電気インピーダンス法を用いた導電布上のタッチセンシング

関森 広大^{1,a)} 鈴木 雄太郎^{1,b)} 志築 文太郎^{2,c)} 高橋 伸^{2,d)}

概要:本研究では、電気インピーダンス法(Electrical Impedance Method: EIM)を用いた導電布上のタッ チセンシング手法を提案する. EIM は、対象物体周囲に複数個の電極を取り付け、微弱な電流を印加する ことにより物体の内部構造を推定する技術である. 我々は導電布に EIM を適用し、収集した電圧データ を機械学習にかけることにより、布上のタッチセンシングを実現した. 予備実験として、センシングに適 切な導電布の種類や電極の取り付け位置などを調査した. この調査に基づき、プロトタイプとなるハード ウェアおよび認識ソフトウェアを実装した. さらにこのプロトタイプを用いたタッチ認識精度の評価を目 的として行った実験の結果、実験参加者ごとの9点のタッチ位置の認識精度の平均は90.9%、3種類の手 の形状の認識精度の平均は98.1%であった.

1. はじめに

今日,導電糸や導電布と呼ばれるような導電性を持つ繊 維素材が登場してきている.これらのような新しい機能を 持った繊維素材の開発,およびそれらを使用したセンシン グやインタフェースについて研究する分野をスマートテキ スタイルと呼び,ここ 20 年ほどで発展してきている [1].

スマートテキスタイル分野は繊維素材を扱うことから, ウェアラブルデバイスや環境に溶け込むセンサとしての応 用が期待されている.繊維素材は安価であることや,切る, 織る,縫うなどの加工の自由度が高いことといった利点が ある.特に繊維素材上でタッチセンシングを行い,様々な デバイスへの入力インタフェースとするテキスタイルタッ チインタフェース分野は盛んに研究されている.先行研究 では,導電糸をメッシュ状に縫込んだり[2],導電布を複 数枚重ねたり[3],[4],[5]することによって繊維素材を用い たタッチセンシングを可能にしている.しかし,これらの 手法は,多数の導電糸1本1本に電極を取り付けるなど, 複雑な設計が必要であるため,容易に製造できるとは言い 難い.

上記の問題を解決するため、本研究では繊維素材上で のタッチセンシングを容易に可能とすることを目的とす る.そのためのアプローチとして、電気インピーダンス法 (Electrical Impedance Method: EIM)および機械学習を

^{b)} ysuzuki@iplab.cs.tsukuba.ac.jp

利用する. EIM は,対象物体周囲に複数個の電極を取り付け, 微弱な電流を印加することにより,物体の内部構造を 推定する技術であり,近年タッチセンシングやジェスチャ センシングにも用いられてきている [6], [7], [8], [9], [10]. 本研究では,導電布周囲に複数個の電極を取り付け,EIM によるセンシングによって計測した電圧をデータとして機 械学習を行うことにより,導電布上へのユーザのタッチ認 識を行う(図1).本手法は先行研究と比較して,大きい布 地に対して少ない電極数でタッチセンシングが可能という 利点がある.我々の先行研究 [11] では提案手法によるタッ チ位置認識の簡易的な精度評価について述べたが,本論文 では,提案手法に適した導電布の種類および電極の取り付 け位置に関する調査結果について述べるとともに,タッチ 位置認識および手形状認識の複数参加者による精度評価実 験について述べる.

2. 関連研究

本研究と同様に、テキスタイルタッチインタフェースに 関する研究および EIM に関する研究が多数行われている.

2.1 テキスタイルタッチインタフェースに関する研究

テキスタイルインタフェース分野における研究の中で も、特に導電糸を用いたセンシングに関する研究は数多く 存在する. Olwal ら [12] は導電糸と光ファイバーを撚り線 になるように織り込むことにより、タッチジェスチャ認識 および視覚フィードバック可能な I/O Braid を開発した. Vogl ら [13] は導電糸がたわむときに抵抗が変化すること を利用し、伸縮性のある布に導電糸をジグザグに縫い付け、

¹ 筑波大学 コンピュータサイエンス専攻

² 筑波大学 システム情報系

 $^{^{}a)}$ sekimori@iplab.cs.tsukuba.ac.jp

 $^{^{\}rm c)}$ shizuki@cs.tsukuba.ac.jp

 $^{^{\}rm d)} \ \ {\rm shin@cs.tsukuba.ac.jp}$

図 1 提案手法を用いたセンシングの様子. A, B: タッチした位置 の認識を行っている例. C, D: タッチした手の形状の認識を 行っている例.

それを伸縮させることによりモバイル端末への入力を行う StretchEBandを開発した. Poupyrev ら [2]の研究である Jacquard では,導電性繊維を投影型静電容量方式センサと 同じ形状になるように衣服へ縫い込むことにより,衣服上 でのタッチインタラクションを実現した.導電糸を用いた 研究では,糸を綿密に縫い込み,かつ1本1本を電極と接 続する必要があるが,本手法では一般的に購入可能な導電 布をそのまま使用し,電極の取り付けも容易である.

また本手法と同様に,導電布を用いたセンシングに関す る研究も存在する. Ono ら [3] は,2枚の導電布を使用し て抵抗膜方式のタッチパネルの仕組みを用いた,テキスタ イルインタフェースである Textile++を開発した. Leong ら [4] は複数の導電布を用いて多層構造にすることによ り,靴下型のインタフェースである proCover を開発した. Parzer ら [5] は proCover のシステムを衣服の袖に移植し, 袖上へのタッチ,スワイプ,または袖をまくるなどのジェ スチャ認識を可能とした. Mikkonen ら [14] は導電布に 2 つの電極を取り付け,一方に印加した交流電流と,もう一 方にて計測した電流の 2 つの電流から計算したリサージュ 曲線を用いることにより,多様なタッチジェスチャ認識が 可能であることを示した.

2.2 EIM に関する研究

EIM とは、センシング対象の内部構造を推定する技術で ある [15]. EIM によるセンシングは、対象物体の周囲に複 数個の電極を取り付けることにより行われる.取り付けた 電極のうち1つを選択して微弱な交流電流を印加し、残り の電極における電圧を計測する.この作業を全ての印加, 計測電極組に対して繰り返すことにより、対象内部の電気 インピーダンス分布が算出され、内部構造の推定を行う.

2.2.1 EIM を用いたタッチ/ジェスチャセンシング

Zhang ら [6], [7] は,スマートウォッチのバンドに複数 個の電極を取り付け,EIM を用いることにより様々なハ ンドジェスチャを認識可能とした.また,Zhang ら [8] は 導電性素材により作られた物体や,既存物体を導電性素 材によってコーティングしたものに対しEIM を用いるこ とにより,タッチセンシング可能なElectrickを開発した. Yoon ら [9] はカーボン製エラストマーに対してEIM を用 いることにより,物体に取り付けることが可能な柔らかい タッチセンサである iSoft を開発した.さらに iSoft の素材 を多層構造にし,より高精度かつ多様なタッチの認識が可 能となった MultiSoft[10] が開発された.

3. 提案手法

本手法では, 導電布周囲に複数個の電極を取り付け, EIM により電圧を計測し, 計測した電圧をデータとして機械学 習を行うことにより, 導電布上へのユーザのタッチ認識を 可能とする. 導電糸を縫い込む, 導電布を重ねるなどの特 別な加工をする必要がなく, 一般的に購入可能な導電布に 対して電極を取り付けるのみで済むため, 先行研究と比較 して容易に実装可能である. また, 導電糸を用いた静電容 量センシングによる手法のように導電糸1本1本に電極を 取り付ける必要がないため, 電極の取り付け方の自由度が 高い. 加えて布の形状, 電極の数および取り付け位置を調 整することにより, 様々なシチュエーションにおいて利用 可能であると考えられる.

本手法では、2-terminal EIM (以降、2 端子 EIM) と呼ば れるセンシング手法を用いる.2端子 EIM によるセンシ ングは,対象物体の周囲に複数個の電極を取り付けること により行われる.はじめに、取り付けた電極のうち1つを 選択して微弱な交流電流を印加する.1つの電極に交流電 流を印加している間に,残りの電極にて順に電圧を計測し ていく (図 2). 全ての電極における電圧計測が終了したの ちに、交流電流を印加する電極を変更し、同様の電圧計測 を繰り返す。地面や床に接触している人間は電気的にも接 地しているため、電流が流れている導電布に人間がタッチ することにより、導電布から人体への分流が発生し、各電 極において計測される電圧がそれぞれ降下する. タッチし た位置や、導電布と接触する手の面積および形状ごとに各 電極において異なる電圧が計測されるため、得られた電圧 データを機械学習にかけることにより、タッチ認識が可能 となる.

4. 予備実験

導電布上での2端子 EIM によるタッチセンシングを行うために,どのような設計が望ましいかを調査した.実験 は著者1名が実施した.

図 2 2 端子 EIM によるセンシングのイメージ. 左:赤色の円が電 流の印加を行う印加電極. 青色の円が電圧の計測を行う計測電 極. それぞれ同一のグラウンドを基準としている. 右:左での 計測電極における電圧計測が終了すると,計測電極を別の電極 に切り替えて電圧計測を行う.

4.1 予備実験 1: センシングに適した導電布および印加す る電流周波数の調査

本手法の実装に適した導電布,および導電布に印加する 交流電流の周波数を調査した.

EeonTex Conductive Stretchable Fabric^{*1}(以降, 伸縮 導電布)(図 3A), EeonTex Pressure Sensing Fabric^{*2}(以 降,感圧導電布)(図 3B), Conductive Fabric - 12"x13" Ripstop^{*3}(以降, ナイロン導電布)(図 3C)の3種類の導 電布を用意した.伸縮導電布は厚さ0.38 mm,表面抵抗率 $10 k\Omega \sim 10 M\Omega/sq.$ の範囲であり伸縮によって変化する. 感圧導電布は厚さ0.80 mm,表面抵抗率 $2 k\Omega/sq.$ である. ナイロン導電布は厚さ0.1 mm,表面抵抗率 0.02 $\Omega/sq.$ 未 満である.

導電布ごとに複数の周波数の信号を印加し,タッチ時お よびタッチしていないとき(以降,ノータッチ)それぞれに おいて計測された電圧にどれだけ差が出るかを調査した.

図3 予備実験1で使用した導電布.A: 伸縮導電布.B: 感圧導電
布.C: ナイロン導電布

4.1.1 実験システム

予備実験では,導電布に電極を2つ取り付け,一方に電流 を印加し,もう一方で電圧の計測を行う.図4に本実験シス テムのブロック図を示す.信号の発生および計測を行うた め,波形発生機能,オシロスコープ機能を持った Analog Dis-

*2 https://www.sparkfun.com/products/retired/14111 *3 https://www.sparkfun.com/products/retired/10056 covery 2*4および BNC コネクタ拡張ボード*5を使用した. Analog Discovery 2 は USB ケーブルによって MacBook Pro (13-inch, 2019) に接続されている. Analog Discovery 2 用の制御アプリケーションである WaveForms*6を使用し て発生させた sin 波を信号として一方の電極(以降,印加 電極) に印加し,もう一方の電極(以降,計測電極)にて 信号を計測した.計測側では,ノイズ除去のため Analog Discovery 2 内のバンドパスフィルタを用いた.バタワー ス型バンドパスフィルタを採用し,次数は4,中心周波数か ら前後 20% (1kHz の場合,800 Hz ~ 1.2 kHz) を通すフィ ルタとした.フィルタを通した後の信号の Peak-to-peak 電圧を計測した.

図 4 予備実験システムのブロック図.

4.1.2 実験手順

導電布に電極としてワニロクリップを5cm 間隔で2つ 取り付けた.交流電流を印加電極に印加し,ノータッチ時 における計測電極のPeak-to-peak 電圧を計測した.次に 電極間の中心位置(それぞれの電極から2.5cmの位置)部 分の導電布を右手人差し指でタッチした.この状態で同様 に Peak-to-peak 電圧を計測した.

以上の手順を3種類の導電布で、1 kHz, 10 kHz, 100 kHz, 200 kHz, 500 kHz, 1 MHz, 2 MHz, 5 MHz の計8種類の 周波数の sin 波を用いて行った.すべての周波数において, 振幅は4 V_{pp}, オフセットは0とした.

4.1.3 実験結果

計測した Peak-to-peak 電圧の値を表1に, ノータッチ 時における Peak-to-peak 電圧のグラフを図5左に, 電圧 降下の割合のグラフを図5右に示す.

実験を行った3種類すべての導電布において,印加する sin 波の周波数を高くすると,計測される電圧が低くなるこ

^{*1} https://www.sparkfun.com/products/retired/14112

^{*3} https://www.sparkfun.com/products/retired/10056

^{*4} https://store.digilentinc.com/analog-discovery-2-100msps-usb-oscilloscope-logic-analyzer-andvariable-power-supply

^{*5} https://reference.digilentinc.com/reference/ instrumentation/bnc-adapter-board/start?redirect=1

^{*6} https://reference.digilentinc.com/reference/ software/waveforms/waveforms-3/start?redirect=1# newest

とがわかった.一方で周波数を低くすると,タッチ/ノー タッチ時の電圧降下が小さくなることがわかった.ナイロ ン導電布は高い周波数においても計測される電圧が高かっ たが,どの周波数においてもタッチ/ノータッチ時の電圧 降下が非常に小さかった.感圧導電布は,どの周波数にお いても比較的高い電圧が計測され,特に 200 kHz 以上にお いてタッチ/ノータッチ時の電圧降下が大きいことが確認 できた.伸縮導電布は,2つの導電布と比較すると計測さ れた電圧は低いが,100 kHz 以上においてタッチ/ノータッ チ時の電圧降下が大きかった.

感圧導電布および伸縮導電布にて電圧降下が大きかった ことから、2kΩ/sq.以上の表面抵抗率があれば十分タッチ センシングが可能であるとわかった.しかし、感圧導電布 へのタッチにより指先が黒く汚れてしまうことから、導電 布表面のカーボンが摩耗することがわかった.これによ り、導電布表面のインピーダンスが変化してしまう可能性 がある.以上より、以降の実験では伸縮導電布を採用する. 伸縮導電布の実験結果から、電圧と電圧降下の比率を考慮 し、印加する sin 波の周波数は 200 kHz を採用する.

図 5 予備実験2の結果. 左: 導電布ごとのノータッチ時における電 圧の値. 右: 導電布ごとのタッチした際のノータッチ時からの 電圧降下の割合.

4.2 予備実験 2: 様々な電極間における電圧降下の調査

印加電極を1箇所に固定し,計測電極の取り付け位置を 変えながら,導電布上の複数の位置をタッチしたときに計 測される電圧降下を調査した.

実験システムは予備実験1と同様のものを使用した. 15 cm×15 cmの正方形に切った伸縮導電布を使用した.本 実験における電極の取り付け位置および導電布上のタッチ 点を図6 に示す.導電布の上辺と左辺からそれぞれ2.5 cm 離れた位置を1つのタッチ点とし,その点を基準に下,右 に5 cmずつ離れた点をタッチ点とし,計9点をタッチ点 とした.導電布右上の角から左に3 cmの位置に印加電極 を取り付けた(図6赤円).図6青円内の数字の順に計測 電極を取り付けて信号の計測を行った.

4.2.1 実験手順

まず,計測電極を右上の角から下に 3 cm の位置に取り付けた (図 6 青円 1). Analog Discovery 2 により, 200 kHz,

4V_{pp},オフセット0のsin波を発生させ,印加電極に印加した.タッチしない状態のまま,計測電極にてバタワース型バンドパスフィルタを通した後の信号のPeak-to-peak 電圧を計測した.

次に導電布左上のタッチ点を右手人差し指でタッチした. この状態で同様に Peak-to-peak 電圧を計測した.その後, すべてのタッチ点に対して同様にタッチし,それぞれの状 態における Peak-to-peak 電圧を計測した.

すべてのタッチ点での電圧の計測が完了したのち,計測 電極を一度取り外し次の位置(図6青円2)に取り付け直 して,同様の計測を行った.以上の手順を18箇所の取り 付け位置で行った.

図6 予備実験2における電極の取り付け位置および導電布上のタッ チ点を示した図.赤円が印加電極,青円が計測電極,紫の菱形 がタッチ点である.青円内に示した順に電極を取り付けて信号 の計測を行った.

4.2.2 実験結果

計測電極ごとの実験結果の一部を図7に示す.図は,各 タッチ点をタッチしたときの Peak-to-peak 電圧が,ノー タッチ時の Peak-to-peak 電圧からどれだけ降下したかを 計測電極ごとに表している.最も電圧降下が大きかった点 を赤,最も小さかった点を白としてカラースケールして いる.

計測電極1における右上のタッチ点の結果から,印加, 計測電極のどちらからも近い点をタッチした場合に最も電 圧降下が大きいことがわかった.計測電極7における右1 列のタッチ点の結果から,印加,計測電極を結んだ直線上 から近い位置にある点をタッチした場合に電圧降下が大き いことがわかった.また計測電極1における下1列と左1 列,計測電極12における左上と右下,および計測電極18 における下1列のタッチ点の結果から,印加,計測電極を 結んだ直線上から離れた位置にある点をタッチした場合に 電圧降下が小さいことがわかった.これらは,導電布があ る程度の電気抵抗とインピーダンスを持っていることか ら,印加および計測電極から生成される電界の強さが電極

XI Detailed and and and and and and and and and an											
導電布	状態 \ 周波数(Hz)	1k	10k	100k	200k	500k	$1\mathrm{M}$	2M	5M		
伸縮導電布	ノータッチ	3697.1	2461.6	299.3	123.4	41.5	21.9	15.6	10.9		
	タッチ	3668.6	2069.1	177.7	53.0	14.4	8.9	9.0	8.1		
感圧導電布	ノータッチ	4142.9	4165	3812.3	2964.5	1597.3	801.51	381.54	125.4		
	タッチ	4109.6	4148.9	3532.9	2185.8	1007.6	614.36	265.35	83.288		
ナイロン導電布	ノータッチ	4188.4	4191.2	4228.4	4048.6	3962.0	3799.4	3346.5	1888.0		
	タッチ	4187.0	4190.3	4142.3	4021.1	3820.0	3557.7	3114.1	1758.3		

表1 各導電布における周波数ごとの Peak-to-peak 電圧(単位 mV)

からの距離によって異なるためであると考えられる.以上 のことから,印加,計測電極を結んだ直線がタッチする範 囲をカバーできるように電極を取り付けることが,EIM を 用いて導電布上のタッチ位置を認識するために適している と考えられる.

53 056
T

-46 248

-31.79

'	-57.389	
	計測電極12	

-61.704

-51.203

-37.468

-57.989

-58.107

計測電極18

-47 955

-36.368

-39.587

-27.369

図 7 計測電極における, ノータッチ時と各点をタッチしたときの電 圧の差(単位 mV).電圧降下が大きい点は赤,小さい点は白 となるようカラースケールしている.

5. プロトタイプ実装

予備実験に基づき,提案手法のプロトタイプを開発した. 本プロトタイプは,導電布,EIM センシングハードウェア およびタッチ認識ソフトウェアから構成される.

5.1 EIM センシングハードウェア

EIM によるセンシングを行うためのハードウェアをブ レッドボード上に実装した(図8).ハードウェアは、マイ クロコンピュータ、波形発生器、信号増幅回路、マルチプ レクサ、信号整流回路、電池から構成される.

ハードウェアのブロック図を図 9 に示す.マイクロ コンピュータ (mbed LPC1768^{*7}) によって波形発生器 (AD9851^{*8}) を制御し,200 kHz,800 mVpp の sin 波を発 生させる.発生させた sin 波は電圧が小さいため,信号増 幅回路により 3.2 Vpp に増幅したのち,マルチプレクサ

*7 https://os.mbed.com/platforms/mbed-LPC1768

図 8 EIM センシングハードウェアのブレッドボード実装.

図 9 EIM センシングハードウェアのブロック図. それぞれのマ ルチプレクサはすべての電極と繋がっており,マイクロコン ピュータによって切り替え制御を行っている.

(CD74HC4067*9) A を通して1つの電極に印加する.1つ の電極に印加している間に,マルチプレクサBを切り替え ることにより,他の電極にて信号を計測する.計測する信 号は微小であるため,信号増幅回路を用いて9倍に増幅さ せる.増幅された信号は,信号整流回路内のダイオードに より整流した後,ローパスフィルタを通し交流成分を除去 する.整流後の信号は mbed のアナログピンに接続されて おり, mbed 内蔵の12 ビット AD コンバータにて AD 変 換した値を取得する.変換した値は USB シリアル通信に より, PC に送信される.1 組の印加,計測電極の組合せに おいて 50 サンプルの電圧を計測する.

以上を全ての印加電極、計測電極の組合せにて行い、得

*9 http://www.ti.com/jp/lit/ds/symlink/cd74hc4067.pdf

^{*8} https://www.analog.com/jp/products/ad9851.html

られた電圧データを1フレーム分のデータとする.電極数 をnとすると1フレームあたり $_{n}P_{2} \times 50$ サンプルの電圧 データを用いてタッチ認識を行う.例えば,電極を4つ取 り付けた場合には, $_{4}P_{2} = 12$ 通りの組合せになるため,1 フレームあたり $12 \times 50 = 600$ サンプルの電圧データが得 られる.

5.2 タッチ認識ソフトウェア

EIM センシングハードウェアによって得られた電圧デー タを用いて機械学習を行うことにより,タッチ認識を行う PC上のソフトウェアを実装した.タッチ認識のために,そ れぞれのタッチ状態をラベルとした教師あり学習を行う. PC は MacBook Pro (13-inch, 2019)を使用した.本ソフ トウェアの実装には Python 3.7.4を使用した.機械学習を 行う Python ライブラリとして scikit-learn^{*10}を使用した.

タッチ認識ソフトウェアは学習フェーズと認識フェーズ に分かれる.学習フェーズでは,タッチ認識に使用する学 習データの収集および機械学習モデルの生成を行う.認識 フェーズでは,学習フェーズにおいて生成済みのモデルに テストデータを与えることにより,タッチ認識を行う.

5.2.1 学習フェーズ

学習フェーズではまず,認識を行うタッチ状態および ノータッチ時の電圧データを学習データとして収集する. 1つのタッチ状態およびノータッチ時において電圧データ を 20 フレーム収集する.電極数を n,認識を行うタッチ 状態の種類を pとすると, $_nP_2 \times 50 \times 20 \times (p+1) サンプ$ ルの電圧データが学習データとなる.

学習データの収集が完了すると、機械学習モデルの学習 を行うためにデータの前処理を行う.得られた学習デー タにて、ノータッチ時における 20 フレーム分の電圧デー タの各次元ごとの平均値 m_{learn}を求めた.学習データの すべての要素に対して各次元ごとの m_{learn}を引いた値を 特徴量とした.その後、特徴量を各次元ごとに平均 0、分 散 1 になるように標準化を行った.変換前のデータに外 れ値が存在した場合、標準化が上手くいかない可能性があ るため、各次元ごとのデータの四分位点を用いて標準化を 行う scikit-learn の RobustScalar を用いた. RobustScalar では、標準化前のデータを x, x の第 1, 2, 3 四分位点をそ れぞれ q1, q2, q3 とすると、標準化後のデータ s は式 1 で 表される.

$$s = \frac{x - q_2}{q_3 - q_1} \tag{1}$$

また認識フェーズにおいて再び標準化を行うため,各次元の四分位点の値を記憶しておく.

標準化した特徴量を用いて機械学習モデルの学習を行う.本プロトタイプでは,機械学習モデルとして SVM を 用いる.

5.3 認識フェーズ

認識フェーズではまず,キャリブレーションとしてノー タッチ時の電圧データを20フレーム収集し,各次元ごとに 平均値 m_{test}を求める.ノータッチ時および各タッチ状態 での電圧データをテストデータとして収集し,1フレーム ごとに要素から各次元ごとのm_{test}を引き,学習フェーズ にて記憶した四分位点の値を使用して標準化を行う.標準 化した特徴量を学習済みモデルに与えることにより,タッ チ認識を行う.

6. 評価実験

開発したプロトタイプを用いて,指1本によるタッチ位 置および,導電布上に乗せた手の形状の認識精度を評価す る実験を行った.いずれの実験にも,4人の男性(P1-P4; 平均年齢 23.3 歳)が参加した.

6.1 実験 1: タッチ位置認識の精度評価

導電布を平らな机面上に置いた状態にて,被験者が布上 をタッチした位置の認識を行った.本実験には開発したプ ロトタイプおよび,15 cm×15 cmの正方形に切った伸縮 導電布を用いた.電極として8個のワニロクリップを導電 布周囲に取り付け,認識するタッチ点として予備実験2と 同様の9点を用意した(図10).

図 10 実験1における電極の取り付け位置,および導電布上のタッ チ点を示した図.

6.1.1 実験手順

被験者は,導電布および開発したプロトタイプが置かれ た机の手前にある椅子に座り,実験開始を待った.実験者 が実験用プログラムを実行し学習フェーズが開始された. 学習フェーズではまず,ノータッチ時の電圧データを 20 フレーム収集した.その後,PCのモニタ上に順番に表示 される番号のタッチ点を被験者に右手人差し指でタッチし てもらった.タッチ点ごとに電圧データを 20 フレーム収 集し,学習データとした.ノータッチ時および 9 点すべて の電圧データの収集が終わると,学習モデルの構築が行わ

^{*10} https://scikit-learn.org/stable/

れ,その後認識フェーズが開始された.

認識フェーズではまず,キャリブレーション用のデータ としてノータッチ時のデータを 20 フレーム収集した.そ の後,PC のモニタ上にランダムな順序にて,ノータッチま たはタッチ点の番号が表示された.被験者には,ノータッ チと表示された場合には導電布から手を離してもらい,番 号が表示された場合には対応する導電布上のタッチ点を タッチしてもらった.1回のタッチおよびノータッチ時に おいて電圧データを 20 フレーム収集した.すべてのタッ チ点へのタッチおよびノータッチ時の電圧データを収集す るタスクを1セッションとし,連続して2セッション行っ てもらった.つまり,9点のタッチ点およびノータッチ時 の電圧データをそれぞれ 40 フレーム収集しテストデータ とした.

6.1.2 実験結果

9点のタッチ点およびノータッチ時の計10クラスのSVM を用いた認識精度は平均90.9%(SD=7.6)であった.P1 の混同行列を図11に示す.実験結果から,タッチ点5の認 識精度が低いことがわかった.これは,導電布中央である ためそれぞれの電極からの位置が遠いことから,電圧デー タの差が小さかったのではないかと考えられる.その他の タッチ点についても誤認識がいくつか確認されたが,その 多くが隣接しているタッチ点との誤認識であった.

図 11 実験1における P1の混同行列. 各ラベルはタッチ点を表し ており, ラベル0はノータッチを表している.

6.2 実験 2: 布上に置いた手形状認識の精度評価

本実験では、布上に置いた手形状の認識を行った.認識 を行う手形状は、グー、チョキ、パーの3種類とした. グー は拳を握った状態で、曲げた指と掌底が導電布表面に接触 するようにしてもらった(図12A).チョキは伸ばした人 差し指と中指の指先、曲げた指、および掌底が導電布表面 に接触するようにしてもらった(図12B).パーは手のひ らおよび伸ばした指が導電布表面に接触するようにしても らった(図 12C).

本実験にて用いた伸縮導電布の大きさは,25 cm × 25 cm であり,電極として 8 個のワニロクリップをそれぞれの辺 に 8.3 cm 間隔で取り付けた.

図 12 実験 2 の様子. A: 手をグーにしたとき. B: 手をチョキにしたとき. C: 手をパーにしたとき.

6.2.1 実験手順

被験者は, 導電布および開発したプロトタイプが置かれ た机の手前にある椅子に座り,実験開始を待った.実験者 が実験用プログラムを実行し学習フェーズが開始された. 学習フェーズではまず, ノータッチ時の電圧データを20フ レーム収集した.その後, PCのモニタ上に順番に表示さ れるテキストに対応した手形状を導電布上で行ってもらっ た.1つの手形状ごとに電圧データを20フレーム収集し, 学習データとした.3種類すべての電圧データの収集が終 わると,学習モデルの構築が行われ,その後認識フェーズ が開始された.

認識フェーズではまず,キャリブレーション用のデータ としてノータッチ時のデータを20フレーム収集した.そ の後,PCのモニタ上にランダムな順序にて,ノータッチ または手形状を示すテキストが表示された.被験者には, ノータッチと表示された場合には導電布から手を離して もらい,手形状を示すテキストが表示された場合には対応 する手形状を導電布上で行ってもらった.1回の手形状お よびノータッチ時において電圧データを20フレーム収集 した.すべての手形状およびノータッチ時の電圧データ収 集を1セッションとし,連続して2セッション行っても らった.つまり,3種類の手形状およびノータッチ時の電 圧データをそれぞれ40フレーム収集しテストデータとし た.なお,各セッションごとに,導電布上のできるだけ同 じ位置に手を置くよう指示した.

6.2.2 実験結果

3種類の手形状およびノータッチ時の計4クラスの SVM を用いた認識精度は平均 98.1%(SD=1.17)であった.認 識結果を確認すると,グーとチョキを誤認識していること があった.これは,人差し指および中指以外の接触してい る部分の形状が似ており,各電極において近い電圧が計測 されたことによるものであると思われる.しかし,全被験 者において識別精度は高く,本提案手法は指先1本での タッチ以外に,タッチした手の形状の認識も可能であるこ とが示唆された.

7. まとめと今後の課題

本論文では, 導電布周囲に複数個の電極を取り付け, EIM によるセンシングを行い得られた電圧データを機械学習に かけることにより, タッチセンシングを可能とする手法を 提案した. 導電布における EIM によるセンシングが可能 かどうかを調査する予備実験を行った. この調査に基づき, 提案手法のプロトタイプとなるハードウェアおよび PC 上 のソフトウェアを実装した. さらにこのプロトタイプを用 いて, タッチ位置およびタッチした手の形状の認識精度を 評価する実験を行った. 実験の結果, 実験参加者ごとの 9 点のタッチ位置の認識精度の平均は 90.9%, 3 種類の手の 形状の認識精度の平均は 98.1%であった.

今後の課題として,回路を小型にすることによるウェア ラブル化が挙げられる.また,円,細長い形状など様々な 形状に加工した導電布におけるタッチセンシングを行う予 定である.さらに,導電布上のなぞりのトラッキングや複 数本の指によるマルチタッチ,布をつまむなど,より多様 なタッチの認識を可能とすることを目指す.

参考文献

- Posch, I., Stark, L. and Fitzpatrick, G.: eTextiles: Reviewing a Practice Through Its Tool/Kits, Proceedings of the 23rd International Symposium on Wearable Computers, ISWC '19, New York, NY, USA, ACM, pp. 195–205 (online), DOI: 10.1145/3341163.3347738 (2019).
- [2] Poupyrev, I., Gong, N.-W., Fukuhara, S., Karagozler, M. E., Schwesig, C. and Robinson, K. E.: Project Jacquard: Interactive Digital Textiles at Scale, *Proceedings of the 2016 CHI Conference on Hu*man Factors in Computing Systems, CHI '16, New York, NY, USA, ACM, pp. 4216–4227 (online), DOI: 10.1145/2858036.2858176 (2016).
- [3] Ono, K., Iwamura, S., Ogie, A., Baba, T. and Haimes, P.: Textile++: Low Cost Textile Interface Using the Principle of Resistive Touch Sensing, ACM SIGGRAPH 2017 Studio, SIGGRAPH '17, New York, NY, USA, ACM, pp. 8:1–8:2 (online), DOI: 10.1145/3084863.3084868 (2017).
- [4] Leong, J., Parzer, P., Perteneder, F., Babic, T., Rendl, C., Vogl, A., Egger, H., Olwal, A. and Haller, M.: pro-Cover: Sensory Augmentation of Prosthetic Limbs Using Smart Textile Covers, *Proceedings of the 29th Annual* Symposium on User Interface Software and Technology, UIST '16, New York, NY, USA, ACM, pp. 335–346 (online), DOI: 10.1145/2984511.2984572 (2016).
- [5] Parzer, P., Sharma, A., Vogl, A., Steimle, J., Olwal, A. and Haller, M.: SmartSleeve: Real-time Sensing of Surface and Deformation Gestures on Flexible, Interactive Textiles, Using a Hybrid Gesture Detection Pipeline, *Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology*, UIST '17, New York, NY, USA, ACM, pp. 565–577 (online), DOI: 10.1145/3126594.3126652 (2017).
- [6] Zhang, Y. and Harrison, C.: Tomo: Wearable, Low-Cost Electrical Impedance Tomography for Hand Gesture Recognition, *Proceedings of the 28th Annual ACM*

Symposium on User Interface Software and Technology, UIST '15, New York, NY, USA, ACM, pp. 167–173 (online), DOI: 10.1145/2807442.2807480 (2015).

- [7] Zhang, Y., Xiao, R. and Harrison, C.: Advancing Hand Gesture Recognition with High Resolution Electrical Impedance Tomography, *Proceedings of the 29th Annual* Symposium on User Interface Software and Technology, UIST '16, New York, NY, USA, ACM, pp. 843–850 (online), DOI: 10.1145/2984511.2984574 (2016).
- [8] Zhang, Y., Laput, G. and Harrison, C.: Electrick: Low-Cost Touch Sensing Using Electric Field Tomography, Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI '17, New York, NY, USA, ACM, pp. 1–14 (online), DOI: 10.1145/3025453.3025842 (2017).
- [9] Yoon, S. H., Huo, K., Zhang, Y., Chen, G., Paredes, L., Chidambaram, S. and Ramani, K.: iSoft: A Customizable Soft Sensor with Real-time Continuous Contact and Stretching Sensing, *Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology*, UIST '17, New York, NY, USA, ACM, pp. 665–678 (online), DOI: 10.1145/3126594.3126654 (2017).
- [10] Yoon, S. H., Paredes, L., Huo, K. and Ramani, K.: MultiSoft: Soft Sensor Enabling Real-Time Multimodal Sensing with Contact Localization and Deformation Classification, *Proceedings of the ACM on Interactive*, *Mobile, Wearable and Ubiquitous Technologies*, Vol. 2, No. 3 (online), DOI: 10.1145/3264955 (2018).
- [11] 関森広大,志築文太郎, 高橋伸:電気インピーダンス 変化に基づき位置識別を行う布型タッチインタフェース, マルチメディア,分散協調とモバイルシンポジウム 2018
 論文集, Vol. 2018, pp. 362–368 (2018).
- [12] Olwal, A., Moeller, J., Priest-Dorman, G., Starner, T. and Carroll, B.: I/O Braid: Scalable Touch-Sensitive Lighted Cords Using Spiraling, Repeating Sensing Textiles and Fiber Optics, *Proceedings of the 31st Annual* ACM Symposium on User Interface Software and Technology, UIST '18, New York, NY, USA, ACM, pp. 485– 497 (online), DOI: 10.1145/3242587.3242638 (2018).
- [13] Vogl, A., Parzer, P., Babic, T., Leong, J., Olwal, A. and Haller, M.: StretchEBand: Enabling Fabric-based Interactions Through Rapid Fabrication of Textile Stretch Sensors, *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems*, CHI '17, New York, NY, USA, ACM, pp. 2617–2627 (online), DOI: 10.1145/3025453.3025938 (2017).
- Mikkonen, J. and Townsend, R.: Frequency-Based Design of Smart Textiles, *Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems*, CHI '19, New York, NY, USA, ACM, pp. 294:1–294:12 (online), DOI: 10.1145/3290605.3300524 (2019).
- [15] Borcea, L.: Electrical Impedance Tomography, *Inverse Problems*, Vol. 18, No. 6, pp. R99–R136 (online), available from (http://stacks.iop.org/0266-5611/18/i=6/a=201) (2002).