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Abstract: 10T/Edge devices need to be low-power, and it is required to enhance their computational power by em-
ploying hardware accelerators like FPGAs and by offloading heavy workloads to the cloud side. However, maintaining
the cloud environments at a low power is challenging because of their unstable workloads with virtualization. This pa-
per explains our idea and strategy to realize energy-efficient deep learning computation on virtualized cloud platforms
and IoT/edge devices. We propose to utilize cloud servers to provide sufficient computational resources for neural
network training and its model optimizations. Then, IoT/edge devices can focus on inference tasks while accelerating
the tasks with FPGAs. Based on this strategy, we are developing a framework to minimize the power consumption of
virtualized cloud servers considering the difference in computational workloads between deep learning training tasks

and High-Level Synthesis tasks.
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1. Introduction

IoT/Edge devices are now widely used, and there are signif-
icant demands upon them as they perform essential roles in es-
tablishing a smart and sustainable society. However, sufficient
computational capabilities of these devices need to be prepared
to fulfill such requirements. At the same time, these devices are
required to be low-power. To solve such a conflict, typically a cer-
tain type of accelerator hardware, like GPUs and FPGAs, are uti-
lized to obtain both low-power and high performance. The FPGA
is one of the most promising hardware accelerators because of its
flexibility and effective performance with lower power consump-
tion.

Currently, many IoT/edge devices are required to make some
inferences, namely deep learning computations, based on the in-
put from the sensors equipped on them, to obtain effective au-
tonomous driving systems, intelligent robot operations, etc. Pa-
rameters for deep learning-based methods need to be continu-
ously updated based on the neural network training results. Train-
ing the neural networks requires us to provide sufficient compu-
tational power as well as a massive amount of learning data; thus,
this training cannot be achieved on the IoT/edge side. Therefore,
we need to establish a software development workflow or envi-
ronments to obtain cooperation between the cloud and IoT/edge.
However, offloading the training tasks to cloud servers makes the
situation worse with regards to total power consumption, includ-
ing the cloud servers and IoT/edge devices.

To tackle these problems, we are developing a power-
performance optimization framework for virtualized cloud plat-
forms. This framework assumes that loT/edge devices with FP-
GAs offload their neural network training and optimization to
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Fig.1 Expected Task Offloading Workflow to Cloud Servers

cloud servers, and obtain the training and optimization results
via the internet. Our framework attempts to minimize the power
consumption of the virtualized cloud servers considering the dif-
ference in computational workloads between the deep learning
training tasks and High-Level Synthesis tasks.

2. Expected Task Offloading Workflow
from IoT/Edge Devices to Cloud Servers

This section describes our expected workflow to offload deep
learning computations and optimizations from IoT/edge devices
to cloud servers. Fig. 1 shows our expected workflow of offload-
ing heavy computations to cloud servers from loT/edge devices.
This workflow is based on our previous work [1-3].

For neural network development, training, and optimization,
Python-based environments (like Keras [4] and Tensorflow [5])
are significantly popular, thus we assume that they are being
used. Once the users develop their deep learning-based appli-
cations with Keras, the applications can be used for training and
model optimizations as they are. After the training and optimiza-
tion, the users can also obtain IP logics of the network by using
HLS (High-Level Synthesis) tools [6] on the server. To utilize
the HLS tools, the Keras-based program must be translated into
C/C++ using a translation tool [7].

The IoT/edge devices download the IP logics and trained net-
work parameters from the servers and apply them to their FPGAs.
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Fig.2 The Proposed Power-Performance Optimization Framework

We can dynamically reconfigure the FPGAs with these updated
logics and parameters by partial reconfiguration functionalities.
While operating the devices, we can also capture sensing data
with the sensors equipped on the devices. This sensing data can
also be shared with the cloud servers, and then used for additional
neural network training to obtain more accurate training results.

To minimize the neural network structure and size, we also pro-
pose to utilize multiple single-functioned small neural networks
in parallel in the workflow. Dividing heavy inference tasks into
multiple small networks makes it possible to shorten the overhead
for the training, HLS, and partial reconfiguration [1,2].

3. Power-Performance Optimization
on Virtualized Cloud Servers

This section explains our software framework overview to opti-
mize the power performance on virtualized cloud platforms. Fig.
2 shows the relationship between the applications, virtual ma-
chines, and host machines.

3.1 Power-Performance Modeling of Applications

To apply power-performance optimization, first, the structure
of the given applications must be analyzed. Second, we also need
to understand how the hardware reacts to DVFS (Dynamic Volt-
age/Frequency Scaling) and power gating operations. By utiliz-
ing these pieces of information, power-performance models for
each combination of the application and the hardware can be de-
veloped. Based on the models, we can insert the API calls to
apply DVES into applications.

In this framework, we propose extending the PomPP Library
and Tools [8,9] to analyze the applications and develop the power-
performance modeling of these applications on the server. Most
of the neural network computations should have similar char-
acteristics because their primary computations employ matrix-
matrix multiplications or matrix-vector multiplications. Further-
more, HLS tasks are CPU intensive and it is relatively easy to
analyze their workloads.

3.2 Power-Performance Control on Virtualized Servers

In virtualized platforms, the physical hardware cannot be con-
trolled directly from the guest OS. Moreover, as the applications
run on virtual machines are isolated, it is difficult to obtain pre-
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cise information about them. Application analysis framework,
like the PomPP Tools mentioned in the previous section, can re-
solve the latter problem. However, in the application of power-
performance optimization with hardware control like DVFS, safe
interfaces are required to request the host OS to apply DVES to
the physical hardware. Furthermore, on the virtualized platforms,
multiple virtual machines run on the same physical machine, and
the conflict among the power-performance optimization requests
from various virtual machines need to resolved based on their sit-
uations.

To apply power-performance optimization on such a virtual-
ized platform, we are developing APIs/libraries that allow the
virtual machines to send requests to the host OS by extending vir-
tualized system software like KVM [10] and Qemu [11]. In our
strategy, the host OS captures and summarizes the requests from
the various virtual machines and decides how to control the phys-
ical hardware. For example, if the user requests that applications
not be slowed down, the host OS selects the highest frequency
among the requests given by the virtual machines.

4. Conclusions

This paper describes our strategy to realize energy efficient
neural network training on virtualized cloud platforms, assum-
ing the cooperation with IoT/edge devices equipped with FPGAs.
The IoT/edge devices offload neural network training tasks to
cloud servers for fast training. In this strategy, our framework ap-
plies power-performance optimization for each task (deep learn-
ing application), and the task sends the requests for the guest OS
to apply DVFS based on the optimization result. The host OS
gathers and summarizes the request from the guest OSs and then
controls the physical hardware.

Currently, we are developing the power-performance control
APIs/libraries between the guest OSs and the host OS. As addi-
tional future work, we would like to extend the proposed frame-
work to handle more complex applications and to utilize more
detailed application analysis information given by a parallelizing
compiler.
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