
A Study of Secure Communication Protocols

ZongxinWang1,a) Kazuya Sakai1,b)

Abstract: MQTT is widely used as a light-weight communication protocol for the Internet of Things (IoTs). How-
ever, MQTT has a security issue in its strings handling. To be specific, should a packet contain malicious codes or
invalidate characters, attackers can exploit the discrepancy between validating and non-validating nodes to keep nodes
offline. In addition, this can be used to launch DoS attacks and/or other security attacks. To address this issue, we
propose a secure communication protocols, called S-MQTT, using light-weight elliptic curve-based cryptography. The
proposed scheme can not only detect the invalidating codes, but also protect data privacy. The experimental results
demonstrate the security and efficiency of the proposed scheme.

Keywords: MQTT, ECC, IoT

1. Introduction
We are currently witnessing everything being connected to

each other, and the Internet of the Things (IoT) market is rapidly
growing. Computing devices with sensing and communication
capabilities, called IoT devices, generate data, with which a num-
ber of computing services, such as environmental monitoring [1],
smart home [2], smart transportation [3], and so on, have been
developed.

Message Queuing and Telemetry Transport (MQTT) is widely
used as a publish/subscribe-based protocol which is simple, light,
and energy efficient. With the development of MQTT, it has been
applied to lots of scenario. For example, some mobile monitoring
system adopts MQTT protocol to meet the requirements of health
monitoring and management [4]. Besides this, The MQTT sys-
tem has been used to gain high-quality and reliable data to study
physics as parameters of environment condition [5]. However,
it also has some problems, for an example that MQTT protocol
only provides authentication for security mechanism but does not
encrypt the data in transit [7]. Besides, security problems are con-
cerned due to focusing on service-oriented data sharing and pro-
cessing rather than point-to-point data collection [8]. For the pop-
ular clients, lots of them support SSL/TLS protocol, howerver,
some scholar take consideration that the cost of SSL/TLS proto-
col is relatively big and this run counters to the idea of MQTT.
In the current study, the lightweight elliptic curve cryptography
has been used in MQTT. The main advantage of the elliptic curve
cryptography (ECC) is the performance advantage [9]. ECC com-
pared with RSA, at the same calculating time, using much smaller
bits of key. To address security problem of the Variable Header
containing username and password flag, MQTT protocol based
on lightweight attribute based encryption over elliptic curves has

1 Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo, 191-
0065, Japan

a) wang-zongxin@ed.tmu.ac.jp
b) ksakai@tmu.ac.jp

been proposed [10]. Though this method solves the problem of
data security, the disallowed codes or characters which are re-
ceiving from the receiver may close the network connection. If a
broker does not implement checks for disallowed code points or
characters and clients do (or vice versa), a malicious client could
exploit this discrepancy to disconnect other clients by sending in-
validly encoded strings [11].

Hence in this direction, we propose a simplified publish and
subscribe-based IoT protocol based on lightweight elliptic curve
cryptography, secure MQTT, called S-MQTT. In different encod-
ing environment, due to irreversible process of encoding and de-
coding, the encrypted string codes will not be exactly same af-
ter decryption during the transmission process. Specifically, the
sender sends the encrypted data by kind of encoded mode, and
the receiver receives the data and uses key to decrypt it. If the
receiver whose encoded mode is different from the sender, the
decrypted data will not be same as sending data. Through this,
we can detect the invalidating codes or characters. The merit of
using lightweight elliptic curve cryptography is because the key
size of the ECC algorithm is short so it takes up less storage space,
lower CPU overhead and occupies less bandwidth that ECC owns
better performance. Besides this, ECC algorithm is more suitable
to wireless environment. With the development of IoT, the vast
majority IoT devices will be deployed in wireless environment.
The ECC encryption algorithm provides a better customer experi-
ence for wireless environment. According to this secure protocol,
the invalid symbol security detection issues of heterogeneous net-
work of MQTT could be solved. The proposed secure protocol is
feasible, efficient and stable.

The main contribution of the paper is to: (i). We study the
feasibility of using lightweight elliptic curve to enable security
of S-MQTT. (ii). We design the S-MQTT protocol. (iii). We
evaluate the performance analysis of S-MQTT protocol.

The rest of paper is organized as follows. Section 2 reviews the
preliminary. In Section 3, S-MQTT Control Packet is proposed.

IPSJ SIG Technical Report

1ⓒ 2020 Information Processing Society of Japan

Vol.2020-MBL-94 No.42
Vol.2020-UBI-65 No.42

2020/3/3

Section 4 provides security analyses for the correctness of our S-
MQTT Control Packet, and Section 5 evaluates the performance
of the proposed scheme. Section 6 concludes this paper.

2. Preliminary
The Internet of Things (IoT) usually refers to a world-wide

network of interconnected heterogeneous objects (sensors, actu-
ators, smart devices, smart objects, RFID, embedded computers,
etc) uniquely addressable, based on standard communication pro-
tocols. And with the development of 5G, IoT technology will be
more focused on [6].

Message Queuing Telemetry Transport (MQTT) written by
IBM, is an open OASIS, ISO standard and client server pub-
lish/subscribe messaging transport protocol. It is light weight,
open, simple, and designed to be easy to implement. These char-
acteristics make it ideal for use in many situations, including con-
strained environments such as for communication in Machine to
Machine (M2M) and Internet of Things (IoT) contexts [12].

Publish - subscribe system is a messaging pattern and it is
comprised of information producers who publish and information
consumers who subscribe to information. It provides a simple and
effective method for disseminating data while maintaining a clean
decoupling of data sources and data sinks. In the publish - sub-
scribe system, information producers submit data as publications
to the system and information consumers indicate their interests
by submitting subscriptions. A subscription has a notification set,
which is a set of potential publications that would match the sub-
scription. On receiving a publication, the broker determines the
subset of matching subscriptions and notifies the appropriate sub-
scribes [13].

Elliptic curve cryptography (ECC) is an approach to asym-
metric cryptography based on the algebraic structure of elliptic
curves over finite fields. The merit of ECC is that smaller key
can ensure relatively higher level security, and the speed of ECC
is faster than non-EC cryptography based on the similar environ-
ment [14].

3. Proposed S-MQTT Control Packet
In this section, we discuss the overview in section 3.1. Section

3.2 takes about the packet format of original MQTT protocol and
proposed S-MQTT packet format. Section 3.3 refers to the action
that each entity shall take.

3.1 Overview
OASIS has now published the official MQTT v5.0 standard.

This protocol runs over TCP/IP, or over other network proto-
cols that provide ordered, lossless, bidirectional connections.One
of its feature is that use of the publish/subscribe message pat-
tern which provides one-to-many message distribution and de-
coupling of applications. An MQTT Control Packet consists of
up to three parts, Fixed Header, Variable Header and Payload.

3.2 Packet Format
An MQTT Control Packet contains Fixed Header and Remain-

ing Length. Among Remaining Length, it includes Variable
Header and Payload and the bytes size of them are not fixed, as
shown below (Table 1).

Table 1 MQTT Fixed Header Format

MQTT Fixed Header
Bit 7 6 5 4 3 2 1 0
Byte 1 Control Packet type Flag specific
Byte 2... Remaining Length

Remaining Length +1∼4 bytes
Variable Header 0∼N bytes Payload 0∼X bytes

Because MQTT protocol is a lightweight protocol, the MQTT
Control Packet are encoded as UTF-8 strings. The reason is that
UTF-8 is an efficient encoding of Unicode characters that opti-
mizes the encoding of ASCII characters in support of text-based
communications [12].

According to the standard, the character data in UTF-8 en-
coded string MUST be well-formed UTF-8 as defined by the
Unicode specification and restated in RFC 3629. If the client or
server receives an MQTT Control Packet containing ill-formed
UTF-8 it is a Malformed Packet and will close the network con-
nection.
In order to solve the similar security problem about illegal codes
or characters resulting in disconnecting network or even worse,
we propose S-MQTT protocol which is secure part of original
MQTT protocol. We redefine the reserved MQTT Control Packet
type“ 0000”as DETECT. Because after a Network Connection
is established by a client to a server, the first packet sent from the
client to the server MUST be a CONNECT packet, the DETECT
packet should be sent as the second packet. The purpose of DE-
TECT is detecting illegal codes or characters and doing minimum
encryption. The proposed DETECT Fixed Header is described as
below (Table 2).

Table 2 Proposed DETECT packet Fixed Head

DETECT
Bit 7 6 5 4 3 2 1 0
Byte1 Control Packet type(0) Flag ECC Validation Passing Path

0 0 0 0 X X X X
Byte2.. Remaining Length

In order to be consistent with the original protocol, we defined
the value, direction of flow and description.

3.2.1 Passing Path
Position : byte 1, bit 0

Passing path is defining Direction of flow of control packet mes-
sage. The passing path is shown below (Table 3).
When passing path is set to 0, it indicates that the server sends
data to client (server to client).
When passing path is set to 1, it indicates that the client sends
data to server (client to server).

IPSJ SIG Technical Report

2ⓒ 2020 Information Processing Society of Japan

Vol.2020-MBL-94 No.42
Vol.2020-UBI-65 No.42

2020/3/3

Table 3 Passing Path

Passing Path
Bit0 Description

0 server sends data to client
1 client sends data to server

3.2.2 ECC and Validation
ECC and Validation is used for detecting invalidated codes and

satisfying the data privacy. The ECC and Validation is shown be-
low (Table 4).
Position : byte 1, bits 2-1
First of all, the server chooses an elliptic curve and we can know
the public key and private key.
In step 1 of ECC and Validation, the client uses the public key
to encrypt the data [M] then send timestamp and ciphertext to
server.
In step 2 of ECC and Validation, the server saves the timestamp
first, then uses private key to decrypt the ciphertext and get plain-
text.
In step 3 of ECC and Validation, the server uses the private keys,
adopts digital signature to signature the data [M] which have been
received and sends the signature data and timestamp to the client.
In step 4 of ECC and Validation, the client uses the public key to
validate the data [M] and send compared message to server.

Table 4 ECC and Validation
ECC Validation

ECC and Validation Bit 2 Bit 1 Description
0 0 0 Enc. and send data
1 0 1 Dec. and save data
2 1 0 S ig. decrypted data
3 1 1 Ver. and send message

3.2.3 Flag
Flag is used for containing several parameters specifying the

behavior of the MQTT connection. The flag is shown below (Ta-
ble 5).
Position : byte 1, bits 3
When the Bit 2 is set to 0, we will ignore the flag (Bit 3) and al-
ways set it to 0.
When the Bit 2 is set to 1, we can not ignore the flag.
When Bit 3 equals to 0, it means the garbled after decoding.
When Bit 3 equals to 1, it means the original code after decoding.

3.3 The action that each entity shall take
In our assumptions, the length of sending data in publish-

subscribe system meets the size of sending encoded string. For
simplicity, it is assumed that the client and server can commu-
nicate and the hash function Hash(x) is assumed to be collision
resistant. Besides this, we also assume that the client and server
can hold the public key safely and the server can hold the private
key safely. We will use client to send plaintext message to server
by broker.

The notations used in this paper are listed in Table 6.
The client will send plaintext message (M) and we could not

know the sending characters will be satisfied with UTF-8 encoded
code or not. The plaintext message (M) will be encrypted by

Table 5 Flag

Flag
Bit0 Description

0 Compare the UTF-8 Library and appear mojibake
1 Compare the UTF-8 Library and not appear mojibake

Table 6 Definition of Notations

Symbol Meaning
M,M′ plaintext message
C ciphertext message

pk public key

sk private key

σ message of digital signature data

Enc(.),Dec(.) the encryption and decryption functions

S ig(.) the digital signature function

Ver(,) the validation function about signature

Hash(.) the hash function

lightweight elliptical curve cryptography and it becomes cipher-
text message (C). The client will send timestamp and Hash(M)
to server, as the same time, when it sends the ciphertext mes-
sage to server. Via broker, the server will receive the ciphertext
message, Hash(M) and receive timestamp. Immediately later,
the server uses its private key to decrypt the ciphertext message
(C), we can name it plaintext message 2 (M′) temporarily and the
server will calculate the Hash(M′), after this it will compare the
Hash(M) and Hash(M′). And now, the server will know whether
the twice plaintext message are same or not and the server can
make right judgment. Subsequently, the server will use digital
signature for Hash(M′). Then the server will send the digital sig-
nature data (σ) and timestamp to client by broker. After this, the
client uses its public key to verify the received signature data (σ)
and calculates Hash(M) to compare original data and validated
data whether same or not. Besides this, it also will compare the
difference between these two timestamps. We can set the time
difference as a fixed value, since the timestamp is real time, when
the difference is too big we can recognize that the data have tam-
pered with broker or there is an excessive network latency, for
safety reasons, we will disconnect this access. If the verified re-
sults are as same as before, it will continue to run publish phase
following the original MQTT protocol, else if, it will disconnect
this access and wait for next access.
Among the process, there are some things should be noted.
1). We assume that one of client and server does not meet UTF-8
code encoded. When the sending characters are not UTF-8 codes
encoded, through the above operation, the validated results will
be different from the original data.
2). About the timestamp, because of real time, after numerous
experiments, it is high time that we can set the difference time as
a stable value.
3). About the broker, in the original MQTT protocol, the mali-
cious broker can send invalidated codes to server. However, it
does not use encryption technology, the sent data can not be rec-
ognized by server normally and the data from client can not be
tampered. So, in our simulation, we do not take broker into ac-
count. Fig. 1 shows the run flowchart of S-MQTT.

It is similar to the original protocol that there are three parts in

IPSJ SIG Technical Report

3ⓒ 2020 Information Processing Society of Japan

Vol.2020-MBL-94 No.42
Vol.2020-UBI-65 No.42

2020/3/3

Client Broker Server

Send Hash(M)

Send timestamp 1

Send C = Enc (M)pk Send C = Enc (M)pk

Receive Hash(M)

Receive timestamp 1

Receive timestamp 2

Receive σ = Sig (Hash(M'))sk

Compare time difference

Calculate Ver (σ,hash(M))pk

M'= Dec (Enc (M))sk pk

Calculate Hash(M')

Compare Hash(M) & Hash(M')

True

or

False

Send results

PUBLISH

Send results

Send

Send

timestamp 2

σ= Sig (Hash(M'))sk

Fig. 1 The flowchart of S-MQTT protocol

the S-MQTT protocol: (i) The client publishes the data. (ii) The
broker forwards the data. (iii) The server receives the data. And
there are three phases in the proposed protocol. In Setup Phase
selecting elliptic curve and key management are done. During
encrypt and decrypt phase, it will make data privacy and safety
judgments. In publish phase, it will determine to whether publish
the data following the original protocol or not.
(i). Setup Phase
- Selecting an elliptic curve, server and client hold the public key
simultaneously. And only server holds the private key.
(ii). Encrypt and Decrypt Phase
- The client encrypts data using public keys and then sends en-
crypted data and timestamp 1 to the server.
- The server receives the encrypted data and timestamp 1, after
that it uses private key to decrypt the data which have been en-
crypted. After this, the server stores the encrypted data and times-
tamp 1.
- The server uses its private key to do digital signature on the en-
crypted data, then sending the signature data and timestamp 2 to
the client.
- The client uses the public key to validate the data from server,
then comparing the data which have sent from client by itself and
the data which have been signature from the server, besides this
it also will compare the timestamp from the two sides.
- The client makes time difference between timestamps, as an
auxiliary function, distinguishing sending and receiving time and
judging if the time difference is too long the data has been tam-
pered.
- The client will come to conclusion, comparing the data is as
same as before or not, and send the results to server. So the server
will also get conclusion as same as client.
(iii). Publish Phase
- If the decrypted message is as same as plaintext, it will follow
the original MQTT protocol.
- If the decrypted message is different from plaintext, it will dis-
connect this access and wait for new access.

4. The Security Guarantee of MQTT
In this section, we first describe the security requirements for

MQTT control packets. Then we discuss the security about re-
ceiving the invalidating characters from malicious client. At last,
we talk about the qualitative security analysis.

4.1 Security Requirements
The MQTT Control Packets are encoded as UTF-8 strings and

the maximum size of a UTF-8 encoded string is 65,535 bytes.
If the client or server receives an MQTT Control Packet con-
taining ill-formed UTF-8, it will lead to closing the network or
even worse, such as DoS attacks. To solve this point, we propose
adopting client sends the encyrpted data via broker, after server
decrypting the data then forwarding the digital signature data via
broker. By using this, in different coding environments, sending
and receiving data may be different, so not only it can detect the
invalidating codes, but also can protect data privacy.

4.2 Security about Invalidating Characters
We assume one of the client or server obeys the UTF-8 encod-

ing. It may be assumed here that the client meets the standards
and the server dose not follow the standards. The client sends the
encrypted UTF-8 code data to server via broker. For example,
the client will send CJK characters, such as“ aiueo”(shown as
Fig. 2), to server. Because of UTF-8 code, standards compliant,
the server can receive and decrypt it completely and correctly.
Because CJK characters in UTF-8 occupy 3 Octet sizes, in other
words, they occupy 3 bytes. For just sending CJK characters, it
will occupy 15 points on the elliptic curve, however, because the
server could not distinguish these characters, they can not been
encoded and displayed (shown as Fig. 3). And these characters
can only be presented at the curve as point. Due to irreversible
process of encoding and decoding, the server can not store the
original data and forward digital signed data correctly.

Fig. 2 Sending UTF-8 code

Fig. 3 Receiving UTF-8 code

On the other hand, if both server and client do not obey the

IPSJ SIG Technical Report

4ⓒ 2020 Information Processing Society of Japan

Vol.2020-MBL-94 No.42
Vol.2020-UBI-65 No.42

2020/3/3

standard, because both of them let invalid character pass, the is-
sue is avoided. And if both server and client follow the standards,
because of meeting the standards, the issue is also avoided.

4.3 Qualitative Security Analysis
In this section, we analyze how S-MQTT achieves the security

requirements.
Data Security―Privacy of data can be ensured because the data
has been encrypted by lightweight elliptic curve cryptography.
Detection of invalidating characters―Because encoding and de-
coding process is irreversible, through encryption and decryption,
in different encoding environment, the resulting data may be dif-
ferent from the original data so that can detect invalidating char-
acters.
DoS attack resistance―In this attack, about original protocol, an
adversary client can keep all clients offline with a single mali-
cious message. But in the S-MQTT protocol, the server can make
judgment by comparing the value of two hash functions. So it can
defend the DoS attack caused by invalidated codes.

So, in our proposed S-MQTT protocol, if one of the server and
client is malicious, and another one is honest, we can detect it
and report error. If both of them are malicious or both of them
are honest, we could not take them into consideration, because in
the original protocol, they can communicate normally.

5. Performance Analysis
We evaluate and compare the performance of S-MQTT based

on our proposed scheme. In order to meet accuracy of experi-
ment, for the different parameters, we do numerous experiments
on encoding delay, encrypting delay and decrypting delay. Test
Table for evaluating the performance of the S-MQTT protocol are
described in Table 7.

Table 7 System details

Hardware Intel Core i7-7500U CPU @ 2.70GHz
Memory 2 GB

Operating System Windows 10, 64bit, Ubuntu 14.04
Gcc Version 4.8.4 (Ubuntu 4.8.4)

In the experiment, we send message size from 2∼200 bytes and
receive the message size from 8∼1322 bytes.

Performance of encoding algorithms of our proposed scheme
is depicted in Fig. 4 when the sending data is too small, we do nu-
merous simulation about it and it shows large fluctuations; When
the sending data is getting more larger, curve tends to be stable.
And the other two figures are also like this. This figure depicts
the delay that sending data encodes to the elliptic curve.

Performance of encrypting delay of our proposed scheme is de-
picted in Fig. 5 and this figure shows the delay that the encryption
time of encoded messages.

Performance of decrypting delay of our proposed scheme is de-
picted in Fig. 6 and this figure shows the delay that the decrypting
time of encoded messages.

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 20 40 60 80 100 120 140 160 180 200

E
nc

od
in

g
de

la
y

 /
 s

Sending message sizes / bytes

Encoding delay

Fig. 4 Encoding delay

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 200 400 600 800 1000 1200 1400

E
nc

ry
pt

in
g

de
la

y
 /

 s

Encoded message size / bytes

Encrypting delay

Fig. 5 Encrypting delay

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 0.0007

 0.0008

 0.0009

 0.001

 200 400 600 800 1000 1200 1400

D
ec

ry
pt

in
g

de
la

y
 /

 s

Encoded message sizes / bytes

Encoding delay

Fig. 6 Decrypting delay

Based on these experiment data, the encoding delay takes up
approximately 0.064 second. And the sum of duration about en-
crypting delay and decrypting delay is about 0.00064 second. The
simulation meets our requirements.

IPSJ SIG Technical Report

5ⓒ 2020 Information Processing Society of Japan

Vol.2020-MBL-94 No.42
Vol.2020-UBI-65 No.42

2020/3/3

6. Conclusion
The original MQTT protocol as a lightweight publish / sub-

scribe IoT protocol more or less has some problems. In our
proposed S-MQTT protocol, by using lightweight elliptic curve
cryptography, in different encoding environment, not only can we
protect data privacy, but also can avoid the control packet which
contains malicious codes and characters effectively. Besides, we
also can prevent a series of problem caused by malicious client,
such as DoS attack. Experiments results based on the simulation
demonstrates the security and efficiency of our proposed scheme.

References
[1] Lazarescu, Mihai T: Design of a WSN platform for long-term envi-

ronmental monitoring for IoT applications, IEEE Trans. Emerg. Sel.
Topics Circuits Syst., Vol.3, No.1, pp.45–54 (2013).

[2] Sivaraman, Vijay and Gharakheili, Hassan Habibi and Vishwanath,
Arun and Boreli, Roksana and Mehani, Olivier: Network-level se-
curity and privacy control for smart-home IoT devices, IEEE Trans.
WiMob., pp.163–167 (2015).

[3] Xie, Xiao-Feng and Wang, Zun-Jing: Integrated in-vehicle decision
support system for driving at signalized intersections: A prototype of
smart IoT in transportation., No. 17-00671, (2017).

[4] Yi, Ding and Binwen, Fan and Xiaoming, Kong and Qianqian, Ma:
Design and implementation of mobile health monitoring system based
on MQTT protocol, IEEE Trans. IMCEC., pp.1679–1682 (2016).

[5] Atmoko, RA and Riantini, R and Hasin, MK: IoT real time data acqui-
sition using MQTT protocol, IOP Publishing Trans. , Vol.853, No.1,
pp.012003 (2017).

[6] Fortino, Giancarlo and Trunfio, Paolo: Internet of things based on
smart objects: Technology, middleware and applications, Springer
Trans. , (2014).

[7] Andy, Syaiful and Rahardjo, Budi and Hanindhito, Bagus: Attack sce-
narios and security analysis of MQTT communication protocol in IoT
system, IEEE Trans. EECSI., pp.1–6 (2017).

[8] Chen, Jiachen and Li, Sugang and Yu, Haoyang and Zhang, Yanyong
and Raychaudhuri, Dipankar and Ravindran, Ravishankar and Gao,
Hongju and Dong, Lijun and Wang, Guoqiang and Liu, Hang: Exploit-
ing ICN for realizing service-oriented communication in IoT, IEEE
Trans. Communications Magazine., Vol.54, No.12, pp.24–30 (2016).

[9] Lauter, Kristin: The advantages of elliptic curve cryptography for
wireless security, IEEE Trans. Wireless Commun., Vol.11, No.1,
pp.62–67 (2004).

[10] Singh, Meena and Rajan, MA and Shivraj, VL and Balamuralidhar, P:
Secure mqtt for internet of things (iot), IEEE Trans. Communication
Systems and Network Technologies., pp.746–751 (2015).

[11] Maggi, Federico and Vosseler, Rainer and Quarta, Davide: The
fragility of industrial IoT’s data backbone, Trend Micro Inc Trans.,
https://www.trendmicro.com/vinfo/us/security/news/internet-of-
things/mqtt-and-coap-security-and-privacy-issues-in-iot-and-iiot-
communication-protocols, (2018).

[12] Andrew Banks, Ed Briggs, Ken Borgendale, and Rahul Gupta: MQTT
Version 5.0, OASIS Standard Trans., (2019).

[13] Fidler, E and Jacobsen, HA and Li, G and Mankovski, S: Pub-
lish/Subscribe System, IOS Press Trans. Feature Interactions in
Telecommunications and Software Systems VIII., pp.12 (2005).

[14] Tirthani, Neha and Ganesan, R: Data Security in Cloud Architecture
Based on Diffie Hellman and Elliptical Curve Cryptography, IACR
Trans. Cryptology ePrint Archive., Vol.2014, pp.49 (2014).

IPSJ SIG Technical Report

6ⓒ 2020 Information Processing Society of Japan

Vol.2020-MBL-94 No.42
Vol.2020-UBI-65 No.42

2020/3/3

