
A functionality expansion of the lightweight runtime
environment mROS for the user defined message types

Hidetoshi Yugen1,a) Hideki Takase1,2,b) Kazuyoshi Takagi1 Naofumi Takagi1

Abstract: The mROS is a lightweight execution environment that enables the node programs of the Robot Operat-
ing System (ROS) to be executed on embedded devices. In this research, we aim at removing the constraint on the
message types that can be handled by mROS. We propose an approach that automatically generates the header files
of message types for mROS. Moreover, we propose an operation flow for the mROS communication library. The
proposed approach and flow enable the mROS environment to handle various message types, including primitive and
user-defined types. Therefore, the versatility of the mROS can be improved, and the development of a cooperative
system of general-purpose devices using ROS and embedded devices using mROS will become easier.

Keywords: ROS, embedded devices, real-time operating systems, communication

1. Introduction
In recent years, software frameworks that aid in the devel-

opment of robot software have attracted significant attention.
Such software improves the productivity of robot software de-
velopment. Among this software, the Robot Operating System
(ROS)[1] has been the focus of substantial research.

The ROS also enables nodes to communicate messages with
one another. This communication is performed via topics, which
are communication channels, and this feature enables easy and
rapid implementation of inter-node communication functions.
Moreover, the executable and configuration files of the nodes can
be grouped together in packages for reuse or distribution. Robot
applications can be developed effectively by installing existing
packages.

The ROS communication feature is realized as Linux middle-
ware. Therefore, high-ended devices with high power consump-
tion are required to operate Linux and employ the ROS. Further-
more, it is difficult to enhance the real-time performance using
Linux.

To address this problem, we are currently developing
mROS[2], a lightweight execution environment for ROS nodes.
With mROS, programs that behave as ROS nodes and commu-
nicate with native ROS nodes can be executed on embedded
devices equipped with a real-time OS. Moreover, the pro-
gramming interfaces of the mROS communication library are
designed similarly to that of the ROS communication library.
Therefore, existing ROS packages can easily be ported to mROS
applications.

However, the message types that can be handled by mROS
is limited to the string type only. Therefore, the ROS node ap-
plications that communicate with mROS node applications are

1 Graduate School of Informatics, Kyoto University
2 JST PRESTO
a) emb@lab3.kuis.kyoto-u.ac.jp
b) takase@i.kyoto-u.ac.jp

required to be implemented under this limitation. This con-
straint also results in differences in the programming interfaces
between mROS and ROS node applications. Owing to this prob-
lem, when porting ROS node applications to mROS applications,
all the codes using the ROS communication library need to be
replaced. Consequently, the development of systems in which
general-purpose devices equipped with the ROS can cooperate
with embedded devices equipped with the mROS is difficult and
complicated.

In this research, we aim to improve the versatility of the mROS.
We propose a method to support any message types in mROS, as
well as a flow of mROS communication library, in order to re-
move the limitation.

In the proposed method, header files for message types are gen-
erated for use in mROS applications. A header file is prepared for
each message type, and the data of the type, such as the structure
and functions for the types, are packaged in the file. The header
files offer lightweight implementation and are designed for exe-
cution on embedded devices.

In the proposed mROS operation flow, type-specific methods
are called during the communication process. These type-specific
methods are generated from the method mentioned above and are
available from standardized programming interfaces. Therefore,
the appropriate process for each message type is called and exe-
cuted without changing mROS communication library code.

This research contributes to improving the versatility of mROS.
As a result, various types of robot applications can be realized us-
ing the mROS. Moreover, the development of robot applications
using mROS may become easier and simpler, particularly for de-
velopers of ROS applications.

The remainder of this paper is organized as follows. We intro-
duce the ROS, mROS, and the existing research in Section 2. We
consider the key goals of the research in Section 3. Thereafter,
we propose the method for generating header files for each mes-
sage type in Section 4, and the flow of the mROS communication

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 1

Fig. 1 Example of system utilizing ROS

library in Section 5. In Section 6, we discuss the effectiveness of
our proposal. We present conclusions and possible future work in
Section 7.

2. Background
2.1 ROS

The ROS[1] is a series of libraries and tools that support the de-
velopment of robotic systems. The ROS provides the middleware
that provides communication between nodes.

A system realized by using the ROS consists of nodes, which
are functional units in the system, and the master node, which
manages the entire system. The master manages the information
of nodes within the system and passes it to them so that the nodes
can communicate with one another.

The communication feature provided by ROS is based on the
publish-subscribe messaging model. In this model, topics are pre-
pared according to the message purposes and types. By means of
the topics, communications are performed between publishers,
which send messages, and subscribers, which receive messages.
Therefore, all of the nodes communicate with one another via
topics.

Figure. 1 presents an example of robotic software realized us-
ing the ROS. In the system, nodes communicate with one another
by means of topics according to the communication purposes. In
the Figure. 1, the ovals represent nodes, while the rectangles rep-
resent topics. In the rectangles, the double-quoted strings are the
names of the topics, and the strings below these represent the
message types employed in the topic. Note that the “MotorValue”
and “Image” types in the figure are user-defined message types,
and the variables within the types are listed below the names.

Users can define message types by combining primitive types.
Existing types, including user-defined types, are also available
as the variable types. For example, the “MotorValues” type in
Figure .1 can be used as a variable type in other message types.
Hereinafter, we refer to a message type with such a structure as a
nested type. Arrays can also be included in a type.

A message type can be defined by the following procedure:
Firstly, create the type definition file (.msg) and write the type
definition therein. Next, generate the appropriate program code
for the type using the ROS build system. For example, when C++
is employed in the implementation, header files that define the the
message type class are produced.

2.2 mROS
The mROS[2][3] is a lightweight runtime environment for ROS

nodes that has been under development since 2018. The purpose
of the mROS development is to execute programs that operate as

ROS nodes. It is aimed at embedded devices with mid-range mi-
croprocessors that are equipped with TCP/IP protocol stacks and
Real-Time Operating Systems (RTOS). The programming inter-
face of the mROS communication library is similar to that of the
ROS, thereby providing improved compatibility between mROS
and ROS applications.

The mROS communication feature is provided by several
tasks, including user tasks. When sending messages, the oper-
ating flow proceeds as follows:
(1) The message to be sent is written into shared memory by the

user task, and the message information is queued in the data
queue of the publishing task.

(2) When the information is queued, the publishing task wakes
up.

(3) The publishing task serializes the message in the shared
memory, using the information in the queue, and sends it.

When receiving messages, the operating flow proceeds as fol-
lows:
(1) Once the connection to the publisher has been established,

the subscribing task awaits the messages.
(2) When messages are published regarding the topic, the sub-

scribing task receives these as a bit string, and copies their
body into the shared memory.

(3) The bit strings in the shared memory are deserialized to the
message objects.

(4) The function is called back, providing the object as an argu-
ment.

2.3 Related works
In this section, we provide an overview of existing studies that

have proposed distributed systems with the ROS[4][5] or have
utilized the ROS on embedded systems[7][8].

In [4], the ROS was employed to design a system for an au-
tonomous wheelchair. By utilizing the ROS, the proposed system
is more flexible than traditional robot systems. Furthermore, the
system uses Arduino as a motor control unit, and motor control is
performed by sending messages to the ROS node on the Arduino,
resulting in a lower system cost.

In [5], a system utilizing a cloud for mobile robots was real-
ized by means of the ROS. In the proposed system, the mobile
robot offloads the calculation for vSLAM to the cloud, which is
achieved by the ROS inter-node communication feature.

In both [4] and [5], the proposed systems includes edge de-
vices, which collect information, send and receive messages, and
control themselves according to the messages received. The edge
devices in both of these works are laptops. Embedded devices
equipped with the ROS can operate as the edge devices and offer
alternatives to the laptops. As a result, the edge devices can be
smaller and their power consumption can be reduced.

The ROS package rosserial[6] has been used to execute ROS
nodes on embedded devices. By using rosserial, the programs op-
erating as ROS nodes can be run on embedded devices. However,
only serial communication is supported; therefore, the transmis-
sion range and speed are limited compared to those of network
communication.

In [7], an ROS node that serves as a bridge between ROS nodes

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 2

and LUNA, a real-time software framework, was proposed. The
bridge node communicates directly with LUNA applications, and
sends and receives messages via ROS topics. In this manner, the
communication between ROS nodes and LUNA applications can
be realized. However, a bridge node is required between the two
frameworks. Furthermore, systems utilizing this bridge node re-
quire a higher learning cost, because two different frameworks
are used.

In [8], a communication interface between the ROS and
CODESYS, one of the main products of the PLC software, was
proposed. In the proposed system, an ROS node serves as an in-
terface, and it sends and receives messages as well as accesses
to the shared memory of CODESYS. This system also requires a
bridge node between the two different systems. Moreover, in the
[8], the support of user-defined message types and arrays was not
realized, although it was stated that it is possible.

3. Objectives
In this section, we consider the objectives to be realized in this

research.
The processes that should be porformed by mROS communi-

cation library to communicate with ROS node applications can
be classified into two opeeration types: the operations that are
common among all message types, and operations specific to
each message type. The operations specific to each message type
constitute the processes that should be changed according to the
structure of the messages.

We take this fact into account when considering the detailed
specification. Firstly, we separate these operations, so that opera-
tions of one type will not affect others. Type-specific operations
are defined for each type. A file is prepared for each message,
and the operations are packaged therein. Thereafter, a common
programming interface is designed to call the type-specific pro-
cesses. The operations called are selected appropriately by spec-
ifying the proper type. Therefore, the type-common operations
can call all of the type-specific operations through a single in-
terface. Furthermore, by simply changing the specifying types,
the operations called can be altered without changing the type-
common processes.

Furthermore, we design the operation flow of the mROS com-
munication library. The operations that should be performed by
the mROS communication library to communicate with the ROS
nodes can be classified into the following three operations: the
registration of nodes for publishing or subscribing, message send-
ing, and message receiving. We consider the requirements and
design an operation flow for each process.

When registering nodes, the node sends the topic information
to the master node, which includes the node name, topic name,
and message type transmitted through the topic. To achieve this,
the type-specified functions that return this information should be
prepared.

When sending messages, the messages are serialized into bit
strings and then stored in the shared memory. To realize this be-
havior, functions that process messages appropriately should be
provided and called according to the message structures.

However, messages are received as bit strings, and then con-

Fig. 2 Generation flow of message header file

verted into the appropriate message structures. To enable this be-
havior, type-specific functions for deserializing the messages are
required.

4. Proposed Method for Generating Message
Header Fiiles

In this section, we propose a method for generating type-
specified operations as header files to fulfill the requirements de-
scribed in the previous section. The proposed flow is illustrated
in Figure. 2. The ROS system is represented by the green area
on the left side of the figure, while the mROS system is indicated
by the orange area on the right side. In the orange area, the pro-
cedures that should be performed by developers are represented
by the yellow rounded rectangles, while those that are conducted
automatically are denoted by the red rectangles.

The proposed method is implemented as follows: Firstly, pre-
pare the configuration file and specify the location of the ROS
workspace therein. Next, from the specified location, identify the
header files for the desired message types and extract the type in-
formation from the file. The information includes the type name,
definition, and aggregate hash. Finally, process the header files
for use in mROS applications. The values extracted in the previ-
ous procedure are copied into the new file without changes. Fur-
thermore, the message structure is interpreted from the extracted
definition. Serializing and deserializing functions are generated,
corresponding to the structure. The implementations of the pro-
cessed header files are light, so that they can be executed on de-
vices with fewer resources, such as embedded devices.

The serializing and deserializing functions are generated so
that each variable defined in the message type is processed se-
quentially, according to the variable type. This is an effective
approach because all message types are composed of variables of
the primitive, Hearder, or the array type. Moreover, messages
may exhibit a nested structure; that is, one message type may in-
clude other message types as its variable. However, the included
type can also be broken down recursively into variables of prim-
itive, Header, or array types. Therefore, it can be stated that the
proposed method for generate serializing or deserializing func-
tions is valid for any type.

We present the details of the function in the following section.

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 3

Fig. 3 Operation flow of publishing message

5. Operation Flow of mROS Communication
Library

5.1 Registration of nodes
The proposed flow for registering nodes proceeds as follows:

(1) When calling the registering function, the argument for spec-
ifying the message type is passed.

(2) The type-specific function is called using the argument, and
the information required to register a node is obtained from
the function.

(3) The information is sent to the master node using the XML-
RPC protocol.

During registration of a node, the information of the node and
the topic with witch it is concerned is sent to the master node.
The information is defined in header files for the mROS, which
are generated from the header files in the ROS system and can
be called from the getter functions. All message types have their
getter functions with the same interface, regardless of the types.
In this manner, the coupling between the mROS communication
library program and called getter functions is weakened. That is,
with this specification, the mROS communication library is less
dependent on the message types. As a result, the library codes
become more flexible to the types they can handle.

5.2 Sending messages
The proposed message sending flow is illustrated in Figure. 3.

The details of the flow described in the figure can be summarized
as follows:
(1) The sending message is received as an object from a user

application.
(2) A method is called on the object to calculate the message

size.
(3) The serializing method is called on the object
(4) The serializing function copies the message data as a bit

string into the shared memory.
(5) The message size and the pointer to the copied data in the

shared memory are queued in the publishing task data queue.
(6) When the data are queued, the publishing task wakes up and

sends the data in the shared memory to other nodes.
In the figure, the gray rounded rectangles represent processes

that are common to all message types, while the orange rounded
rectangles represent processes that are specific to a message type.
Hereafter, we refer to the former as common processes and the

Fig. 4 Operation flow of processing of nested messages

Fig. 5 Operation flow of message receiving

latter as type-specific processes. Note that the codes correspond-
ing to the operations in the orange rectangle are generated by the
proposed method, as described in the previous section. The red
arrows in the figure represent the procedure calls. As indicated
by the arrows, the common processes call the type-specific pro-
cesses in the proposed flow. The type-specific processes are also
responsible for copying the messages into the shared memory.
Furthermore, the type-specific processes only return the calcu-
lated message sizes to the common processes. These values are
integers, regardless of the handled message type. This specifi-
cation results in weak coupling between the common and type-
specific processes. Therefore, the common processes can deal
with any message type by changing the type-specific processes
that they call. This change can be achieved by changing the argu-
ment passed to the common process.

This flow enables serializing of messages with a nested struc-
ture. In the following description, we refer to a message object
with a nested structure as a parent object, and to another object
included in the parent object as a child object. Figure. 4 illustrates
the serializing flow of a parent object.

As indicated in the figure, in this operation, the parent object
recursively calls the serializing method of the child object. The
parent and child objects share the pointer, so that both can copy
into the appropriate area of the shared memory. This is feasible
because all of the message objects have deserializing methods
with the same interface.

5.3 Receiving messages
The proposed message receiving procedure is illustrated in Fig-

ure. 5. The process details are as follows:

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 4

(1) A message object is generated, which is the same type as the
receiving message.

(2) The deserializing method is called on the object. In the de-
serializing function, the received bit string is copied into the
object as the message values.

(3) The callback is executed, providing the object as an argu-
ment.

The orange rounded rectangle in the figure expresses the type-
specific procedure. In this flow, the deserializing procedure cor-
responds to the type-specific processes. The procedure is realized
as a method in the message object, and is called by the common
processes. The method interprets the bit string in the shared mem-
ory, and copies values from here to the variables in the message.
Thereafter, the object is passed to the callback function. In the
figure, this procedure is represented by the green rectangle with
the description ”executing callback.” The dashed arrows corre-
spond to the data flow. The dashed arrow pointing to the green
rectangle indicates the data flow of the message objects passed to
callbacks. The orange rounded rectangle in the figure represents
the type-specific procedure. It should be noted that the deserializ-
ing process returns nothing to the common processes. As a result
of this specification, the coupling between the common processes
is weakened, and the receiving processes become more flexible to
different message types. Moreover, as in the sending case, mes-
sages with nested structures can be processed using this flow.

6. Evaluation and Discussion
In this section, we evaluate and confirm the effectiveness of our

proposal and discuss its usefulness.

6.1 Evaluation environment
We implemented our proposed method as a tool, as well as the

proposed mROS operation flow in the communication library.
We executed mROS applications on GR-PEACH, which is a

development board with a microcontroller that can be equipped
with the TOPPERS/ASP kernel and mbed library. The board can
also be connected to a network using an Ethernet cable.

We prepared the local network and connected a laptop wire-
lessly and GR-PEACH through a cable. The laptop was equipped
with Ubuntu 16.04 LTS and ROS Kinetic, while GR-PEACH was
equipped with the mROS. We executed the nodes and the mas-
ter node on the laptop. During the test, the mROS applications
communicated with these to send and receive messages.

6.2 Operation verification
We verified that the functionality expansion based on our pro-

posal made it possible for the mROS applications to handle all
primitive types as well as user-defined message types. To achieve
this, we prepared ROS node applications and mROS applica-
tions, and performed message communications with these mes-
sage types. During the evaluation, messages of all primitive types
and a user-defined type were tested.

The test and results of the communication of the user-
defined message type are presented below. We defined
the“PersonalData” type and used it in the test. This type in-
cluded the variables below:

ros::init(argc,argv,"mros_node");

ros::NodeHandle n;

ros::Publisher pub = n.advertise<

mros_test::PersonalData>("mros_str",1);

ros::Rate loop_rate(5);

mros_test::PersonalData msg;

msg.first_name = "Phil";

msg.last_name = "Woods";

msg.age = 83;

msg.score = 100000;

while(1){

wait_ms(1000);

pub.publish(msg);

msg.score ++;

}

Fig. 6 Example code to publish messages from mROS

void Callback(mros_test::PersonalData::Ptr msg){

syslog(LOG_NOTICE, "I heard a msg from ros host");

string name = msg->first_name + " " + msg->last_name;

syslog(LOG_NOTICE, "name:%s",name.c_str());

syslog(LOG_NOTICE, "age:%u",msg->age);

syslog(LOG_NOTICE, "score:%u",msg->score);

}

void usr_task2(){

#ifndef _USR_TASK_2_

#define _USR_TASK_2_

ros::init(argc,argv,"mros_node2");

ros::NodeHandle n;

ros::Subscriber sub = n.subscribe("test_msg",1,Callback);

ros::spin();

#endif

}

Fig. 7 Example code to subscribe from mROS

• “first name” of string type
• “last name” of string type
• “age” of unsigned 16bit integer type
• “score” of 32bit integer type
Firstly, we tested sending messages from an mROS applica-

tion. The code of the mROS publisher application is presented in
Figure. 6, while the output of the ROS subscriber application is
presented in Figure. 8.

As Indicated in Figure. 8, the subscriber ROS application cor-
rectly received and output the data set in lines 7 to 10 of Figure. 6.
Moreover, it can be observed from Figure. 8 it that the value of
“score” was incremented per message, as a result of line 14 in
Figure. 6. This indicates that the variable “score” was definitely
handled as an integer.

Thereafter, we examined receiving messages on an mROS ap-
plication. The code of the mROS publisher application is pre-
sented in Figure. 7, while the output of the mROS subscriber ap-
plication is shown in Figure. 9.

The ROS publisher node application exhibited almost the same
behavior as that of the mROS. The differences were the val-
ues of first name and last name. In the ROS application,
first name was set to “Charlie” and last name was set to
“Parker.” As illustrated in Figure. 9, the values set on the ROS
publisher application were included in the output. Regarding the

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 5

Fig. 8 Result of message
recieving on
ROS node

Fig. 9 Result of message
recieving on mROS

first name and last name variables, it can be observed from
Figure. 8 that the two strings were connected as a result of line 3
in the code of Figure. 7. As a core score variable, it can be seen
that the value was incremented per message, which reflects the
implementation of the ROS publisher application These results
confirmed that the mROS applications could receive, interpret,
and handle correctly.

6.3 Discussion
In this section, we discuss the improvements this research con-

tributes to the mROS.
Firstly, conversion between the string type and other message

types is no longer required, which results in a reduction in the
communication overhead and more efficient application execu-
tions.

Secondly, it is possible to select the appropriate type for each
message, and therefore, the numbers of symbols required to com-
municate messages can be reduced. In most cases, more symbols
are required to send numbers as a string than as numbers. More-
over, when sending variable-length messages such as strings, the
message length of the 4-byte integer should appear on top of the
messages, owing to the ROS specification. This research has
solved this problem, and developers can now select the appro-
priate message types with less traffic.

This can be explained by using a message type with three vari-
ables of 32-bit float as an example. Messages with this type have
a size of 12 bytes, including three float variables with a size of 4
bytes each. If this message is sent as the string type, the body size
will be 25 bytes. This is because each float requires seven letters
for the float type precision, as separators should be inserted be-
tween floats, and the body length expressed by a 4-byte integer
must be included in the message. As explained below, by se-
lecting appropriate message types, the symbols required for mes-
sages, particularly those with numeric types, can be reduced.

Thirdly, the message types used in mROS applications can be
specified during their construction. Therefore, the size of the
shared memory used by an mROS application can be optimized
by fitting it to the message size. To confirm this, we implemented
the memory optimizing function according to the message type.
We built an mROS application using this function, and compared
its size to the same application built without using the function.

In the evaluation, we prepared the message type with the three
32-bit float variables used in the previous evaluation. As men-

tioned previously, the size of a message of this type is 12 bytes.
We measured the size of libmros.a by using a size command
of Linux. The libmros.a includes the mROS communication
library, and is generated when building an mROS application.

The actual sizes obtained by means of the size command are
presented in Table 1. Note that hereinafter the “new implemen-
tation” means the mROS application with a new implementation
based on this research, while “old implementation” means the
mROS application with the old implementation, as designed in
[2] and [3].

Table 1 Comparation of the program size of mROS communication library

text[Byte] data[Byte] bss[Byte] dec[Byte]
old impl. 69,464 28 2,097,319 2,166,811
new impl. 69,460 28 1,048,739 1,118,281

As indicated in the table, the size of the bss section was re-
duced. In the old implementation, a memory size of 1 MB was al-
located to the shared memory for inter-task communication. The
large size of the shared memory is for messages with large sizes,
such as QVGA-formatted image data. The contribution of this
study makes it possible to shrink this memory area and fit it to
the size of the message types. When the message type includes
variables of a variable length, the memory area can be optimized
by specifying the variable lengths.

As a result of this research, the message types of topics can
be specified when the publish or subscribe method is called.
Therefore, the programming interface of the mROS communica-
tion library can be designed to be more similar to that of the ROS
communication library. Figures 6 and 7 illustrate certain impor-
tant parts of the mROS code for communication operations. As
indicated in the figures, the mROS communication library can be
called by codes that are quite similar to those that call the ROS
communication library. Consequently, the compatibility between
ROS and mROS applications has been improved in this work.

7. Conclusion
In this research, we have improved the versatility of the mROS

by removing the constraint on the message types that can be han-
dled. To achieve this, we have proposed a method for generating
header files for message types and a flow of the mROS commu-
nication library that can handle any message types. The proposed
method generates header files for an mROS application based on
header files that exist in the ROS. The proposed operation flow
calls message-specific functions defined in the above header files.

We implemented our proposed method and operation flow on
the mROS to evaluate them. It was confirmed that the mROS can
send and receive messages of the following types: primitive types
except for time and duration types, arrays of primitive types, and
user-defined message types. Note that Time and Duration types
are available on the mROS using our proposal, although we could
not implement these owing to a lack of time.

Moreover, we discussed the usefulness of this extension.
This study contributes to easier development of robotic ap-

plications using the mROS. Furthermore, the versatility of the
mROS is improved and it is therefore capable of developing var-
ious applications.

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 6

Future work will include the support of message types that
are not yet supported, evaluation of the communication between
nodes on the same device, and comparisons with other frame-
works.

Acknowledgments The part of this work was supported by
JST PRESTO Grant Number JPMJPR18M8 and JSPS KAK-
ENHI Grant Numbers JP18K18024.

References
[1] Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,

Wheeler, R. and Ng, A. Y.: ROS: an open-source Robot Operat-
ing System, ICRA workshop on open source software, No. 3.2, pp.
5 (2009).

[2] Hideki, T., Tomoya, M., Kazuyoshi, T., and Naofumi, T.: Work-in-
Progress: Design Concept of a Lightweight Runtime Environment for
Robot Software Components Onto Embedded Devices, 2018 Interna-
tional Conference on Embedded Software (EMSOFT), pp. 1–3 (2018).

[3] Hideki, T., Tomoya, M., Kazuyoshi, T., and Naofumi, T.: mROS: A
Lightweight Runtime Environment for Robot Software Components
onto Embedded Devices HEART 2019 Proceedings of the 10th Inter-
national Symposium on Highly-Efficient Accelerators and Reconfig-
urable Technologies, Article No. 7 (2019).

[4] Zhengang, L., Yong, X., and Lei, Z.: ROS-Based Indoor Autonomous
Exploration and Navigation Wheelchair, 2017 10th International Sym-
posium on Computational Intelligence and Design (ISCID), Vol. 2, pp.
132–135 (2017).

[5] Patrick, B., Mohan, M., Paul, R., John, J. P., Mo, J., and Lutcher,
B.: Cloud-Based Realtime Robotic Visual SLAM, 2015 Annual IEEE
Systems Conference (SysCon) Proceedings, pp. 773–777 (2015).

[6] Ferguson, M.: rosserial, http://wiki.ros.org/rosserial.
[7] Bezemer, M. M. and Broenink, J. F.: Connecting ROS to a real-time

control framework for embedded computing, Emerging Technologies
& Factory Automation (ETFA), Vol. 2015 IEEE 20th Conference on,
IEEE, pp. 1–6 (2015).

[8] Tiago, P., Rafael, A., and Germano, V.: Bridging Automation and
Robotics: an Interprocess Communication between IEC 61131–3 and
ROS, 2018 IEEE 16th International Conference on Industrial Infor-
matics (INDIN), pp. 1085–1091 (2018).

[9] TOPPERS Project：TOPPERS/ASP kernel,
https://www.toppers.jp/asp-kernel.html.

Asia Pacific Conference on Robot IoT System Development and Platform 2019 (APRIS2019)

ⓒ 2020 Information Processing Society of Japan 7

