2 steps of rota-
tion. The first step uses a red or blue arrow to indicates a rotation
along X-axis (to flip an item up/down) or Z-axis (to flip an item
left/right). The second step uses 2 comparable images to indi-
cates a rotation along Y-axis. If there is a rotation only at Y-axis,
the instruction will show only the second step image as shown in
Fig.7 (a).

The first rotation step is images that show on the left side. A
white rectangle indicates an initial orientation of an item. A yel-
low rectangle (left side) which overlays on the white rectangle
position that indicates a final orientation of the item, a red and
blue line at the corner of the rectangles show X and Z-axis direc-
tion, and a curved arrow indicates which direction to rotate the
item. The left sides of (b) and (d) in Fig. 7 show a red curved ar-
row that guides the user to rotate the item 90 degrees around the
red line or X-axis, from the white rectangle position to the yellow
rectangle position. The left sides of (c) and (e) in Fig. 7, which
have a blue curved arrow, prompt the user to rotate the item 90
degrees around the blue line or Z-axis.

The second step indicates a rotation along Y-axis, which shows
two yellow rectangles on the left and right side of the image to-
gether with the first step images. Both yellow rectangles have
black arrows in the middle to signify an orientation. The left
side of yellow rectangle shows an orientation before rotating the
second step and the yellow rectangle on the right side shows the
final orientation of the item. Figure 7 (a), (d) and (e) which have
90 degrees different orientation of the yellow rectangles between
the left and right side, prompt the user to turn the item clockwise
or counter-clockwise (90 degrees rotation around Y-axis).
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a) Initial pose (b) Intermediate translation

(d) Intermediate rotation

(e) Final pose

Fig. 8 Object Movement Instructions: (a), (b), and (c) show item in an image is moving from a current
position to a target position. (c), (d), and (e) show item in an image is rotating from a current

orientation to a target orientation.

4.2 Movement Instruction

In the RI technique, the user needs to infer intermediary steps
between the start and finish, which lacks motion cues. We de-
veloped one final technique called Movement technique that in
contrast shows smooth movement of the item from its current po-
sition to the target position. For this overlay, we hypothesized that
users would be able to follow the instructions without additional
cognitive effort to interpret translations or rotations. Frames from
the sequence of one of these moving objects is shown in Fig. 8.

White rectangles show the current object’s initial and final
packing positions, and a blue rectangle shows the object’s move-
ment and rotation. This type of instruction first shows the object
moving along a white leader line to the packing position. Af-
ter the virtual object reaches the target position, it then gradually
rotates 15 degrees along each orthogonal axis all the way to the
correct orientation. After observing this movement, the user can
replicate the same translation and orientation into the target loca-
tion.

The blue rectangle will start moving from the initial position
after 0.5 second of an input key pressed by the user. Every 0.1
second it will update its position which is 5cm away from its
last position along the white leader line. When it reaches the fi-
nal packing position, it will start rotating 15 degrees every 0.1
seconds from Y-axis following with the X- or Z-axis. One-axis
rotations take 0.6 seconds and two-axis rotations take 1.2 sec-
onds. On average, items are 50 cm away from the container, so
the movement overlay takes an average time of around 2 seconds
to show the packing cues for one item.

Finally we wanted to conduct a user evaluation to determine the
efficiency, trade-offs, and subjective ratings of each technique.

5. Evaluation

To evaluate the effectiveness of real time support and compare
our two visualizations, we conducted a series of experiments to
test packing performance. Our goal was to assess the overall per-
formance and subjective preferences of the two types of proposed
instructions and to compare the results with unassisted packing.

5.1 Experiment setup

To select compact packing tasks, we collected various sizes of
50 snack boxes and several parcel boxes. The size of these boxes
was measured manually. We then input the size information of
each parcel box and all snack boxes into the bin-packing algo-
rithm. The two most compact packing parcels were selected as
our experiment tasks (refer as Task:1 and Task:2).

Task:1 had a filling rate of 87.60% and consisted of 12 indi-
vidual items to be packed into a container with dimensions of
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Fig. 10 Image of the packing items at the start of Task:2.

(a) Task:1

(b) Task:2

Fig. 11 Simulated images of each optimized packing solution.

32.0cm x 11.5cm X 25.0cm, as shown in Fig.9. Task:2 had
a filling rate of 84.02% and consisted of 17 individual packing
items to be packed into a container with dimensions of 32.5 cm X
21.0cm % 23.0 cm, as shown in Fig. 10. A single optimal solution
provided by the system for each task is shown in Fig. 11, and lists
of packing items are shown in Table 1.

Our experiment was conducted in two parts: the first was a
pilot experiment to create a baseline data of no-assistance pack-
ing, and the second was a within subjects design that was used to
evaluate the two user interfaces. In the first run, 12 participants
(average age of 22.33, ranging from 21 to 24) were asked to com-
plete packing for Task:1 and Task:2 without any assistance. The
initial box positions were the same between participants, and the
task was complete when all items were packed into the destina-
tion container. In the second run, we included 24 participants
(average age of 23.67, ranging from 20 to 29) to conduct pack-
ing for Task:1 and Task:2 with the RI and MI overlays in random
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Table 1 List of packing items.

Task:1 Task:2

Item  Dimensions (mm) | Item  Dimensions (mm)
1 158 x 98 x 63 1 214 x 70 x 56
2 159 x 96 x 63 2 152 x 70 x 80
3 160 x 60 x 95 3 140 x 65 x 127
4 157 x 60 x 95 4 220 x 68 x 53
5 230 x 114 x 37 5 75 x 69 x 85
6 84 x 106 x 35 6 38 x 65 x 100
7 203 x 97 x 53 7 160 x 95 x 60
8 111 x 111 x52 8 160 x 95 x 60
9 163 x 25 x 90 9 158 x 95 x 60
10 116 x 35 x 95 10 150 x 95 x 121
11 150 x 30 x 89 11 160 x 90 x 24
12 170 x 15 x 77 12 60 x 95 x 157
13 49 x 95 x 133

14 230 x 37 x 114

15 230 x 37 x 114
16 116 x 35 x 95

17 106 x 35 x 84

order per participant.

5.2 Procedure

Before starting the experiment, we explained to each partici-
pant how to interpret the RI and MI instructions and how to select
the next or previous instruction by pressing the right or left arrow
keys. The times used for object segmentation, which automati-
cally determine items’ longer and shorter side of tasks 1 and 2,
were 67.10 seconds and 82.12 seconds, respectively. The pack-
ing solution calculation time was 0.48 seconds and 0.26 seconds
for tasks 1 and 2, respectively. To make a more fair comparison,
we added these pre-processing times to the packing time for each
task. During the experiments, we measured time and move count
for each item. After completing the two packing tasks, we asked
the participants to fill out a subjective questionnaire.

5.3 Hypotheses

In general, we hypothesized that packing time would be re-
duced when assisted with the visualizations since trial and error
would not be necessary to find a solution. On the other hand, we
thought that the total number of moves required would be rela-
tively similar despite taking more time. With respect to visualiza-
tions, we thought that the RI technique would be most efficient
on shortening the packing time because it provides a 3D visual-
ization of the item rotation, whereas users need to wait for the
animation with the MI technique.

Regarding preference, we thought that the MI technique would
be most preferred since it provides a packing example closest to
the real world objects, but with the other technique the user has
to take some effort to interpret the visualization before insertion.
Accordingly, we formulated the following hypotheses:

e HI1: The proposed packing support system and visualiza-
tions will result in reduced packing time and number of item
moves compared to the no-guidance condition.

e H2: The Rotation Instruction (RI) will result in the lowest
packing time when compared to other visualizations.

e H3: The Movement Instruction (MI) will receive the highest
subjective ratings for ease of understanding, usefulness and
satisfaction level when compared to other visualizations.
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Fig. 12 Average packing time by method (in seconds). WO indicates with-
out instruction, RI indicates with rotation instruction, and MI indi-
cates with movement instruction.
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Fig. 13  Average number of item moves by method.

5.4 Experiment results

This section presents a comparison of results for packing with-
out support from the system (WO) and each of the two packing
interface techniques (RI and MI). We analyzed packing time and
the number of moves per item. We also gathered subjective user
data for each type of virtual instruction, which included ease of
understanding, instruction usefulness, and satisfaction level.
5.4.1 Packing Time

We combine measured time to completion of each set of in-
structions with the time used in Object Segmentation and Pack-
ing Solution Calculation process. The total times are presented in
Fig. 12, which shows that our proposed techniques (RI and MI)
reduced packing time when compared to the non-assisted (WO)
condition. Reductions in time by using RI and MI were 57.89%
and 55.63% in Task:1, respectively, and 30.32% and 34.26% in
Task:2, respectively.

We conducted a parametric measures Analysis of Variance
(ANOVA) test[15], followed with post-hoc analysis using pair-
wise t-tests with Holm’s adjustment [17] to evaluate time to com-
pletion results. In Task:1, we found significant differences be-
tween the WO, RI, and MI overlays with F = 15.21, p < 0.001,
and in Task:2, we also found significant differences between the
WO, RI, and MI overlays with F = 6.65, p = 0.003. These
results are summarized in Fig. 12, where the asterisk *#%, #% *
symbols between each set of bars indicates a significance level of
p <0.001, p <0.01, and p < 0.05, respectively.

5.4.2 Number of Item Moves

Afterwards, we analyzed the number of item moves as pre-
sented in Fig. 13. The chart shows that both RI and MI visual-
izations significantly reduced the number of total item moves, by
86.91% with RI, and 85.12% with MI in Task:1, and by 76.39%
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Fig. 14 Subjective ratings from the questionnaire in the main evaluation.

with RI, and 76.71% with MI in Task:2. The same analysis used
for packing time was also conducted to evaluate item moves. We
found significant differences of F' = 39.19, p < 0.001 for Task:1
and F = 33.83, p < 0.001 for Task:2.

5.4.3 Questionnaire

Finally, we conducted a questionnaire with a 5-point Likert
scale [3] to rate subjective opinions about the interface and over-
lays. A 1 corresponds to the most negative response and a 5 to
the most positive response. Regarding each packing instruction,
we asked 3 questions: “1. Is this packing indication easy to un-
derstand?”, “2. Is this packing indication useful?”, and “3. How
much were you satisfied with this packing indication?”. The sum-
mary of ratings are shown in Fig. 14.

We conduct a Wilcoxon signed rank test [32] to evaluate ques-
tionnaire results. We found a significant difference only on the
ease of understanding (p = 0.045), which is indicated by the as-
terisk * symbol between each set of bars in the graph.

6. Discussion

In the evaluation, we found that packing without support from
the system took much longer on average than with the system.
This evidence supports our hypothesis (H1), which suggests that
our system is overall beneficial for packing support tasks, and can
already be used practically.

Although Task:1 (12 items, filling rate 87.60%) had fewer
items to pack than Task:2 (17 items, filling rate 84.02%), unas-
sisted packing time for Task:1 was longer than Task:2 because of
the higher fill rate. When more compact packing is needed, the
packing is more difficult and thus the system would efficiently
help reduce both packing time and number of item moves.

On the other hand, no significant results for the comparison of
packing times between the two proposed visualization techniques
were found. Therefore, the hypothesis (H2) is only partially sup-
ported, which suggests that the relative benefits of each individual
method are quite similar.

Regarding user preference, even though rating on ease of un-
derstanding was significantly higher MI compare with RI, no
other significant data was found on the other ratings. Accord-
ingly, the hypothesis (H3) was only partially supported.

During the experiment, some participants took more time than
others for the same condition due to mistakes and the time taken
to think about how to rotate items. As such, in the RI condi-
tion, when looking at the overlay some users did not immediately
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know the direction to rotate, so they had to try rotating 2-3 times
to make sure the direction was correct. Also in both conditions,
some participants did not carefully follow the instructions, so they
incorrectly rotated the object. When continuing to pack later on,
the remaining items could not fit in the container, so they had to
go back several steps to correct the mistake.

We also asked opinions from each participant about general
use during the experiment. With the RI instructions, participants
took their time with about the first half of the items to under-
stand the method, though with the latter half, participants had
already started to become familiar with the instructions. In the
MI condition, some participants said that seeing the image of the
items moving was fun, while some said the movement was too
slow, so they had to wait before they could pack the item. Also,
some participants mentioned that the projections did not exactly
fit the packing position, so they had to adjust the packing posi-
tion by themselves. This feedback suggests that one primary im-
provement we need to focus on is the reduction of errors for the
calibration of the projection surface. Sometimes the projected
image was slightly distorted when the projection was mapped to
a non-planar surface and color information was skewed due to
projection on an existing colored/textured surface. This was es-
pecially true when objects of different heights were present in the
workspace.

6.1 Future Work

To help automatically check for individual insertions and re-
movals before proceeding to the next packing object, individual
object tracking may provide a way for the system to enable back-
tracking and perhaps more intelligent instructions. Though man-
ual interaction gives the user more control to some extent, more
adaptive visualizations could help alert the user that their packing
was not correct, facilitate training, develop better packing habits,
and further reduce mistakes. Future work includes improving the
calibration of the surface area, updating the RI instruction, and an
object tracking approach rather than mapping point cloud data.

7. Conclusion

In this paper, we propose a new projector based packing sup-
port system and three types of visualizations to help convey in-
structions. The system works by recognizing an external con-
tainer and packing items in a flat workspace, and then performing
object segmentation to extract both the items and container di-
mensions. Afterward, the system uses all input items to calculate
a packing solution, which consists of packing positions and ori-
entations, and the order and placement of each item are projected
onto the workspace as a user completes the packing task.

To help evaluate spatial augmented reality (SAR) as an assis-
tive tool, we tested two types of visualizations, including the Ro-
tation and Movement based instructions, and compared these to
non-assisted packing. Experimental results showed that the pro-
posed packing techniques significantly reduced average packing
time and movement requirements for packing tasks, with average
decreases in task time of up to 57.89% with Rotation instruc-
tions and 55.63% with Movement instructions. We hope that this
research will bring packing support systems one step closer to
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practical use in the transportation industry and pave the way for

further iterations of spatial augmented reality research.
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