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Lyndon文字列を用いた文法圧縮に基づく自己索引
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概要：Lyndon木 (Barcelo, 1990)より発想を得た Lyndon SLP という SLPの新しいクラスを提案する.

長さ mのパターン P に対して locate(P ) を O(m lg σ/w+ lgm lgn+ occ lg g) 時間でサポートする O(g)

ワード領域の自己索引を提案する. ここで n は入力文字列 T の長さ, g は T の Lyndon SLPのサイズ, σ

アルファベットサイズ, occ は出力の数である. 自己索引は T から O(n+ g lg g) 時間で構築が可能である.
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Grammar-compressed Self-index with Lyndon Words

Abstract: We introduce a new class of straight-line programs (SLPs), named the Lyndon SLP, inspired
by the Lyndon trees (Barcelo, 1990). Based on this SLP, we propose a self-index data structure of
O(g) words of space that can be built from a string T in O(n + g lg g) time, supporting locate(P ) in
O(m lg σ/w + lgm lgn+ occ lg g) time for a pattern P of length m, where n is the length of T , g is the size
of the Lyndon SLP for T , σ is the alphabet size, w is the computer word length, and occ is the number of
occurrences of P in T .
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1. Introduction

A context-free grammar is said to represent a string T

if it generates the language consisting of T and only T .

Grammar-based compression [17] is, given a string T , to

find a small size description of T based on a context-free

grammar that represents T . The grammar-based com-

pression scheme is known to be most suitable for com-

pressing highly-repetitive strings. Due to its ease of ma-

nipulation, grammar-based representation of strings is a

frequently used model for compressed string processing,
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where the aim is to efficiently process compressed strings

without explicit decompression. Such an approach al-

lows for theoretical and practical speed-ups compared to

a naive decompress-then-process approach.

A self-index is a data structure that is a full-text in-

dex, i.e., supports various pattern matching queries on the

text, and also provides random access to the text, usually

without explicitly holding the text itself. Examples are

the compressed suffix array [13], [14], [19], the compressed

compact suffix array [23], and the FM index [12].*1 These

self-indices are, however, unable to fully exploit the redun-

dancy of highly repetitive strings. To exploit such repet-

itiveness, Claude and Navarro [8] proposed the first self-

index based on grammar-based compression. The method

is based on a straight-line program (SLP), a context-free

grammar representing a single string in the Chomsky nor-

mal form. Several grammar-based self-indexes have been

*1 Navarro and Mäkinen [28] published an excellent survey on
this topic.
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proposed [9], [30], [37], [38].

In this paper, we first introduce a new class of SLPs,

named the Lyndon SLP, inspired by the Lyndon tree [4].

We then propose a self-index structure of O(g) words of

space that can be built from a string T in O(n + g log g)

time. The proposed self-index supports locate(P ) in

O(m lg σ/w + lgm lg n + occ lg g) time for a pattern P

of length m, where n is the length of T , g is the size of the

Lyndon SLP for T , σ is the alphabet size, w is the com-

puter word length and occ is the number of occurrences

of P in T .

1.1 Related work

The smallest grammar problem is, given a string T ,

to find the context-free grammar G representing T with

the smallest possible size, where the size of G is the

total length of the right-hand sides of the production

rules in G. Since the smallest grammar problem is NP-

hard [36], many attempts have been made to develop

small-sized context-free grammars representing a given

string T . LZ78 [40], LZW [39], Sequitur [29], Sequen-

tial [17], LongestMatch [17], Re-Pair [20], and Bisec-

tion [16] are grammars based on simple greedy heuristics.

Among them Re-Pair is known for achieving high com-

pression ratios in practice.

Approximations for the smallest grammar have also

been proposed. The AVL grammars [31] and the α-

balanced grammars [6] can be computed in linear time

and achieve the currently best approximation ratio of

O(lg(|T |/g∗T )) by using the LZ77 factorization and the

balanced binary grammars, where g∗T denotes the smallest

grammar size for T . Other grammars with linear-time al-

gorithms achieving the approximation O(lg(|T |/g∗T )) are

LevelwiseRePair [33] and Recompression [15]. They basi-

cally replace di-grams with a new variable in a bottom-up

manner similar to Re-Pair, but use different mechanisms

to select the di-grams. On the other hand, LCA [34] and

its variants [25], [26], [35] are known as scalable practi-

cal approximation algorithms. The core idea of LCA is

the edit-sensitive parsing (ESP) [10], a parsing algorithm

developed for approximately computing the edit distance

with moves. The locally-consistent-parsing (LCP) [32] is

a generalization of ESP. signature encoding (SE) [27], de-

veloped for equality testing on a dynamic set of strings, is

based on LCP and can be used as a grammar-transform

method. The ESP index [37], [38] and the SE index [30]

are grammar-based self-indexes based on ESP and SE,

respectively.

2. Preliminaries

2.1 Notation

Let Σ be an ordered finite alphabet. An element of Σ∗

is called a string. The length of a string S is denoted by

|S|. The empty string ε is the string of length 0. For a

string S = xyz, x, y and z are called a prefix, substring,

and suffix of S, respectively. A prefix (resp. suffix) x of

S is called a proper prefix (resp. suffix) of S if x ̸= S.

The i-th character of a string S is denoted by S[i], where

i ∈ [1..|S|]. For a string S and two integers i and j with

1 ≤ i ≤ j ≤ |S|, let S[i..j] denote the substring of S that

begins at position i and ends at position j. For conve-

nience, let S[i..j] = ε when i > j.

2.2 Lyndon words and Lyndon trees

Let ⪯ denote some total order on Σ, as well as the lex-

icographic order induced on Σ∗. We write as u ≺ v to

imply u ⪯ v and u ̸= v for any u, v ∈ Σ∗.

Definition 2.1 (Lyndon Word [22]). A non-empty string

w ∈ Σ+ is said to be a Lyndon word with respect to ≺ if

w ≺ u for every non-empty proper suffix u of w.

Definition 2.2 (Standard Factorization [7], [21]). The

standard factorization of a Lyndon word w with |w| ≥ 2

is an ordered pair (u, v) of strings u, v such that w = uv

and v is the longest proper suffix of w that is also a Lyndon

word.

Lemma 2.3 ([5], [21]). For a Lyndon word w with

|w| > 1, the standard factorization (u, v) of w always ex-

ists, and the strings u and v are Lyndon words.

The Lyndon tree of a Lyndon word w, defined below,

is the full binary tree induced by recursively applying the

standard factorization on w.

Definition 2.4 (Lyndon Tree [4]). The Lyndon tree of a

Lyndon word w, denoted by LTree(w), is an ordered full

binary tree defined recursively as follows:

• if |w| = 1, then LTree(w) consists of a single node

labeled by w;

• if |w| ≥ 2, then the root of LTree(w), labeled by

w, has the left child LTree(u) and the right child

LTree(v), where (u, v) is the standard factorization

of w.

Figure 1 shows an example of a Lyndon tree for the

Lyndon word aababaababb.
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Fig. 1 The Lyndon tree for the Lyndon word aababaababb with respect to the order

a ≺ b, where each node is accompanied by its label to its right.

2.3 Admissible grammars and straight-line pro-

grams (SLPs)

An admissible grammar [17] is a context-free grammar

that generates a language consisting only of a single string.

Formally, an admissible grammar (AG) is a set of produc-

tion rules GAG = {Xi → expri}
g
i=1, where Xi is a variable

and expri is a non-empty string over Σ∪ {X1, . . . , Xi−1},
called an expression. The variable Xg is called the start

symbol. We denote by val(Xi) the string derived by Xi.

We say that an admissible grammar GAG represents a

string T if T = val(Xg). To ease notation, we sometimes

associate val(Xi) with Xi. The size of GAG is the total

length of all expressions expri.

A straight-line program (SLP) is an admissible gram-

mar in the Chomsky normal form, namely, each produc-

tion rule is either of the form Xi → a for some a ∈ Σ

or Xi → XiLXiR with i > iL, iR. Note that the size of

GSLP can be as large as Θ(2g). This can be seen by the

example string T = a · · · a consisting of n = 2ℓ a’s, where

the smallest SLP {X1 → a} ∪
∪ℓ+1

j=2{Xj → Xj−1Xj−1}
has size 2ℓ+ 1.

The derivation tree TGSLP
of GSLP is a labeled ordered

binary tree, where each internal node is labeled with a

variable in {X1, . . . , Xg}, and each leaf is labeled with a

character in Σ. The root node has the start symbol Xg

as label. We say that the height of GSLP is the height of

TGSLP . An example of the derivation tree of an SLP is

shown in Figure 2.

2.4 Grammar irreducibility

An admissible grammar is said to be irreducible if it

satisfies the following conditions:

C-1. Every variable other than the start symbol is used

more than once (rule utility);

C-2. All pairs of symbols have at most one non-overlapping

occurrence in the right-hand sides of the production

rules (di-gram uniqueness); and

C-3. Distinct variables derive different strings.

Grammar-based compression is a combination of the

grammar transform where an admissible grammar G that

represents the input string T is computed and the gram-

mar encoding where an encoding for G is computed. Ki-

effer and Yang [17] showed that a combination of an ir-

reducible grammar-transform and a zero order arithmetic

code is universal, where a grammar-transform is said to

be irreducible if the resulting grammars are irreducible.

If an admissible grammar G is not irreducible, we can

apply at least one of the following reduction rules [17]:

R-1. Suppose a variable Xi occurs only once in the right-

hand sides of the production rules. Then, replace the

unique occurrence of Xi with expri and remove the

rule Xi → expri.

R-2. Suppose there is a string γ of symbols with |γ| ≥ 2

having more than one non-overlapping occurrence in

the right-hand sides of the production rules. Then, re-

place each of the occurrences with variable Xi where

Xi → γ is an existing or newly created production

rule.

R-3. Suppose there exist two distinct variables Xi, Xj de-

riving an identical string. Then, replace each occur-

rence of Xj with Xi in the right-hand sides of the

production rules, and remove the production rules
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Fig. 2 Top: The derivation tree of the Lyndon SLP GLYN rep-

resenting the Lyndon word T = aababaababb. Bottom:

The production rules of GLYN.

containing useless symbols (if these exist).

3. Lyndon SLP

In what follows, we propose a new SLP, called Lyndon

SLP. A Lyndon SLP is an SLP GLYN = {Xi → expri}
g
i=1

representing a Lyndon word, and satisfies the following

properties:

• The strings val(Xi) are Lyndon words for all variables

Xi.

• The standard factorization of the string val(Xi) is

(val(XiL), val(XiR)) for every rule Xi → XiLXiR .

• No pair of distinct variables Xi and Xj satisfies

val(Xi) = val(Xj).

The derivation tree (when excluding its leaves) of TGLYN

is isomorphic to the Lyndon tree of T (cf. Fig. 2).

The rest of this article is devoted to algorithmic as-

pects regarding the Lyndon SLP. We study its construc-

tion (Sect. 3.1) and propose an index data structure on it

(Sect. 4). For that, we work in the word RAM model sup-

porting packing characters of sufficiently small bit widths

into a single machine word. Let w denote the machine

word size in bits.

We fix a text T [1..n] over an integer alphabet Σ with

size σ = nO(1). If T is not a Lyndon word, we prepend

T with a character smaller than all other characters ap-

pearing in T . We use the text T := aababaababb as our

running example. Let g denote the size |GLYN| of the Lyn-
don SLP GLYN of T .

Lemma 3.1 (Algo. 1 of [3]). We can construct the Lyn-

don tree of T in O(n) time.

3.1 Constructing Lyndon SLPs

The algorithm of Bannai et al. [3] builds the Lyndon

tree online from right to left. We can modify this algo-

rithm to create the Lyndon SLP of T by storing a dictio-

nary for the rules and a reverse dictionary for looking up

rules: Whenever the algorithm creates a new node u, we

query the reverse dictionary with u’s two children v and w

for an existing rule X → XvXw, where Xv and Xw are

the variables representing v and w. If such a rule exists,

we assign u the variable X, otherwise we create a new

rule Xu → XvXw and put this new rule into both dictio-

naries. The dictionaries can be implemented as balanced

search trees or hash tables, featuring O(n lg g) determinis-

tic construction time or O(n) expected construction time,

respectively.

In the static setting (i.e., we do not work online), de-

terministic O(n) time can be achieved by using the en-

hanced suffix array [1], [24] supporting constant time

longest common extension queries. For each node of the

Lyndon tree corresponding to T [i..j], associate the pair

(|T [i..j]|, rank(i)), i.e., its length, as well as the lexico-

graphic rank of the suffix starting at position i. Then,

sort all nodes according to this pair. This can be done in

O(n) time using radix sort. By using longest common ex-

tension queries between adjacent nodes of equal length in

the sorted order, we can determine in O(1) time per node

whether they represent the same string, and if so, assign

the same variable or otherwise assign a new variable.

4. Lyndon SLP Based Self-Indices

Given Lyndon SLP of size g, we can build an indexing

data structure to report all occurrences of a pattern P

of length m ∈ (0..n] in T . We call this query locate(P ).

Our data structure is based on the approach of [8] sep-

arating the pattern search in the task to locate primary

occurrences with an orthogonal range query data struc-

ture, and subsequently finding the secondary occurrences

with the grammar tree.

Theorem 4.1. Given the Lyndon SLP G of T , there

is a data structure using O(g) words that can be con-

structed in O(n+ g lg g) time on it, supporting locate(P )

in O(m lg σ/w + lgm lg n+ occ lg g) time for a pattern P

of length m, where n is the length of T , g is the size of G,

σ is the alphabet size, w is the computer word length and

occ is the number of occurrences of P in T .
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5. Conclusion

We introduced a new class of SLPs, named the Lyndon

SLP, and proposed a self-index structure of O(g) words

of space, which can be built from an input string T in

O(n+ g lg g) time, where n is the length of T and g is the

size of the Lyndon SLP for T . By exploiting combinato-

rial properties on Lyndon SLPs, we showed that locate(P )

can be computed in O(m lg σ/w + lgm lg n + occ lg g)

time for a pattern P of length m, where σ is the al-

phabet size, w is the computer word length, and occ is

the number of occurrences of P . This is better than the

O((m2/ϵ) lg( lgn
lg g )+ (m+occ) lg g) query time of the SLP-

index by Claude and Navarro [9] (0 < ϵ ≤ 1), which works

for a general SLP of size g.

We have not implemented the proposed self-index struc-

ture, and comparing it with other self-index implementa-

tions such as the FM index [11], the LZ index [2], the ESP

index [38], or the LZ-end index [18] will be a future work.
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