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Abstract: Human motion control, edit, and synthesis are important tasks to create 3D computer graphics video games or movies, 
because some characters act like humans in most of them. Our aim is to construct a system which can generate various natural 
character motions. We assume that the process of human motion generation is complex and nonlinear, and it can be modeled by 
deep neural networks. However, this process cannot be observed, and it needs to be estimated by learning from observable human 
motion data. On the other hand, the process of discrimination which is opposite to the generation is also modeled by deep neural 
networks. And the generator and discriminator are trained using human motion data. In this paper we constructed a human motion 
generative model using Wasserstein GAN. As a result, our model can generate various human motions from a 512-dimensional 
latent space. 
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1. Introduction     

Human motion control, edit, and synthesis are important tasks 

to create 3D computer graphics video games or movies, because 

some characters act like humans in most of them. Key frame 

interpolation method is useful for producing human motion. But 

the user has to set a lot of parameters of human joints in some key 

frames manually, and the produced motion is less realistic than the 

data captured with motion capture system. Therefore motion 

capture data-driven method is used for motion control, edit, and 

synthesis, and many techniques have been proposed [1]. 

Deep neural networks have been used in human motion control. 

Holden et al. [2] used convolutional autoencoders to learn human 

motion manifold from a large motion dataset captured with an 

optical motion capture system. And they stack deep neural 

networks on top of the autoencoders, which can map from high 

level parameters to the motion manifold. The proposed system can 

synthesize character motion from given trajectories over the floor 

that the character should follow, and can edit motion by optimizing 

in the motion manifold with some constraints. 

On the other hand, some generative models using deep neural 

networks have been proposed. Kingma et al. [3], [4] proposed 

variational autoencoder, and applied it for image generation. The 

proposed system can generate natural and various images. 

Sabaththe et al. [5] used LSTM-based variational autoencoder for 

automatic music composition and it can generate various music 

pieces that represent some musical characteristics and properties. 

Radford et al. [6] proposed deep generative adversarial networks, 

which can also generate natural and various images. 

Our aim is to construct a human motion generative model using 

generative adversarial networks which can generate more natural 

data than variational autoencoder. 

2. Generative Adversarial Networks (GAN) 

GAN have two different kinds of networks which are a generator 

and a discriminator as shown in Fig. 1. The parameters of each 

network are optimized by training using dataset. In generation of 

images, the generator samples latent variables 𝑧 from a uniform 
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distribution and generates images closer to training images from 

𝒛 . On the other hand the discriminator tries to identify images 

coming from the generator as fake or taken from the actual training 

dataset. Therefore the discriminator is trained to maximize the 

probability of identifying generated images and training images 

correctly. And the generator is trained to minimize the probability 

that the discriminator identifies the generated images. The loss 

function is represented as 

minmax𝑉(𝐷, 𝐺)                                   

= 𝔼𝒙∼ (𝒙) log 𝐷(𝒙) + 𝔼𝒛∼ (𝒛) log 1 − 𝐷 𝐺(𝒛)
(1) 

where 𝐷(𝒙) is the probability that the discriminator identifies 𝒙 

as a training data, and 𝐺(𝒛) is generated data from latent variable 

𝒛 . When the discriminator is trained well, 𝐷(𝒙)  increases and 

𝐷 𝐺(𝒛)  decreases. On the other hand when the generator outputs 

data close to training data, 𝐷 𝐺(𝒛)  increases. 

In this way the discriminator and the generator are trained 

adversarially by competing with each other. When the generator 

outputs data closer to training data enough not to identify, the 

probability that the discriminator identifies the data equals to 50%. 

The trained generator is used to create realistic data. 

 
Fig. 1. Structure of GAN. 

3. Motion Data 

In this section we describe human motion dataset and 
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preprocessing of it for learning motion generative model.  

We use the CMU Graphics Lab Motion Capture Database [7], 

which consists of 2,505 recordings of human motion captured with 

an optical motion capture system. We downsample this original 

data with 120 fps to 30 fps. 

The original motion data is represented as 3-DOF local rotations 

of 19 joints and 3-DOF global translation of root joint (hip) as 

shown in Fig. 2. We convert them into the global positions 𝒑
( )

(𝑡), 

where 𝑗 is a joint and 𝑡 is time. 

Given the global position of hip 𝒑
( )

(𝑡), left shoulder 𝒑
( )

(𝑡), 

and right shoulder 𝒑
( )

(𝑡) in time 𝑡, the forward vector of body 

𝑣 (𝑡) is calculated as 

𝒗 (𝑡)  =  𝒑
( )

(𝑡)  −  𝒑
( )

(𝑡)

𝒗 (𝑡)  =  𝒑
( )

(𝑡)  −  𝒑
( )

(𝑡)

𝒗 (𝑡)  =  𝒗 (𝑡)  ×  𝒗 (𝑡)

                           (2) 

The basis vectors of local coordinate system at time 𝑡  are 

calculated as 

𝒆 = [0 1 0]

𝒆 (𝑡) =
𝒗 (𝑡) × 𝒆

𝒗 (𝑡) × 𝒆

𝒆 (𝑡) = 𝒆 × 𝒆 (𝑡)

                                   (3) 

The rotation matrix at time 𝑡 is represented as 

𝑅 (𝑡) =
𝒆 (𝑡) 𝒆 𝒆 (𝑡)

0 0 0
  

𝟎
1

                   (4) 

Let 𝑝 ,
( )

(0) be the minimum of 𝑦-coordinate over all joints in 

the initial frame, which indicates the floor height if one of joints is 

on the ground in the initial frame. We set the origin in local 

coordinate system at time 𝑡 as a point on the ground where the 

root joint position is projected onto. The translation matrix at time 

𝑡 is represented as 

𝑇 (𝑡) =

⎣
⎢
⎢
⎢
⎡1 0 0 𝑝 ,

( )
(𝑡)

0 1 0 𝑝 ,
( )

(0)

0 0 0 𝑝 ,
( )

(𝑡)

0 0 0 1 ⎦
⎥
⎥
⎥
⎤

                     (5) 

where 𝑝 ,
( )

(𝑡)  and 𝑝 ,
( )

(𝑡)  are 𝑥 -coordinate and 𝑧 -coordinate 

of the root joint at time 𝑡  respectively. The transformation 

matrices between local coordinate system and global coordinate 

system are represented as 

𝑀 (𝑡) = 𝑇 (𝑡)𝑅 (𝑡)

𝑀 (𝑡) = 𝑅 (𝑡)𝑇 (𝑡)
                                   (6) 

and the local positions of joints at time 𝑡 is calculated as 

𝒑
( )

(𝑡) =  𝑀 (𝑡)𝒑
( )

(𝑡)                                 (7) 

We use 𝑦-coordinate of the root joint, and 𝑥𝑦𝑧-coordinates of the 

other 18 joints. We also use velocity in the 𝑥𝑧 plane and angular 

velocity around the y axis, which are calculated from the matrix 

∆𝑀(𝑡), which is 

∆𝑀(𝑡) = 𝑀 (𝑡 − 1)𝑀 (𝑡)                              (8) 

The motion data at each frame is a 58-dimensional vector. 

We separate each sequence of frames into windows of 120 

frames (about 4 seconds), overlapped by 60 frames. Finally we get 

14,122 motions, and we subtract the mean from them and divide 

them by the standard deviation to standardize the data. 

 

Fig. 2. Joint structure in motion data. 

4. Human Motion Generative Model 

4.1 Model Structure 

Fig. 3. shows the structure of the GAN discriminator constructed 

in this study. As described in Chapter 3, the motion data used in 

this research is a 58 × 120 dimensional vector. In the first layer 

of the discriminator, 64 types of filters with sizes of 58 in the 

spatial direction and 15 in the temporal direction are applied. The 

stride in the spatial direction of the filter is 58, therefore all 58 

dimensional joint positions are convolved. The stride in the time 

direction of the filter is 2, therefore the extracted features are half 

size of the input motion data in the temporal direction. In the 

second layer of the discriminator, 128 filters with sizes of 15 in the 

temporal direction are used, and the stride of the filters is 4. In the 

first and second layers, 25% of connections are dropped out, and 

LeakyReLU with a negative slope of 0.2 is used as the activation 

function. And the last layer, the extracted features are flattened and 

pass through a fully connected layer to get a scaler. 

The structure of generator is shown in Fig.4. In this research, 

dimension of the latent space is 512, and latent variables are 

sampled from the 512 dimensional uniform distribution. The 

generator outputs motions from the latent variables through the 

network which performs the inverse transform with the 

discriminator. The first layer in the generator is a fully connected 

layer which reconstructs 15 × 1 × 128  dimensional features 

from 512 dimensional latent variable. In the second layer, 64 filters 

with sizes of 15 are used, and upsampling is performed in the 

temporal direction, to get 60 × 1 × 64 dimensional features. And 
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in this layer batch normalization is applied and LeakyReLU with a 

negative slope of 0.2 is used as the activation function. In the third 

layer, 58 filters of with sizes of 15 are used, and upsampling is 

performed in the temporal direction, to reconstruct a motion which 

represents 58 × 120 dimensional vector. In this layer tanh is used 

as the activation function. 

4.2 Loss Function 

GAN proposed by Goodfellow et al. [8] uses Jensen-Shannon 

divergence between the real distribution and the generated 

distribution to optimize network parameters. Jensen-Shannon 

divergence leads us to mode collapse: during the training the 

generator always generate same outputs. It causes that the 

generator can trick a particular discriminator and learn generated 

distribution only fit to a small set of real distribution. 

Arjovsky et al. [9] proposed Wasserstein GAN which uses 

Wasserstein divergence instead of Jensen-Shannon divergence to 

optimize network parameters. The Wasserstein divergence 

between real distribution 𝑃   and generated distribution 𝑃   is 

defined as 

𝑊 𝑃 , 𝑃 = max
∈

𝔼 ~ [𝐷 (𝑥)] − 𝔼 ∼ ( ) 𝐷 𝐺 (𝑧)   (9) 

The discriminative function is restricted to 1-Lipschitz and 

Arjovsky et al. used weight clipping to enforce this constraint. But 

it sometimes generates poor samples or fails to converge. To avoid 

these problems, Gullajani et al. [10] proposed gradient penalty 

(WGAN-GP) as an alternative way to enforce Lipschitz constraint. 

In this paper, we used the loss function with gradient penalty 

shown in equation (10) to optimize the network parameters. 

L = 𝔼 ( )~ 𝐷 𝐺(𝑧)  – 𝔼 ~ [𝐷(𝑥)]                                  

+  10𝔼 ( )~ ( )
𝛻 ( )𝐷 𝐺(𝑧)  −  1      (10) 

 

Fig. 3. Network structure of discriminator of Wasserstein GAN. 

 
Fig. 4. Network structure of generator of Wasserstein GAN. 

5. Experiment 

5.1 Experiment 1 

An experiment was conducted to evaluate how natural and how 

various motions our model can generate. 

The number of training data is 12,720, and the number of 

validation data is 1,412. We use gradient descent with Adam 

optimization algorithm, batch size is 100, and the optimization is 

performed for 200 epochs. 

Fig.5 shows losses of discriminator for training (D_loss) and 

validation data (D_val_loss), and losses of generator for training 

(G_loss) and validation data (G_val_loss) in each epoch. In the 

period between 25th epoch and 50th epoch, the losses of 

discriminator and generator are getting smaller. This shows that the 

network parameters of the discriminator and generator are 

estimated appropriately in the period.  

And we confirmed whether the performance of discriminator 

and generator improved during training process. Fig.6 shows 

losses of discriminators trained in 25, 75, 125, 175, and 200 epochs 

against generators trained in 25, 75, 125, 175, and 200 epochs. The 

performance of discriminators is improved especially in the period 

between 25th and 50th epoch. Fig.7 shows losses of the generators 

against the discriminators. The performance of generators is 

improved slightly in the period between 25th and 50th epoch, but 

it is not changed in the last 125 

In order to confirm whether the performance of the generators 

is improved during learning process, we generated motions using 

the generators trained in different epochs. Fig.8 shows 40 motions 

generated from eight randomly sampled latent variables using the 

five generators trained in 25, 75, 125, 175, and 200 epochs. The 

generators trained in 75, 125, 175, and 200 epochs can generate 

more various natural motion than the generator trained in 25 

epochs. 

Fig.9 shows 64 motions generated from 64 randomly sampled 

latent variables using the generator trained in 200 epochs. The 

proposed model can’t generate natural human motions, but it can 

generate various motions. 

5.2 Experiment 2 

Another experiment was conducted in order to evaluate our 
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proposed model in comparison with another generative model, 

which is Least Squares Generative Adversarial Networks 

(LSGAN) proposed by Mao[11] et al. It can penalize the fake 

samples away from the decision boundary to avoid the vanishing 

gradients problem. 

In this experiment we used the least squares loss as shown in 

equation (11) to estimate the network parameters. 

min 𝑉 (𝐷) =
1

2
𝔼𝒙~ (𝒙)[(𝐷(𝒙) − 1) ]

+
1

2
𝔼𝒛~ 𝒛(𝒛) 𝐷 𝐺(𝒛)  

min 𝑉 (𝐺) =
1

2
𝔼𝒛~ 𝒛(𝒛) 𝐷 𝐺(𝒛) − 1          (11) 

Fig.10 shows the structure of discriminator, which is the same 

as the structure of the discriminator used in experiment 1 except 

applying batch normalization in the second layer. And the structure 

of generator is exact the same as the structure of the generator 

shown in Fig.4. 

The number of training data is 12,720, and the number of 

validation data is 1,412. We use gradient descent with Adam 

optimization algorithm, batch size is 100, and the optimization is 

performed for 200 epochs. 

Fig.11 shows losses of discriminator for training (D_loss) and 

validation data (D_val_loss), and losses of generator for training 

(G_loss) and validation data (G_val_loss) in each epoch. In the 

first 25 epochs the losses of discriminator are getting smaller and 

the losses of generator are getting larger. This shows that the 

network parameters of the discriminator are estimated 

appropriately than the generator in the beginning of training 

process. 

Fig.12 shows 64 motions generated from 64 randomly sampled 

latent variables using the generator trained using least square loss. 

Compared Fig.12 with Fig.9, the generator trained using 

Wasserstein distance can generate more various but less natural 

motions than the generator trained using least square loss. This 

shows the Wasserstein GAN can avoid mode collapse to generate 

various motions. 

 

Fig. 5. Losses of discriminator for training (D_loss) and 

validation data (D_val_loss), and losses of generator for training 

(G_loss) and validation data (G_val_loss) in each epoch. 

 
Fig. 6. Losses of discriminators trained in 25, 75, 125, 175, and 

200 epochs against generators trained in 25, 75, 125, 175, and 

200 epochs. 

 
Fig. 7. Losses of generators trained in 25, 75, 125, 175, and 200 

epochs against discriminators trained in 25, 75, 125, 175, and 200 

epochs. 
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Fig. 8. 40 motions generated from eight randomly sampled latent 

variables using the five generators trained in 25, 75, 125, 175, 

and 200 epochs. 

 
Fig. 9. 64 randomly generated motions using the generator of 

Wasserstein GAN. 

 
Fig. 10. Network structure of discriminator of LSGAN. 
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Fig. 11. Losses of discriminator for training (D_loss) and 

validation data (D_val_loss), and losses of generator for training 

(G_loss) and validation data (G_val_loss) in each epoch using 

LSGAN. 

 

Fig. 12. 64 randomly generated motions using the generator of 

LSGAN. 

6. Conclusion 

We constructed a human motion generative model using 

Wasserstein GAN. The performance of discriminator and 

generator is improved in the beginning of training. And the 

performance of discriminator is gradually improved, but the 

performance of generator is not changed in the rest of the training 

process. 

The generator of Wasserstein GAN can generate more various 

but less natural motions than the generator of LSGAN. This shows 

the Wasserstein GAN can avoid mode collapse to generate various 

motions. 

We will improve performance of our model. Arjovsky et al. [9] 

proposes some techniques to enable stable learning such as not 

using dropout. We will use some of them and adjust some hyper 

parameters of netrowks. 
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