
IPSJ SIG Technical Report

Better Embedding of k-Outerplanar Graphs into Random

Trees

AkiraMatsubayashi1,a)

Abstract: Low-distortion embedding of an edge-weighted graph into random trees is addressed. We prove that any

k-outerplanar graph can be embedded into random trees with distortion 149k , improving the previous result with dis-

tortion 200k . The present result implies an embedding of a k-outerplanar graph into ℓ1-metric with distortion 149k and

better approximation algorithms and online algorithms for some problems on k-outerplanar graphs.

Keywords: low-distortion embedding, probabilistic embedding, k-outerplanar graph, tree metric, Halin graph

1. Introduction

This report addresses the problem of embedding an edge-

weighted guest graph into random host trees. More specifi-

cally, we are given a graph G = (VG, EG) with non-negative

edge-weights w : EG → R+ and asked to randomly find a tree

T = (VT , ET) such that VG ⊆ VT , and for each pair of vertices

u, v in G, the distance (i.e, the length of the shortest path) dG(u, v)

between u and v in G is no shorter than the distance dT (u, v) in

T . The objective of this problem is to minimize the distortion

ρ = maxu,v∈VG
E[dT (u, v)]/dG(u, v).

Motivation

Studying this problem is motivated by the fact that any em-

bedding into random trees implies an embedding into ℓ1-metric.

Specifically, if a graph G can be isometrically (i.e., with dis-

tortion 1) into random trees, then there exists an isometric ℓ1-

embedding, i.e., a mapping f from the vertex set of G into a real

space of some dimension equipped with ℓ1-norm, such that for

any vertices u, v in G, dG(u, v) = || f (u)− f (v)||1 (see, e.g., [8]). One

important application of ℓ1-embeddings is that an ℓ1-embedding

of a graph G with distortion ρ implies an upper bound of the gap

between the max-flow and the min-cut for multicommodity flow

in G, and hence a ρ-approximation algorithm for the sparsest cut

problem [15]. As a stronger result, it is known that the minimum

distortion of an ℓ1-embedding of G and the gap between the max-

flow and the min-cut in G are equivalent [11].

Another motivation of embedding into random trees is to pro-

vide an approximation (with respect to distance) of a general

graph with complicated topology by a simple topology of trees.

Based on the fact that many optimization problems and online

problems defined on edge-weighted graphs are easily and effi-

ciently solved on trees, low-distortion embeddings into random

trees are useful to design randomized approximation algorithms

1 Division of Electrical Engineering and Computer Science, Kanazawa

University Kakuma-machi, Kanazawa, 920–1192 Japan
a) mbayashi@t.kanazawa-u.ac.jp

and randomized online algorithms for such problems. Specifi-

cally, if there exists an c-approximation (c-competitive, resp.) al-

gorithm on trees for some optimization (online, resp.) problem,

and if a graph G can be embedded into random trees with distor-

tion ρ, then we can obtain a cρ-approximation (cρ-competitive,

resp.) randomized algorithm on G by the following steps: (i)

choose a random tree T into which G is embedded, (ii) run the

c-approximation (c-competitive, resp.) algorithm to obtain a so-

lution on T , and (iii) translate the solution obtained on T back into

a solution on G [2]. Bartal presented approximation and online

algorithms based on this idea for several problems, such as the

group Steiner tree problem and the metrical task systems [2], [3].

Carikar et al. derandomized some approximation algorithms by

presenting an embedding into a small number of random trees

[6].

It should be noted that embeddings of [2], [3], [6] require trees

with virtual vertices in addition to the vertices of a guest graph.

Thus, the solution obtained in step (ii) above needs to be rep-

resented without using virtual vertices. Namely, if some virtual

vertices (or anything that must be represented using virtual ver-

tices) are a feasible solution of the problem, then we might not be

able to translate the solution back into the guest graph in step (iii).

One example of such problems is the metrical task systems. (For

this problem, however, an algorithm based on the embedding of

[1] is presented [4].)

Previous Results

The currently best embedding of a general graph with n ver-

tices into random trees (with virtual vertices) achieves O(log n)

distortion, which was presented by Fakcharoenphol et al. [10].

This result matches the Ω(log n) lower bound for series-parallel

graphs [11]. Gupta et al. conjectured that any graph in a class

F is ℓ1-embeddable with distortion of a constant dependent only

on F if and only if F forbids a fixed minor [11]. Along the line

of this conjecture, embedding for such graph classes are studied

via embedding into random trees. It is known that any outerpla-

nar graph can be embedded into random trees with distortion 8

1ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-177 No.4
2020/3/16

IPSJ SIG Technical Report

[11] (whereas such graphs are isometrically ℓ1-embeddable [17]).

Chekuri et al. extended this result to k-outerplanar graphs by pre-

senting an embedding such a graph into random trees with dis-

tortion 200k [7]. Emek also considered k-outerplanar graphs and

presented an embedding into random spanning subtrees with dis-

tortion ck, where c is not explicitly specified but appears to be

244. Lee and Sidiropoulos proves that any graph with pathwidth

k can be embedded into random trees with distortion (4k)k3
+1 [14].

Contribution and Technique

In this report, we prove that any k-outerplanar graph can be em-

bedded into random trees with distortion 149k . This improves the

result of Chekuri et al. [7] exponentially with respect to k. Our

proof is constructive, i.e., we present a randomized embedding

algorithm. The proposed algorithm, as well as the algorithms of

[7], [9], [11], needs no virtual vertices in host trees, i.e., embeds

into random trees with the vertex set of the guest graph. There-

fore, the present work can be combined with any approximation

or online algorithms designed for trees. For example, we can ob-

tain a randomized 149k(2 + 1/D)-competitive algorithm for the

file allocation problem [5] on k-outerplanar graphs, by combin-

ing with the (2+1/D)-competitive algorithm on trees [16], where

D is a positive integer representing the size of files managed in

the problem. Note that the algorithm of [16] generally allocates

files at virtual vertices (if any).

The proposed embedding algorithm is recursive with respect

to k, as well as the previous algorithms [7], [9]. Namely, we

first embed (k − 1)-outerplanar graphs obtained from a given k-

outerplanar graph by removing the outer cycle into random trees.

We then embed the resulting graph, which is essentially a Halin

graph, into random trees. The advantage of the proposed algo-

rithm is based on the improvement of the embedding of the Halin

graph. The algorithm of [7] first embeds a Halin graph into an

outerplanar graph with drastically modifying the topology, and

then into random trees. In contrast, the proposed algorithm adds

new edges, essentially, in a quite limited situation. In this sense,

the generated random trees are different from but close to span-

ning subtrees, and more intuitive.

2. Preliminaries

Graph Metric and Embedding

Graphs considered in this paper are simple and undirected,

and have non-negative edge-weights, w(e) ≥ 0 for any edge e.

For a graph G, we denote its vertex set and edge set by VG and

EG, respectively. We use the notation of w also for graphs, i.e.,

w(G) :=
∑

e∈EG
w(e). Let dG(u, v) be the distance of vertices u

and v in G, i.e., the minimum sum of weights of edges in a path

connecting u and v in G. The distance dG is called the graph met-

ric supported on G. An edge-weighted graph H dominates G if

VG = VH and dG(u, v) ≤ dH(u, v) for any vertices u, v ∈ VG. The

graph G is embedded into random trees with distortion ρ (or ρ-

probabilistically approximated by trees) if there is a probability

distribution D over a set of trees T dominating G such that for

any vertices u, v ∈ VG, the expected distance between u and v in T

under the distribution D is at most ρ · dG(u, v), i.e., the following

condition is satisfied.

Condition 1 For any u, v ∈ VG, ED[dT (u, v)] ≤ ρ · dG(u, v).

It should be noted that this condition can be replaced with the

following condition.

Condition 2 For any (u, v) ∈ EG, ED[dT (u, v)] ≤ ρ · dG(u, v).

Because any edge (u, v) with w((u, v)) > dG(u, v) does not affect

the graph metric dG, without loss of generality, we assume that

dG(u, v) = w((u, v)) for any edge (u, v). By this assumption, Con-

dition 2 can be replaced with the following condition.

Condition 3 For any (u, v) ∈ EG, ED[dT (u, v)] ≤ ρ · w((u, v)).

The following simple facts, used in previous work [7], [9], are

used in this paper without proofs.

Lemma 1 If each 2-connected component H of a graph G can

be embedded into random trees with distribution ρ, then so can

G.

Lemma 2 If a subgraph H of a graph G can be embedded into

random trees with distortion ρ1, and if the graph GT obtained

from G by replacing the edges of H with the edges of any tree T

dominating H can be embedded into random trees with distortion

ρ2, then G can be embedded into random trees with distortion

ρ1ρ2.

Graph Classes

A planar graph G is 1-outerplanar, or simply outerplanar, if

it can be drawn in the plane so that all the vertices belong to

the unbounded (outer) face. For k ≥ 2, a planar graph G is k-

outerplanar if it has a planar drawing such that removing vertices

and edges in the outer face results in a (k − 1)-outerplanar graph.

A vertex or an edge of G is said to be outer if it is contained in

the outer face, inner otherwise.

A Halin graph was originally introduced as a planar graph ob-

tained from a planar drawing of a tree with at least four vertices

and without degree-2 vertices by adding edges joining leaves of

the tree into a cycle [12], [13]. In this paper, we adopt a slightly

different definition: A Halin graph is defined as a planar graph ob-

tained from a planar drawing of a tree with at least two leaves by

adding paths connecting leaves of the tree into a path. It should be

noted that the definition of this paper is essentially a generaliza-

tion (contrary to appearance) of original Halin graphs. Indeed, we

can modify any original Halin graph to a graph following the def-

inition of this paper and essentially having the same graph metric,

by subdividing each of the two outer edges (u, v) incident to some

vertex u into (u, v′) of weight w((u, v)) and (v′, v) of weight 0. We

also utilize more generalized graphs defined in [9]: A bush is a

graph that has a planar drawing such that removing vertices and

edges in its outer face results in a forest. By definition, a Halin

graph is 1- or 2-outerplanar, and a bush is 2-outerplanar. Exam-

ples of a Halin graph and a bush are shown in Fig. 1.

3. Embedding Algorithm

In this section, we describe a randomized algorithm, called

EkOG, in a top-down fashion. This algorithm takes a k-outerplanar

2ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-177 No.4
2020/3/16

IPSJ SIG Technical Report

Fig. 1 A Halin graph (left) and a bush (right).

graph G as input, together with a planar drawing, and generates

a random tree dominating G. Without loss of generality, we as-

sume that the k-outerplanar graph input to EkOG has no edges of

weight 0. An embedding of G into random trees is implied by the

probability distribution over the trees generated by the algorithm.

3.1 Main Structure

3.1.1 Onion Peeling

The algorithm EkOG has the same structure as previous work

[7], [9] so-called onion peeling. That is, for each 2-connected

component D of G, we recursively generate random trees domi-

nating (k − 1)-outerplanar subgraphs of D obtained by removing

the outer face from D, replace the (k − 1)-outerplanar subgraphs

with the generated trees, and for the resulting graph B, generate

a random tree dominating B. It should be noted that the graph B

is a bush. For convenience of description of the embedding al-

gorithm, we assume without loss of generality that B is a Halin

graph, together with attached trees and some properties, as de-

scribed in the following section. Note that this assumption is not

essential, i.e., we could design our algorithm for embedding a

bush with the same distortion.

3.1.2 Assumption for Bushes

Any bush has a unique 2-connected component C having a cy-

cle. We call such a unique component of a bush a core. Without

loss of generality, we assume that C has the following properties.

Property 1 C is a Halin graph, i.e., C consists of a tree T with

some root r and a path P connecting the leaves of T .

Property 2 At most one of any two adjacent edges in a path in

T between r and a leaf has weight 0.

Property 3 At most one of any two paths in T between r and

two leaves has weight 0.

Indeed, we can modify any core C to a graph having these prop-

erties by the following procedure, so that the graph metric is pre-

served, and any embedding of C is not essentially affected. Let R

be the cycle in the outer face of C and F be the graph induced by

EC \ ER.

(1) Choose one vertex r ∈ VF ∩ VR as the root, and subdivide

each of two edges (r, vi) in R (i ∈ {1, 2}) into (r, v′
i
) of weight

w((r, vi)) and (v′
i
, vi) of weight 0. Let T be F ∪ (r, v′

1
) ∪ (r, v′

2
)

and P be the path induced by ER \ {(r, v′1), (r, v′
2
)}.

(2) If there is a vertex v ∈ VT ∩ VP incident to two edges e1 and

e2 in P and to j ≥ 2 edges in T , then we replace v with a

path (v1, . . . , v j) of weight 0, so that v1 and v j are incident

to e1 and e2, respectively, and vi (1 ≤ i ≤ j) is incident to

exactly one of the j edges in F (originally incident to v) with

preserving planarity. At this point, any vertex v ∈ VT ∩ VP

is incident to two edges in P and to one edge in T . This

implies that T becomes a forest. Moreover, only edges in P

have weight 0.

(3) If there is an edge in T joining two vertices u and v in P, then

we add new vertices u′ and v′ and replace the edge (u, v) with

three edges (u, u′) of weight 0, (u′, v′) of weight w(u, v), and

(v′, v) of weight 0. At this point, there are no edges in T

joining two vertices in P, and Properties 2 and 3 hold.

(4) If T consists of two or more disconnected trees, then there

exists a face containing edges of some disconnected trees

T1 and T2 in T . By Steps (2) and (3), this face contains at

least one non-leaf vertex vi of Ti for each i ∈ {1, 2} such that

dC(v1, v2) is positive. Adding a new edge (v1, v2) of weight

dC(v1, v2) decrements the number of trees in T by 1 without

violating Properties 2 and 3. We continue this process until

T consists of exactly one tree, i.e., C becomes a Halin graph.

It should be noted that since the vertices added in Steps (2)

and (3) are incident to edges of weight 0, and since any embed-

ding algorithm with finite distortion never removes these edges,

we naturally remove the added vertices by contracting these

weight-0 edges from a dominating tree of C generated by the em-

bedding algorithm.

With the above assumption, we embed the core C using the

algorithm, called EHG and defined in Sect. 3.2, for embedding a

Halin graph. The following is a formal description of the main

structure of EkOG.

EkOG(G)

Input: A k-outerplanar graph G.

Output: A random tree dominating G.

(1) For each 2-connected component D of a k-outerplanar graph

G, perform the following steps.

(a) If D is 1-outerplanar, generate a random tree TD domi-

nating D using the algorithm of [11].

(b) If D is k-outerplanar with k ≥ 2, then let D1, . . . ,Dℓ be

(k − 1)-outerplanar graphs obtained by removing ver-

tices in the outer face of D, and perform the following

steps.

(i) For 1 ≤ i ≤ ℓ, perform EkOG(Di) recursively to

generate a random tree Ti dominating Di.

(ii) Let B be the bush obtained from D by replacing the

edges in Di with the edges in Ti for 1 ≤ i ≤ ℓ.
(iii)Let C be the core of B and perform EHG(C) (de-

fined in Sect. 3.2) to generate a random tree TC

dominating C.

(iv) Let TD be the tree obtained from B by replacing the

edges in C with the edges in TC .

(2) Return the union of the generated trees TD dominating the

2-connected components D of G.

3.2 Embedding of Halin Graphs

3.2.1 Preliminaries

The following definitions will be used to describe the embed-

ding algorithm for Halin graphs. Let H be a Halin graph to be

embedded that consists of a tree T and a path Q connecting the

leaves of T . We define a vertex r ∈ VT \ VQ as a root of T . For a

vertex p ∈ VT , let Tp be the subtree of T induced by p and all the

descendants of p in T . The minimal subpath of Q containing all

the leaves of Tp is called the base of p and denoted by Qp. The

3ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-177 No.4
2020/3/16

IPSJ SIG Technical Report

union of Tp and Qp is called the delta of p and denoted by ∆p.

Note that Tr = T , Qr = Q, and ∆r = H. Let ℓp be a leaf of Tp at

the minimum distance from p. The path between p and ℓp in Tp

is called a spine of p and denoted by S P. We fix ℓp and S p while

processing ∆p in the embedding algorithm. We also fix the root r

until the embedding of H is completed. The graph ∆p is narrow

if for any vertex u in Tp and any leaf ℓ of Tu, the distance between

ℓu and ℓ in Qu is at most α times the distance between ℓu and ℓ

in Tu, i.e., dQu
(ℓu, ℓ) ≤ α · dTu

(ℓu, ℓ), where α > 1 is a parameter

determined later. It should be noted that if ∆p is narrow, then ∆u

is narrow for any descendant u of p. The graph ∆p is wide if the

following conditions hold.

• For any child u of p, ∆u is narrow.

• There is a leaf ℓ of Tp such that dQp
(ℓp, ℓ) > α · dTp

(ℓp, ℓ).

It should be noted that if ∆p is not narrow, then there exists a

vertex u in Tp such that ∆u is wide.

3.2.2 Main Structure of Embedding of Halin Graphs

The algorithm for embedding Halin graphs, called EHG, re-

duces an input Halin graph by replacing a wide delta of a vertex p

with a random tree dominating the delta. The random tree is cho-

sen so that p is contained in the path connecting the end-vertices

of the base of p. Therefore, the resulting graph is a bush whose

core is a reduced Halin graph with p in the outer face. Repeat-

ing this process, we obtain a Halin graph that is a narrow or wide

delta of the fixed root, and finish the embedding by generating

a random tree dominating the delta of the root. The algorithms

for embedding narrow and wide deltas are defined in Sects. 3.3

and 3.4, respectively.

The following is a formal description of the main structure of

EHG for an input Halin graph H with a fixed root r.

EHG(H)

Input: A Halin graph H with a fixed root r.

Output: A random tree dominating H.

(1) If ∆r is narrow, then perform NarrowEmbedding(∆r) (de-

fined in Sect. 3.3) to generate a random tree dominating ∆r ,

and return the tree.

(2) Find a vertex p in Tr such that ∆p is wide, and perform

WideEmbedding(∆p) (defined in Sect. 3.4) to generate a ran-

dom tree T̃p dominating ∆p in which the path connecting the

end-vertices of Qp contains p.

(3) If p = r, then return T̃p.

(4) Let B be the bush obtained from H by replacing the edges of

∆p with the edges of T̃p.

(5) Let C be the unique core of B and perform EHG(C) recur-

sively to generate a random tree TC dominating C.

(6) Let TH be the tree obtained from B by replacing the edges in

C with the edges in TC , and return TH .

3.3 Embedding of Narrow Deltas

The algorithm for embedding a narrow delta ∆p, called

NarrowEmbedding, keeps the edge joining p and its child u in

the spine S p at probability 1 and generates a random tree T̃u by

using NarrowEmbedding recursively. This implies that T̃u has

the spine S p. The tree T̃u is chosen so that it also contains the base

Qu. For another child v of p, the algorithm separates (p, v) ∪ ∆v
into random two trees by cutting edges in (p, v) ∪ Tv, so that p is

contained in one of the separated two trees, and Qu is contained

in the other tree. Therefore, the graph generated from ∆p is a tree

dominating ∆p.

The separating procedure for (p, v) ∪ ∆v, called NarrowCut,

removes the edge (p, v) at probability

1 −
[

w(S v)

w((p, v)) + w(S v)

]2

.

If (p, v) was removed, then ∆v is embedded using

NarrowEmbedding. Otherwise, ∆v is separated recursively.

The following two matters should be noted. The first one is

that if w(S v) = 0 and w((p, v)) > 0, then (p, v) is removed at

probability 1, and therefore, no further recursive NarrowCut is

performed. In other words, if w((p, v)) > 0 and (p, v) is not re-

moved, then w(S v) > 0 and v has a child. The second matter

is that since we introduce edges of weight 0 joining outer and

inner vertices to assume Properties 1–3, it may be the case that

w(S v) = w((p, v)) = 0, which makes the probability of removing

(p, v) an indeterminate form. In this case, however, NarrowCut

is not performed for (p, v) ∪ ∆v by the definition of the algorithm

and the procedure to assume Properties 1–3, This is proved as

Lemma 3 in Sect. 4.1. Therefore, we may assume that w(S v) > 0

or w((u, v)) > 0 in NarrowCut.

The following are formal descriptions of NarrowEmbedding

and NarrowCut.

NarrowEmbedding(∆p)

Input: A narrow delta ∆p of a vertex p.

Output: A random tree dominating ∆p and containing the spine

S p and base Qp.

(1) If Tp is the single vertex p, then return p.

(2) For the child u of p in the spine S p of p, perform

NarrowEmbedding(∆u) to generate a random tree T̃u domi-

nating ∆u and containing Qu.

(3) For a child v of p not in S p, perform NarrowCut((p, v)∪∆v)
to generate a random forest Fv that dominates (p, v)∪∆v and

consists of two trees containing p in one tree and Qv in the

other tree.

(4) Return the tree obtained from ∆p by replacing the edges of

∆u with the edges of T̃u, and the edges of (p, v)∪∆v with the

edges of Fv for every child v not in S p.

NarrowCut((p, v) ∪ ∆v)
Input: The graph (p, v) ∪ ∆v of a vertex p, a child v of p, and

the delta ∆v of v.

Output: A random forest that dominates (p, v)∪∆v and consists

of two trees containing v in one tree and the base Qv in the

other tree.

(1) Remove the edge (p, v) at probability 1− [w(S v)/(w((p, v))+

w(S v))]
2.

(2) If (p, v) was removed, then perform NarrowEmbedding(∆v)

to generate a random tree T̃v dominating ∆v and containing

Qv. Then, return p ∪ T̃v.

(3) If (p, v) remains, then for each child x of v, perform

NarrowCut((v, x) ∪ ∆x) to generate a random forest Fx that

dominates (v, x) ∪ ∆x and consists of two trees containing v

in one tree and Qx in the other tree. Then, return the tree

obtained from (p, v)∪∆v by replacing the edges of (v, x)∪∆x

4ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-177 No.4
2020/3/16

IPSJ SIG Technical Report

with the edges of Fx for each child x of v.

3.4 Embedding of Wide Deltas

The algorithm for embedding a wide delta ∆p, called

WideEmbedding, first finds a set U of children of p such that

• for any distinct u, v ∈ U, dQp
(ℓu, ℓv) > α · dTp

(ℓu, ℓv);

• for any child x < U of p, there is u ∈ U such that

dQp
(ℓu, ℓx) ≤ α · dTp

(ℓu, ℓx) and dTp
(p, ℓu) ≤ dTp

(p, ℓx).

The set U can be found by a simple greedy search, which is

described specifically in a formal description below. In partic-

ular, the child of p in the spine S p is chosen as an element of U.

Second, the algorithm performs NarrowEmbedding(∆u) for each

u ∈ U and NarrowCut((p, x) ∪ ∆x) for each child x < U of p. At

this point, we obtain a random graph containing the base Qp and

the paths connecting p and ℓu for all children u ∈ U of p.

Third, if |U| = 1, then the algorithm chooses one leaf v with

dQp
(ℓp, v) > α · dTp

(ℓp, v) and adds a new edge (p, v) of weight

dTp
(p, v) to the random graph obtained thus far. Moreover, v is

added to U. The vertex v becomes a child of p in the resulting

graph. We define ℓv := v.

At this point, we have at least two vertices in U. Two vertices

u, v ∈ U are said to be consecutive if there is no vertex x ∈ U

such that ℓx appears between ℓu and ℓp in Qp. Finally, for each

pair of consecutive u, v ∈ U, the algorithm chooses and removes

one edge e in the subpath P of Qp between ℓu and ℓv at probabil-

ity w(e)/w(P). Then, a tree dominating ∆p is obtained. Moreover,

the path in the tree connecting end-vertices of Qp contains p.

The following is a formal description of WideEmbedding.

WideEmbedding(∆p)

Input: A wide delta ∆p of a vertex p.

Output: A random tree dominating ∆p in which the path con-

necting the end-vertices of the base Qp contains p.

(1) Find a set U of children of p as follows.

(a) Let U := {v} for the child v of p in the spine S p, and

mark the other children of p “unchecked”.

(b) Remove the mark of each “unchecked” child x of p with

dQp
(ℓu, ℓx) ≤ α · dTp

(ℓu, ℓx).

(c) Include an “unchecked” child u of p with the minimum

dTp
(p, ℓu) to U, and remove the mark of u.

(d) Repeat (b) and (c) while “unchecked” children of p re-

main.

(2) For each u ∈ U, perform NarrowEmbedding(∆u) to generate

a random tree T̃u dominating ∆u and containing Qu.

(3) For each child x < U of p, perform NarrowCut((p, x) ∪ ∆x)

to generate a random forest Fx that dominates (p, x) ∪ ∆x

consists of two trees containing p in one tree and Qx in the

other tree.

(4) Let ∆̃p be the graph obtained from ∆p by replacing the edges

of ∆u with the edges of T̃u for each u ∈ U, and the edges of

(p, x) ∪ ∆x with the edges of Fx for each child x < S of p.

(5) If |U| = 1, then perform the following:

(a) Choose one leaf v of Tp with dQp
(ℓp, v) > α · dTp

(ℓp, v)

arbitrarily.

(b) Add a new edge (p, v) of weight dTp
(p, v) to ∆̃p, and add

v to U.

(c) Define ℓv := v.

(6) For each pair of consecutive u, v ∈ U, choose one edge

e in the subpath P of Qp between ℓu and ℓv at probability

w(e)/w(P), and remove e from ∆̃p. Then, return the resulting

tree.

4. Analysis of Embedding

4.1 Correctness of Embedding

As mentioned in Sect. 3.3, NarrowCut((p, v) ∪∆v) is not well-

defined if w(S p) = w((p, v)) = 0. We claim in Lemma 3 be-

low that if w(S p) = w((p, v)) = 0, then the proposed algorithm

does not perform NarrowCut((p, v) ∪ ∆v). On condition that the

claim hold, the correctness of the proposed algorithm EkOG and

the subroutines that they generate desired random graphs is self-

explanatory and can be proved by simple induction based on their

definitions. Therefore, we omit the proof for the correctness.

Lemma 3 NarrowCut((p, v) ∪ ∆v) is not performed if w(S v) =

w((p, v)) = 0.

Proof Assume w(S v) = w((p, v)) = 0. Then, the spine S p

has weight 0 because w(S p) ≤ w((p, v)) + w(S p) = 0. If

NarrowCut((p, v) ∪ ∆v) is performed, then one of the following

procedures is performed:

• NarrowCut((q, p) ∪ ∆p) for the parent q of p,

• NarrowEmbedding(∆p), or

• WideEmbedding(∆p).

Assume first that NarrowCut((q, p) ∪ ∆p) is performed. Since

w((p, v)) = 0, the edge (q, p) has a positive weight by Property 2.

Since w(S p) = 0 as already claimed, the edge (q, p) is removed at

probability 1− [w(S p)/(w((q, p))+w(S p))]2
= 1, and by the defi-

nition of the algorithm, NarrowCut((p, v)∪∆v) is not performed.

Assume next that NarrowEmbedding or WideEmbedding is

performed for ∆p. Since w(S p) = 0 and w((p, v)) + w(S v) = 0,

v is in S p by Property 3. Therefore, by the definition of the al-

gorithm, not NarrowCut((p, v) ∪ ∆v) but NarrowEmbedding(∆v)

with preserving the edge (p, v) is performed. (It should be noted

that the child v of p in the spine S p is chosen as an element of U

in Step 1a of WideEmbedding.) �

4.2 Distortion

For an embedding of a graph G with distribution D over a set

of trees T dominating G, and for an edge (u, v) in G, we call the

value ED[dT (u, v)]/w((u, v)) the distortion of (u, v) in the embed-

ding. It should be noted that the distortion of the embedding is

the maximum distortion of any edge in G.

Suppose that a Halin graph H with a root r is input to EHG.

Let p be a vertex of Tr such that ∆p is narrow and input to

NarrowEmbedding (i.e., p = r in this case), or wide and input

to WideEmbedding. We divide the edges of ∆p into three groups

as follows. If ∆p is narrow, then we define EU to be the set of

edges in the spine S p. If ∆p is wide, then we define EU to be

the set of edges in the paths in Tp connecting p and ℓu for all

u ∈ U. If a new edge joining p and a leaf v is added in Step 5b

of WideEmbedding, then the edge (p, v) is also added to EU . Let

ET be the set of edges in Tp but not in EU . Then, the edge sets

5ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-177 No.4
2020/3/16

IPSJ SIG Technical Report

EQp
, EU , and ET are distinct, and E∆p

, possibly together with the

additional edge (p, v), is equal to EQp
∪EU ∪ET . Recall that after

NarrowEmbedding or WideEmbedding for ∆p is finished, unless

p = r, we obtain a bush B dominating H and perform EHG(C)

recursively for the unique core C of B.

Let δ := 2α/(α − 1) = 2 + 2/(α − 1).

Lemma 4 The distortion of an edge in the base Qp is at most δ.

Proof Suppose that h ≥ 0 recursive calls of EHG are performed

in total to finish EHG(H). We prove the lemma by induction on h.

We first assume h = 0, i.e., p = r. If ∆p is narrow, then

any edge e ∈ EQp
is an edge of the spine of p. Because

NarrowEmbedding(∆p) removes no edge of the spine S p, the dis-

tortion of e is 1. If ∆p is wide, then any edge e ∈ EQp
is possibly

removed in Step 6 of WideEmbedding(∆p), i.e., only if there are

consecutive u, v ∈ U such that e is contained in the subpath P of

Qp between ℓu and ℓp. Because the probability of the removal is

w(e)/w(P), the distortion of e is at most

[

{

dQp
(ℓu, ℓv) + dTp

(ℓu, ℓv)
} w(e)

w(P)
+ w(e)

]

/w(e)

<

{

dQp
(ℓu, ℓv) +

dQp
(ℓu, ℓv)

α

}

1

dQp
(ℓu, ℓv)

+ 1

=2 +
1

α
< 2 +

2

α − 1
= δ.

We next assume h ≥ 1 and the lemma for h − 1. Then, ∆p

is wide, and e is either between ℓu and ℓv for some consecutive

u, v ∈ U or between an end-vertex of Qp and ℓx (x ∈ U) nearest

to the end-vertex.

In the former case, e is possibly removed similarly to the case

of h = 0. The path in Tp from p to ℓu or to ℓv remains in the

bush obtained in Step 4 of EHG(H), and possibly becomes a part

of the base of the core C in the subsequent step. Therefore, the

path connecting ℓu and ℓv in Tp has an expected weight at most

δ · dTp
(ℓu, ℓv) by induction hypothesis. It should be noted that if

e is not removed, then it is not contained in C, i.e., there is no

further chance for e to be removed. Thus, the distortion of e is at

most

[

{

dQp
(ℓu, ℓv) + δ · dTp

(ℓu, ℓv)
} w(e)

dQp
(ℓu, ℓv)

+ w(e)

]

/w(e)

<

{

dQp
(ℓu, ℓv) + δ ·

dQp
(ℓu, ℓv)

α

}

1

dQp
(ℓu, ℓv)

+ 1

=2 +
δ

α
= 2 +

2α

α − 1
· 1

α
= δ.

In the latter case, i.e., if e is between an end-vertex of Qp and ℓx

(x ∈ U) nearest to the end-vertex, then e is contained in the path

connecting the end-vertices of Qp in the core C and becomes an

edge of the base of C. Therefore, e has distortion at most δ by

induction hypothesis. �

Lemma 5 The distortion of an edge in EU is at most δ.

Proof If ∆p is narrow, then any edge e ∈ EU is an edge of the

spine of p. Because NarrowEmbedding(∆p) removes no edge of

the spine S p, the distortion of e is 1.

If ∆p is wide, then any edge e ∈ EU is either an edge joining p

and its child u ∈ U or an edge of a spine S u of some u ∈ U. In the

former case, WideEmbedding(∆p) does not remove e. In the lat-

ter case, e is not removed either because NarrowEmbedding(∆u)

removes no edge of the spine S u. Thus, the edge e remains in the

bush obtained in Step 4 of EHG, and either becomes an edge of

the core C in the subsequent step or is not contained in C. In the

former case, e is an edge of the base of C and has distortion at

most δ by the Lemma 4. In the latter case, the distortion of e is

obviously 1. �

To estimate the distortion of edges in ET , we fix e ∈ ET and

suppose that e joins a vertex v0 and its parent v1. We examine

properties, expected weights, and probabilities of random paths

in Tp connecting v0 and v1 for the case of removal of e.

Let (v1, . . . , vh) be the maximal path in Tp consisting of an-

cestors of v0 and edges in ET . It should be noted that vh = p,

or the path connecting vh and p in Tp consists of edges in EU .

If the edge e = (v1, v0) is removed in NarrowEmbedding(∆p)

or WideEmbedding(∆p), then NarrowCut((v1, v0) ∪ ∆v0) is per-

formed as a descendant procedure. This implies one of the

following cases by the definitions of procedures performing

NarrowCut.

Case 1 NarrowEmbedding(∆v1) is performed. In this case,

NarrowEmbedding(∆u) is also performed for the child u ,

v0 of v1 in the spine S v1 .

Case 2 NarrowCut((v2, v1)∪∆v1) is performed and does not re-

move the edge (v2, v1).

Case 3 ∆p is wide, v1 = p (i.e., h = 1), and v0 < U in

WideEmbedding(∆p). In this case, NarrowEmbedding(∆u)

is performed for a child u ∈ U of p such that dTp
(p, ℓu) ≤

dTp
(p, ℓv0) and dQp

(ℓu, ℓv0) ≤ α · dTp
(ℓu, ℓv0).

Lemma 6 There exists 1 ≤ m ≤ h such that the following con-

dition is satisfied.

Condition 4 • For each 2 ≤ i ≤ m, NarrowCut((vi, vi−1) ∪
∆vi−1

) is performed and does not remove the edge (vi, vi−1).

• There exists a child um , vm−1 of vm such that

dTp
(vm, ℓum

) ≤ dTp
(vm, ℓvm−1

), (1)

dQp
(ℓum
, ℓvm−1

) ≤ α · dTp
(ℓum
, ℓvm−1

), (2)

the edge (vm, um) is not removed, and

NarrowEmbedding(∆um
) is performed.

• The vertex vm−1 is not in the spine S vm .

Proof If Case 1 or 3 holds, then Condition 4 is satisfied for

m = 1. It should be noted that v0 is not in the spine S v1 in both

Cases 1 and 3. If Case 2 holds, then one of Cases 1–3 holds for

v0, . . . , vh−1 with shifted suffixes as vi := vi+1. Repeating this ar-

gument, Condition 4 is satisfied for some m.

�

It should be noted that m is a random variable, whose

value is determined by random choices performed in

NarrowEmbedding(∆p) or WideEmbedding(∆p). More-

over, m is unique. This is because if NarrowCut((vm+1, vm)∪∆vm)

6ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-177 No.4
2020/3/16

IPSJ SIG Technical Report

is performed and does not remove the edge (vm+1, vm), then

NarrowCut((vm, x) ∪ ∆x) is performed for every child x of

vm, which implies that either the edge (vm, um) is removed, or

NarrowEmbedding(∆um
) is not performed.

If the edge e = (v1, v0) is removed by NarrowCut((v1, v0)∪∆v0),

then NarrowEmbedding(∆v0) is performed. NarrowEmbedding

performed for a delta of a vertex x removes no edge of the spine

of x. Therefore, at the point that NarrowEmbedding(∆p) or

WideEmbedding(∆p) is finished, the path connecting v0 and v1

for the case of removal of e, called the alternative path Am, is the

concatenation of

(i) the edges (v1, v2), (v2, v3), . . . , and (vm−1, vm),

(ii) the edge (vm, um) and the spine S um
,

(iii) the subpath Pm of the base Qp between ℓum
and ℓv0 , which

are the end-vertices of S um
and S v0 in Qp, respectively, and

(iv) the spine S v0 .

Lemma 7 At the point that EHG(H) is finished, the expected

weight of Am is E[w(Am)] ≤ {1 + (1 + 4α)δ}w(Dm).

Proof Because the edges in (i) and (iv) are in ET , there is no

further chance for the edges to be removed. Because the edges

in (ii) are contained in EU ∪ ET , they have distortion at most

δ by Lemma 5. The edges in (iii) have distortion at most δ by

Lemma 4. Thus, the expected weight of Am is at most

E[w(Am)] ≤ w(Dm) +
{

w((vm, um)) + w(S um
) + w(Pm)

}

δ, (3)

where for 1 ≤ i ≤ m, Di is the path consisting of the spine S v0 and

edges (v0, v1), . . . , (vi−1, vi). By (1) and w(S vm−1
) ≤ w(Dm−1),

w((vm, um)) + w(S um
) ≤ w((vm, vm−1)) + w(S vm−1

)

≤ w((vm, vm−1)) + w(Dm−1) = w(Dm).

(4)

Similarly,

w(Pm) = dQp
(ℓum
, ℓv0) ≤ dQp

(ℓum
, ℓvm−1

) + dQp
(ℓvm−1

, ℓv0)

≤ α · dTp
(ℓum
, ℓvm−1

) + α · dTp
(ℓvm−1

, ℓv0)

[by (2), and because ∆vm−1
is narrow]

≤ α {w((vm, um)) + w(S um
) + w((vm, vm−1)) + w(S vm−1

)
}

+ α
{

w(S vm−1
) + w(Dm−1)

}

≤ α {2w(Dm) + 2w(Dm−1)} [similarly to (4)]

≤ 4α · w(Dm) [by w(Dm−1) ≤ w(Dm)]. (5)

Combining (3)–(5), we have E[w(Am)] ≤ {1+ (1+4α)δ}w(Dm).

�

Let M be the set of numbers 1 ≤ i ≤ h such that vi−1 is not

contained in the spine of vi. It should be noted that {1,m} ⊆ M

by Cases 1–3 and Condition 4. For i ∈ M such that i < max{M},
let N(i) be the the next larger number in M than i. We define

N(max{M}) := max{M} + 1 for consistency needed later. To esti-

mate the probability for the alternative path Am, we claim a prop-

erty for the edges (vm, vm+1), . . . , (vN(m)−1, vN(m)) in the following

lemma.

Lemma 8 Unless m = max{M}, at least one of the edges

(vm, vm+1), . . . , (vN(m)−1, vN(m)) is removed by NarrowCut.

Proof Assume otherwise. If vN(m) = vh = p and ∆p is wide,

then vN(m)−1 = vh−1 < U and NarrowCut((vN(m), vN(m−1)) ∪
∆vN(m)−1

) is performed in WideEmbedding(∆p). Otherwise, since

∆vN(m)
is narrow and the vertex vN(m)−1 is not in the spine

of vN(m), NarrowCut((vN(m), vN(m−1)) ∪ ∆vN(m)−1
) is performed in

NarrowEmbedding(∆vN(m)
) or NarrowCut((vvN(m)+1

, vvN(m)
)∪∆vN(m)

).

In either case, (vN(m), vN(m)−1) is not removed by assumption. This

means that NarrowCut((vN(m)−1, v) ∪ ∆v) is performed for every

child v of vN(m)−1, but does not remove the edge (vN(m)−1, vN(m)−2).

Repeating this argument, NarrowCut((vm, v) ∪ ∆v) for every

child v of vm is performed. Thus, either the edge (vm, um) is re-

moved, or NarrowCut((vm, um)∪∆um
) is performed, contradicting

that Condition 4 is satisfied for m. �

For 1 ≤ i ≤ max{M}, let Xi be the probability that the edge

(vi, vi−1) is not removed by NarrowCut((vi, vi−1) ∪ ∆vi−1
), i.e.,

Xi :=

[

w(S vi−1
)

w((vi, vi−1)) + w(S vi−1
)

]2

.

We define XN(max{M}) = Xmax{M}+1 := 0.

Lemma 9 The probability that the vertices v1 and v0 are con-

nected not by the edge e but by the alternative path Am is at most

2w(e)

w(D1)















m
∏

i=2

Xi































1 −
N(m)
∏

i=m+1

Xi

















.

Proof We estimate the probabilities for three groups of edges

e = (v0, v1); (v1, v2), . . . , (vm−1, vm); and (vm, vm+1), . . . ,

(vN(m)−1, vN(m)). First, since e is removed, the probability for this

event is

1 − X1 = 1 −
[

w(S v0)

w(e) + w(S v0)

]2

=
w(e)2

+ 2w(e)w(S v0)

(w(e) + w(S v0))2

≤ 2w(e)

w(e) + w(S v0)
=

2w(e)

w(D1)
.

Second, since the edges (v1, v2), . . . , (vm−1, vm) are not removed

(Condition 4), the probability for this event is
∏m

i=2 Xi. Finally,

unless m = max{M}, at least one of the edges (vm, vm+1), . . . ,

(vN(m)−1, vN(m)) is removed by Lemma 8. The probability for this

event is 1 −∏N(m)

i=m+1
Xi. If m = max{M}, then because we have no

edges to be removed, the probability for this event is 1, which is

equal to 1 − XN(max{M}) = 1 −∏N(m)

i=m+1
Xi.

Putting all this together, the probability for the vertices v0 and

v1 to be connected not by e but by the alternative path Am is

(1−X1)















m
∏

i=2

Xi































1 −
N(m)
∏

i=m+1

Xi

















≤ 2w(e)

w(D1)















m
∏

i=2

Xi































1 −
N(m)
∏

i=m+1

Xi

















.

�

Lemma 10 The distortion of an edge in ET is at most 4(4α +

1)δ + 5.

Proof We estimate the distortion of the edge e =

(v1, v0). Because any edge in ET is not removed after

7ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-177 No.4
2020/3/16

IPSJ SIG Technical Report

NarrowEmbedding(∆p) or WideEmbedding(∆p) is finished,

by Lemmas 7 and 9, the distortion of e is at most

















∑

m∈M

2w(e)

w(D1)















m
∏

i=2

Xi































1 −
N(m)
∏

i=m+1

Xi

















E[w(Am)] + X1w(e)

















/w(e)

≤ 2

w(D1)

∑

m∈M

















m
∏

i=2

Xi −
N(m)
∏

i=2

Xi

















{1 + (1 + 4α)δ}w(Dm) + 1

(6)

The factor
∑

m∈M

(

∏m
i=2 Xi −

∏N(m)

i=2
Xi

)

w(Dm) can be estimated as

follows:

∑

m∈M

















m
∏

i=2

Xi −
N(m)
∏

i=2

Xi

















w(Dm)

=

∑

m∈M

















m
∏

i=2

Xi −
N(m)
∏

i=2

Xi













































w(D1) +
∑

j∈M
j<m

{

w(DN(j)) − w(D j)
}





























=

















1
∏

i=2

Xi −
N(max{M})
∏

i=2

Xi

















w(D1)

+

∑

j∈M
j<max{M}

∑

m∈M
m> j

















m
∏

i=2

Xi −
N(m)
∏

i=2

Xi

















{

w(DN(j)) − w(D j)
}

= w(D1) +
∑

j∈M
j<max{M}

















N(j)
∏

i=2

Xi −
N(max{M})
∏

i=2

Xi

















{

w(DN(j)) − w(D j)
}

= w(D1) +
∑

j∈M
j<max{M}

















N(j)
∏

i=2

Xi

















{

w(DN(j)) − w(D j)
}

. (7)

The factor
∏N(j)

i=2
Xi for j < max{M} can be estimated as follows:

N(j)
∏

i=2

Xi =

N(j)
∏

i=2

[

w(S vi−1
)

w((vi, vi−1)) + w(S vi−1
)

]2

≤
N(j)
∏

i=2

[

w(Di−1)

w((vi, vi−1)) + w(Di−1)

]2

[by w(S vi−1
) ≤ w(Di−1)]

=

N(j)
∏

i=2

[

w(Di−1)

w(Di)

]2

=
w(D1)2

w(DN(j))2
.

Substituting
∏N(j)

i=2
Xi in (7) with this inequality,

∑

m∈M

















m
∏

i=2

Xi −
N(m)
∏

i=2

Xi

















w(Dm)

≤ w(D1) +
∑

j∈M
j<max{M}

w(D1)2

w(DN(j))2

{

w(DN(j)) − w(D j)
}

≤ w(D1) +

∫ ∞

w(D1)

w(D1)2

x2
dx = w(D1) +

[

−w(D1)2

x

]∞

w(D1)

= 2w(D1).

Applying this inequality to (6), the distortion of e is at most

2

w(D1)
· 2w(D1){1 + (1 + 4α)δ} + 1 = 4(4α + 1)δ + 5.

�

Theorem 1 Any Halin graph can be embedded into random

trees with distortion 77 + 32
√

5 ≈ 148.6.

Proof By Lemmas 4, 5, and 10, EHG embeds any Halin graph

into random trees with distortion 4(4α+1)δ+5 = 4(4α+1) 2α
α−1
+5.

By setting α := 1 +
√

5/2 ≈ 2.12, we obtain the distortion of

77 + 32
√

5 ≈ 148.6. �

Theorem 2 Any k-outerplanar graph can be embedded into

random trees with distortion 8 · 148.6k−1 < 149k .

Proof Any outerplanar graph can be embedded into random

trees with distortion 8 [11]. For k ≥ 2, by inductively applying

Theorem 1 to Lemmas 1 and 2, EkOG embeds any k-outerplanar

graph into random trees with distortion 8 · 148.6k−1 < 149k . �

Acknowledgments This work was supported by JSPS

KAKENHI Grant Number 17K00010.

References

[1] Bartal, Y.: Distributed Paging, Proc. Dagstul Workshop on On-Line
Algorithms (1996).

[2] Bartal, Y.: Probabilistic Approximation of Metric Spaces and its Algo-
rithmic Applications, Proc. 37th Annual Symposium on Foundations
of Computer Science, pp. 184–193 (1996).

[3] Bartal, Y.: On Approximating Arbitrary Metrics by Tree Metrics,
Proc. 30th Annual ACM Symposium on Theory of Computing, pp.
161–168 (1998).

[4] Bartal, Y., Blum, A., Burch, C. and Tomkins, A.: A polylog(n)-
Competitive Algorithm for Metrical Task Systems, Proc. 29th Annual
ACM Symposium on Theory of Computing, pp. 711–719 (1997).

[5] Bartal, Y., Fiat, A. and Rabani, Y.: Competitive Algorithms for Dis-
tributed Data Management, J. Comput. Sys. Sci., Vol. 51, No. 3, pp.
341–358 (1995).

[6] Charikar, M., Chekuri, C., Goel, A., GUHA, S. and Plotkin, S.: Ap-
proximating a Finite Metric by a Small Number of Tree Metrics, Proc.
39th Annual Symposium on Foundations of Computer Science, pp.
379–388 (1998).

[7] Chekuri, C., Gupta, A., Newman, I., Rabinovich, Y. and Sinclair, A.:
Embedding k-Outerplanar Graphs into ℓ1, SIAM J. Discrete Math.,
Vol. 20, No. 1, pp. 119–136 (2006).

[8] Deza, M. M. and Laurent, M.: Geometry of Cuts and Metrics, Springer
(1997).

[9] Emek, Y.: k-Outerplanar Graphs, Planar Duality, and Low Stretch
Spanning Trees, Algorithmica, Vol. 61, No. 1, pp. 141–160 (2011).

[10] Fakcharoenphol, J., Rao, S., and Talwar, K.: A Tight Bound on Ap-
proximating Arbitrary Metrics by Tree Metrics, J. Comput. Syst. Sci.,
Vol. 69, No. 3, pp. 485–497 (2004).

[11] Gupta, A., Newman, I., Rabinovich, Y. and Sinclair, A.: Cuts, Trees,
and ℓ1-Embedding of Graphs, Combinatorica, Vol. 24, No. 2, pp. 233–
269 (2004).

[12] Halin, R.: Über simpliziale Zerfällungen beliebiger (endlicher oder
unendlicher) Graphen, Math. Ann., Vol. 156, No. 3, pp. 216–225
(1964).

[13] Halin, R.: Studies on Minimally n-Connected Graphs, Combinatorial
Mathematics and its Applications (Proc. Conf., Oxford, 1969), Aca-
demic Press, London, pp. 129–136 (1971).

[14] James R. Lee, A. S.: Pathwidth, Trees, and Random Embeddings,
Combinatorica, Vol. 33, No. 3, pp. 349–374 (2013).

[15] Linial, N., London, E. and Rabinovich, Y.: The Geometry of Graphs
and Some of its Algorithmic Applications, Combinatorica, Vol. 15,
No. 2, pp. 215–245 (1995).

[16] Lund, C., Reingold, N., Westbrook, J. and Yan, D.: Competitive On-
Line Algorithms for Distributed Data Management, SIAM J. Comput.,
Vol. 28, No. 3, pp. 1086–1111 (1999).

[17] Okamura, H. and Seymour, P. D.: Multicommodity Flows in Planar
Graphs, J. Combin. Theory Ser. B, Vol. 31, pp. 75–81 (1981).

8ⓒ 2020 Information Processing Society of Japan

Vol.2020-AL-177 No.4
2020/3/16

