
IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 1

Human Motion Generative Model using Wasserstein GAN

AYUMI SHIOBARA1 MAKOTO MURAKAMI1

Abstract: Human motion control, edit, and synthesis are important tasks to create 3D computer graphics video games or movies,
because some characters act like humans in most of them. Our aim is to construct a system which can generate various natural
character motions. We assume that the process of human motion generation is complex and nonlinear, and it can be modeled by
deep neural networks. However, this process cannot be observed, and it needs to be estimated by learning from observable human
motion data. On the other hand, the process of discrimination which is opposite to the generation is also modeled by deep neural
networks. And the generator and discriminator are trained using human motion data. In this paper we constructed a human motion
generative model using Wasserstein GAN. As a result, our model can generate various human motions from a 512-dimensional
latent space.

Keywords: Deep Neural Networks, Generative Model, Human Motion, Generative Adversarial Networks.

1. Introduction

Human motion control, edit, and synthesis are important tasks

to create 3D computer graphics video games or movies, because

some characters act like humans in most of them. Key frame

interpolation method is useful for producing human motion. But

the user has to set a lot of parameters of human joints in some key

frames manually, and the produced motion is less realistic than the

data captured with motion capture system. Therefore motion

capture data-driven method is used for motion control, edit, and

synthesis, and many techniques have been proposed [1].

Deep neural networks have been used in human motion control.

Holden et al. [2] used convolutional autoencoders to learn human

motion manifold from a large motion dataset captured with an

optical motion capture system. And they stack deep neural

networks on top of the autoencoders, which can map from high

level parameters to the motion manifold. The proposed system can

synthesize character motion from given trajectories over the floor

that the character should follow, and can edit motion by optimizing

in the motion manifold with some constraints.

On the other hand, some generative models using deep neural

networks have been proposed. Kingma et al. [3], [4] proposed

variational autoencoder, and applied it for image generation. The

proposed system can generate natural and various images.

Sabaththe et al. [5] used LSTM-based variational autoencoder for

automatic music composition and it can generate various music

pieces that represent some musical characteristics and properties.

Radford et al. [6] proposed deep generative adversarial networks,

which can also generate natural and various images.

Our aim is to construct a human motion generative model using

generative adversarial networks which can generate more natural

data than variational autoencoder.

2. Generative Adversarial Networks (GAN)

GAN have two different kinds of networks which are a generator

and a discriminator as shown in Fig. 1. The parameters of each

network are optimized by training using dataset. In generation of

images, the generator samples latent variables 𝑧 from a uniform

 1 Toyo University, Kujirai, Kawagoe, Saitama 350-0815, Japan

distribution and generates images closer to training images from

𝒛 . On the other hand the discriminator tries to identify images

coming from the generator as fake or taken from the actual training

dataset. Therefore the discriminator is trained to maximize the

probability of identifying generated images and training images

correctly. And the generator is trained to minimize the probability

that the discriminator identifies the generated images. The loss

function is represented as

minmax𝑉(𝐷, 𝐺)

= 𝔼𝒙∼ (𝒙) log 𝐷(𝒙) + 𝔼𝒛∼ (𝒛) log 1 − 𝐷 𝐺(𝒛)
(1)

where 𝐷(𝒙) is the probability that the discriminator identifies 𝒙

as a training data, and 𝐺(𝒛) is generated data from latent variable

𝒛 . When the discriminator is trained well, 𝐷(𝒙) increases and

𝐷 𝐺(𝒛) decreases. On the other hand when the generator outputs

data close to training data, 𝐷 𝐺(𝒛) increases.

In this way the discriminator and the generator are trained

adversarially by competing with each other. When the generator

outputs data closer to training data enough not to identify, the

probability that the discriminator identifies the data equals to 50%.

The trained generator is used to create realistic data.

Fig. 1. Structure of GAN.

3. Motion Data

In this section we describe human motion dataset and

𝐺 𝐺(𝑧)

𝐷
𝑥 or
𝐺(𝑧) ・

1 or 0

𝑧

Generator

Discriminator

Vol.2020-CG-177 No.4
2020/3/17

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 2

preprocessing of it for learning motion generative model.

We use the CMU Graphics Lab Motion Capture Database [7],

which consists of 2,505 recordings of human motion captured with

an optical motion capture system. We downsample this original

data with 120 fps to 30 fps.

The original motion data is represented as 3-DOF local rotations

of 19 joints and 3-DOF global translation of root joint (hip) as

shown in Fig. 2. We convert them into the global positions 𝒑
()

(𝑡),

where 𝑗 is a joint and 𝑡 is time.

Given the global position of hip 𝒑
()

(𝑡), left shoulder 𝒑
()

(𝑡),

and right shoulder 𝒑
()

(𝑡) in time 𝑡, the forward vector of body

𝑣 (𝑡) is calculated as

𝒗 (𝑡) = 𝒑
()

(𝑡) − 𝒑
()

(𝑡)

𝒗 (𝑡) = 𝒑
()

(𝑡) − 𝒑
()

(𝑡)

𝒗 (𝑡) = 𝒗 (𝑡) × 𝒗 (𝑡)

 (2)

The basis vectors of local coordinate system at time 𝑡 are

calculated as

𝒆 = [0 1 0]

𝒆 (𝑡) =
𝒗 (𝑡) × 𝒆

𝒗 (𝑡) × 𝒆

𝒆 (𝑡) = 𝒆 × 𝒆 (𝑡)

 (3)

The rotation matrix at time 𝑡 is represented as

𝑅 (𝑡) =
𝒆 (𝑡) 𝒆 𝒆 (𝑡)

0 0 0

𝟎
1

 (4)

Let 𝑝 ,
()

(0) be the minimum of 𝑦-coordinate over all joints in

the initial frame, which indicates the floor height if one of joints is

on the ground in the initial frame. We set the origin in local

coordinate system at time 𝑡 as a point on the ground where the

root joint position is projected onto. The translation matrix at time

𝑡 is represented as

𝑇 (𝑡) =

⎣
⎢
⎢
⎢
⎡1 0 0 𝑝 ,

()
(𝑡)

0 1 0 𝑝 ,
()

(0)

0 0 0 𝑝 ,
()

(𝑡)

0 0 0 1 ⎦
⎥
⎥
⎥
⎤

 (5)

where 𝑝 ,
()

(𝑡) and 𝑝 ,
()

(𝑡) are 𝑥 -coordinate and 𝑧 -coordinate

of the root joint at time 𝑡 respectively. The transformation

matrices between local coordinate system and global coordinate

system are represented as

𝑀 (𝑡) = 𝑇 (𝑡)𝑅 (𝑡)

𝑀 (𝑡) = 𝑅 (𝑡)𝑇 (𝑡)
 (6)

and the local positions of joints at time 𝑡 is calculated as

𝒑
()

(𝑡) = 𝑀 (𝑡)𝒑
()

(𝑡) (7)

We use 𝑦-coordinate of the root joint, and 𝑥𝑦𝑧-coordinates of the

other 18 joints. We also use velocity in the 𝑥𝑧 plane and angular

velocity around the y axis, which are calculated from the matrix

∆𝑀(𝑡), which is

∆𝑀(𝑡) = 𝑀 (𝑡 − 1)𝑀 (𝑡) (8)

The motion data at each frame is a 58-dimensional vector.

We separate each sequence of frames into windows of 120

frames (about 4 seconds), overlapped by 60 frames. Finally we get

14,122 motions, and we subtract the mean from them and divide

them by the standard deviation to standardize the data.

Fig. 2. Joint structure in motion data.

4. Human Motion Generative Model

4.1 Model Structure

Fig. 3. shows the structure of the GAN discriminator constructed

in this study. As described in Chapter 3, the motion data used in

this research is a 58 × 120 dimensional vector. In the first layer

of the discriminator, 64 types of filters with sizes of 58 in the

spatial direction and 15 in the temporal direction are applied. The

stride in the spatial direction of the filter is 58, therefore all 58

dimensional joint positions are convolved. The stride in the time

direction of the filter is 2, therefore the extracted features are half

size of the input motion data in the temporal direction. In the

second layer of the discriminator, 128 filters with sizes of 15 in the

temporal direction are used, and the stride of the filters is 4. In the

first and second layers, 25% of connections are dropped out, and

LeakyReLU with a negative slope of 0.2 is used as the activation

function. And the last layer, the extracted features are flattened and

pass through a fully connected layer to get a scaler.

The structure of generator is shown in Fig.4. In this research,

dimension of the latent space is 512, and latent variables are

sampled from the 512 dimensional uniform distribution. The

generator outputs motions from the latent variables through the

network which performs the inverse transform with the

discriminator. The first layer in the generator is a fully connected

layer which reconstructs 15 × 1 × 128 dimensional features

from 512 dimensional latent variable. In the second layer, 64 filters

with sizes of 15 are used, and upsampling is performed in the

temporal direction, to get 60 × 1 × 64 dimensional features. And

Vol.2020-CG-177 No.4
2020/3/17

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 3

in this layer batch normalization is applied and LeakyReLU with a

negative slope of 0.2 is used as the activation function. In the third

layer, 58 filters of with sizes of 15 are used, and upsampling is

performed in the temporal direction, to reconstruct a motion which

represents 58 × 120 dimensional vector. In this layer tanh is used

as the activation function.

4.2 Loss Function

GAN proposed by Goodfellow et al. [8] uses Jensen-Shannon

divergence between the real distribution and the generated

distribution to optimize network parameters. Jensen-Shannon

divergence leads us to mode collapse: during the training the

generator always generate same outputs. It causes that the

generator can trick a particular discriminator and learn generated

distribution only fit to a small set of real distribution.

Arjovsky et al. [9] proposed Wasserstein GAN which uses

Wasserstein divergence instead of Jensen-Shannon divergence to

optimize network parameters. The Wasserstein divergence

between real distribution 𝑃 and generated distribution 𝑃 is

defined as

𝑊 𝑃 , 𝑃 = max
∈

𝔼 ~ [𝐷 (𝑥)] − 𝔼 ∼ () 𝐷 𝐺 (𝑧) (9)

The discriminative function is restricted to 1-Lipschitz and

Arjovsky et al. used weight clipping to enforce this constraint. But

it sometimes generates poor samples or fails to converge. To avoid

these problems, Gullajani et al. [10] proposed gradient penalty

(WGAN-GP) as an alternative way to enforce Lipschitz constraint.

In this paper, we used the loss function with gradient penalty

shown in equation (10) to optimize the network parameters.

L = 𝔼 ()~ 𝐷 𝐺(𝑧) – 𝔼 ~ [𝐷(𝑥)]

+ 10𝔼 ()~ ()
𝛻 ()𝐷 𝐺(𝑧) − 1 (10)

Fig. 3. Network structure of discriminator of Wasserstein GAN.

Fig. 4. Network structure of generator of Wasserstein GAN.

5. Experiment

5.1 Experiment 1

An experiment was conducted to evaluate how natural and how

various motions our model can generate.

The number of training data is 12,720, and the number of

validation data is 1,412. We use gradient descent with Adam

optimization algorithm, batch size is 100, and the optimization is

performed for 200 epochs.

Fig.5 shows losses of discriminator for training (D_loss) and

validation data (D_val_loss), and losses of generator for training

(G_loss) and validation data (G_val_loss) in each epoch. In the

period between 25th epoch and 50th epoch, the losses of

discriminator and generator are getting smaller. This shows that the

network parameters of the discriminator and generator are

estimated appropriately in the period.

And we confirmed whether the performance of discriminator

and generator improved during training process. Fig.6 shows

losses of discriminators trained in 25, 75, 125, 175, and 200 epochs

against generators trained in 25, 75, 125, 175, and 200 epochs. The

performance of discriminators is improved especially in the period

between 25th and 50th epoch. Fig.7 shows losses of the generators

against the discriminators. The performance of generators is

improved slightly in the period between 25th and 50th epoch, but

it is not changed in the last 125

In order to confirm whether the performance of the generators

is improved during learning process, we generated motions using

the generators trained in different epochs. Fig.8 shows 40 motions

generated from eight randomly sampled latent variables using the

five generators trained in 25, 75, 125, 175, and 200 epochs. The

generators trained in 75, 125, 175, and 200 epochs can generate

more various natural motion than the generator trained in 25

epochs.

Fig.9 shows 64 motions generated from 64 randomly sampled

latent variables using the generator trained in 200 epochs. The

proposed model can’t generate natural human motions, but it can

generate various motions.

5.2 Experiment 2

Another experiment was conducted in order to evaluate our

120

58 1

Convolution

15
58

64

Convolution

15
1

128

Discriminator

reshape

128×15×1

FC
・
160

64
1

128

1

15

Stride = (2, 58)
Padding = (7, 0)
LeakyReLU(0.2)

and Dropout(0.25)

Stride = (4, 1)
Padding = (7, 0)
LeakyReLU(0.2)

and Dropout(0.25)

Vol.2020-CG-177 No.4
2020/3/17

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 4

proposed model in comparison with another generative model,

which is Least Squares Generative Adversarial Networks

(LSGAN) proposed by Mao[11] et al. It can penalize the fake

samples away from the decision boundary to avoid the vanishing

gradients problem.

In this experiment we used the least squares loss as shown in

equation (11) to estimate the network parameters.

min 𝑉 (𝐷) =
1

2
𝔼𝒙~ (𝒙)[(𝐷(𝒙) − 1)]

+
1

2
𝔼𝒛~ 𝒛(𝒛) 𝐷 𝐺(𝒛)

min 𝑉 (𝐺) =
1

2
𝔼𝒛~ 𝒛(𝒛) 𝐷 𝐺(𝒛) − 1 (11)

Fig.10 shows the structure of discriminator, which is the same

as the structure of the discriminator used in experiment 1 except

applying batch normalization in the second layer. And the structure

of generator is exact the same as the structure of the generator

shown in Fig.4.

The number of training data is 12,720, and the number of

validation data is 1,412. We use gradient descent with Adam

optimization algorithm, batch size is 100, and the optimization is

performed for 200 epochs.

Fig.11 shows losses of discriminator for training (D_loss) and

validation data (D_val_loss), and losses of generator for training

(G_loss) and validation data (G_val_loss) in each epoch. In the

first 25 epochs the losses of discriminator are getting smaller and

the losses of generator are getting larger. This shows that the

network parameters of the discriminator are estimated

appropriately than the generator in the beginning of training

process.

Fig.12 shows 64 motions generated from 64 randomly sampled

latent variables using the generator trained using least square loss.

Compared Fig.12 with Fig.9, the generator trained using

Wasserstein distance can generate more various but less natural

motions than the generator trained using least square loss. This

shows the Wasserstein GAN can avoid mode collapse to generate

various motions.

Fig. 5. Losses of discriminator for training (D_loss) and

validation data (D_val_loss), and losses of generator for training

(G_loss) and validation data (G_val_loss) in each epoch.

Fig. 6. Losses of discriminators trained in 25, 75, 125, 175, and

200 epochs against generators trained in 25, 75, 125, 175, and

200 epochs.

Fig. 7. Losses of generators trained in 25, 75, 125, 175, and 200

epochs against discriminators trained in 25, 75, 125, 175, and 200

epochs.

D_025 D_075 D_125 D_175 D_200

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

D_eval_loss

G_025

G_075

G_175

G_125

G_200

D_models

lo
ss

G_025 G_075 G_125 G_175 G_200

-160

-140

-120

-100

-80

-60

-40

-20

0

G_eval_loss

D_025

D_075

D_125

D_175

D_200

G_models

lo
ss

Vol.2020-CG-177 No.4
2020/3/17

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 5

Fig. 8. 40 motions generated from eight randomly sampled latent

variables using the five generators trained in 25, 75, 125, 175,

and 200 epochs.

Fig. 9. 64 randomly generated motions using the generator of

Wasserstein GAN.

Fig. 10. Network structure of discriminator of LSGAN.

120

58 1

Convolution

15
58

64

Convolution

15
1

128

Discriminator

reshape

128×15×1

FC
・
160

64
1

128

1

15

Stride = (2, 58)
Padding = (7, 0)
LeakyReLU(0.2)

and Dropout(0.25)

Stride = (4, 1)
Padding = (7, 0)
LeakyReLU(0.2)

Dropout(0.25)
and BatchNorm

Vol.2020-CG-177 No.4
2020/3/17

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 6

Fig. 11. Losses of discriminator for training (D_loss) and

validation data (D_val_loss), and losses of generator for training

(G_loss) and validation data (G_val_loss) in each epoch using

LSGAN.

Fig. 12. 64 randomly generated motions using the generator of

LSGAN.

6. Conclusion

We constructed a human motion generative model using

Wasserstein GAN. The performance of discriminator and

generator is improved in the beginning of training. And the

performance of discriminator is gradually improved, but the

performance of generator is not changed in the rest of the training

process.

The generator of Wasserstein GAN can generate more various

but less natural motions than the generator of LSGAN. This shows

the Wasserstein GAN can avoid mode collapse to generate various

motions.

We will improve performance of our model. Arjovsky et al. [9]

proposes some techniques to enable stable learning such as not

using dropout. We will use some of them and adjust some hyper

parameters of netrowks.

Reference
[1] Wang, X. Chen, Q. and Wang. W.. 3D human motion editing and

synthesis : A survey. Computational and Mathematical Methods in
Medicine. 2014.

[2] Holden, D. Saito, J. Komura, T. and Joyce, T.. Learning motion
manifolds with convolutional autoencoders. SIGGRAPH Asia 2015
Technical Briefs. 2015.

[3] Kingma, D. P. and Welling, M.. Auto-encoding variational bayes.
International Conference on Learning Representations. 2013.

[4] Kingma, D. P. Rezende, D. J. Mohamed, S. and Welling, M.. Semi-
supervised learning with deep generative models. Neural
Information Processing Systems. 2014.

[5] Sabaththe, R. Coutinho, E. and Schuller, B.. Deep recurrent music
writer: Memory-enhanced variational autoencoder-based musical
score composition and an objective measure. International Joint
Conference on Neural Networks. 2017, pp. 3467-3474.

[6] Radford, A. Metz, L. and Chintala, S.. Unsupervised representation
learning with deep convolutional generative adversarial networks.
International Conference on Learning Representations. 2016.

[7] CMU. Carnegie Mellon University - CMU Graphics Lab - motion.
http:// mocap.cs.cmu.edu.

[8] Goodfellow, I. J. Pouget-Abadie, J. Mirza, M. Xu, B. Warde-Farley,
D. Ozair, S. Courville, A. C. and Bengio, Y.. Generative adversarial
nets. NIPS. 2014.

[9] Arjovsky, M. Chintala, S. and Bottou, L.. Wasserstein GAN. ICML.
2017, pp. 214–223.

[10] Gulrajani, I. Ahmed, F. Arjovsky, M. Dumoulin, V. and Courville,
A.. Improved training of wasserstein gans. NIPS. 2017, pp. 5767–
5777.

[11] Mao, X. Li, Q. Xie, H. Lau, R. Y. K. Wang, Z. and Smolley, S. P..
Least Squares Generative Adversarial Networks. International
Conference on Computer Vision (ICCV). 2017, pp. 2796- 2802.

Vol.2020-CG-177 No.4
2020/3/17

