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Abstract: Modern microprocessors usually employ shard cache to keep high-speed communication with programs. Since many 
tasks in real-time embedded systems have implicit timing requirements, unpredictable execution time due to cache contention has 
become a major challenge. With carefully engineered concurrent applications, up to 168X execution time increase was observed 
on a real embedded multicore platform. Moreover, cache contention can cause different degrees of performance degradation 
concerning the characteristics of concurrent applications and processing processors. In this paper, we focus on analyzing the main 
factors contributing to varying performance degradations caused by the cache contention in multicore platforms. We evaluate eight 
SPEC 2017 benchmarks and two separate regulations doing read and write operations in memory. Evaluation results show that the 
application characteristics, CPU designs and implementation platforms cause significant effects on the variabilities in performance 
degradation.  
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1. Introduction     

Multicore processors are widely used in real-time embedded 
systems to perform more tasks with better system performance.  
In modern multicore processors, shared cache architecture has 
become common since it brings more benefits than does dedicated 
cache, such as increasing cache utilization, offering faster inter-
core communication, reducing cache coherency complexity and 
false sharing penalty. However, since many tasks in real-time 
embedded systems may have implicit performance requirements, 
it also becomes a major concern to achieve predictable 
performance in multicore systems because of the shared resources. 
For example, the shared L2 cache technology allows all the cores 
in the system to access the entire L2 freely, which in turn leads to 
resource contention and decreases the application performance.  
Non-blocking caches are often used as shared caches in multicore 

processors to server concurrent memory requests. The problem is 
when any of the internal buffers become full, the cache becomes 
blocked and no further requests can be served any more until the 
buffers are available again. If a program induces shared cache 
blocking, it may cause significant performance impacts on the 
tasks executing on other cores, as none of the cores can access the 
cache when it is blocked. Therefore, it is to attribute the cache 
contention in special hardware buffers in non-blocking caches. In 
this work, we aim at exploring the performance impacts on non-
blocking shared caches in multicore platforms. 
Many research effort has been focused on improving memory 

performance in multicore platforms. For shared cache, cache 
partitioning technology which divides the cache space among 
applications based on their memory demands to provide capacity 
benefits with performance isolation, has been extensively studied 
[1]. However, Valsan et.al first experimentally showed that such 
partitioning solution does not necessarily guarantee performance 
isolation in modern processors that use non-blocking caches to 
exploit Memory-Level-Parallelism (MLP) [2]. In recent research, 
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memory bandwidth as well as internal hardware structures of non-
blocking cache, e.g., Miss-Status-Holding-Registers (MSHRs) and 
write buffers, have gained much attention to analyze and control 
the timing impacts on a shared cache. For example, Yun et.al 
suggested a memory bandwidth reservation system, which uses a 
hardware performance counter to regulate the maximum memory 
bandwidth, to support efficient memory performance isolation in 
multicore platforms [3]. Valsan et.al identified that MSHRs in non-
blocking caches are a significant source of contention, and a 
hardware and OS collaborative approach was suggested to help 
eliminate the MSHR contention to improve the cache access [2]. 
Recently, Bechtel et.al identified cache MSHR and WriteBack 
(WB) buffer as two important attack vectors in denial-of-service 
(DoS), and an OS-level solution based on MemGuard was 
suggested to mitigate shared cache DoS attackers [4].   
In this work, we experimentally investigate the performance 

effects of non-blocking caches in real multicore platforms. 
According to the evaluation results of concurrent experiments, it is 
found that read and write operations in memory cause different 
performance degradation degrees as they may stress different 
internal structures of cache. It is also observed that cache blocking 
occurs not only in out-of-order processors but also in in-order 
processors, and the former architecture causes server execution 
time increases without a doubt. While it is surprisingly observed 
that up to 168X increase of execution time occurs on an in-order 
architecture based platform. Besides, we investigate 
the performance degradation that the processes suffer due 
to memory bandwidth constraints. Experiments show that 
main memory bandwidth contention negatively impacts the 
process performance; in two embedded platforms with the same 
core type, performance degradation difference can grow up to a 
hundred times for some of the applications. In summary, three 
main factors that cause different performance degradations are 
analyzed in real-world embedded platforms. The observations are 
expected to be applied to the improvement of performance issues 
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in both the industry and academia in the future.  
The remainder of the paper is organized as follows. In section 2, 

the basic background of a non-blocking cache is introduced. In 
section 3, we present the relevant cache contention model, 
motivational examples, and memory access code. In section 4, 
evaluation experiments of different concurrent applications on 
different embedded platforms are conducted. Finally, section 5 
concludes the paper and addresses some possible future work. 

2. Non-Blocking Cache 

Non-blocking cache is one of the most effective techniques used 
for tolerating cache-miss latency in modern processors. It was first 
proposed by Kroft in [5], which allows execution to proceed 
concurrently subsequent cache accesses after a cache miss occurs. 
In this section, we present the fundamental background of a non-
blocking cache, together with the flowcharts of read and write 
operations correspondingly.  

2.1 Internal organization   
The internal organization of a non-blocking cache is shown in 
Fig.1. In order to allow non-blocking operations and multiple 
misses, Miss-Status-Holding-Registers (MSHRs) are used to 
record the miss related information, i.e., the address and cache line 
of the data block, the word that caused the miss, and the function 
unit or register to which the data is to be routed [6]. Usually, a non-
blocking cache is capable of serving multiple outstanding misses, 
and the degree to which this can occur depends on the size of 
MSHR structure. As long as the corresponding cache line is 
fetched from next-level memory hierarchy, the MSHR entry will 
be cleared; otherwise, it can continue serving further cache misses, 
until the MSHR becomes full.   

Another key hardware structure on a non-blocking cache is write 
buffer. If the cache is write-back, a WriteBack (WB) buffer is 
needed. In the write miss case, the request is sent to the main 
memory and space is only allocated when this request is answered. 
However, we do not want to send the data to the main memory only 
for it to be returned. Therefore, the WriteBack buffer can be 
temporarily used to hold data being written from the next memory 
hierarchy level. The detailed information will be introduced in 
section 2.2. 

It is noteworthy to mention that when the MSHR or the write 
buffer becomes full, i.e., all buffer entries are occupied, the cache 
is blocked. In other words, the cache can no longer accept any other 
memory requests until both of MSHR and WriteBack buffer are 
available.  

2.2 Memory operation  
Generally speaking, memory operation can be simply classified 

as read and write operations. When the processor needs to read or 
write a location in main memory, it first checks for a corresponding 
entry in the cache. In this section, we introduce basic steps taken 
by a cache memory to resolve to a memory access.  

 

 
Figure 1: Structure of a non-blocking shared cache (adopted from 

Fig.1 in [4]) 
 

l Read operation 
The flow chart of memory read operation is illustrated in Fig.2. 
When the CPU has a read request for data, the tag array of the 
cache will be accessed. If there is a cache read hit, the data will be 
returned from cache directly. Since all the read operations are 
finished in the cache, there is no need to access the main memory. 
On the contrary, if there is a cache miss, which implies that the data 
is not in the cache, the main memory has to be fetched to bring the 
data. In this case, the CPU will first try to locate a free cache block 
to use. Then the missed related information (introduced in section 
2.1) will be recorded into the MSHR table. If there is no pending 
request for that cache block, a fill request is generated (read 
memory data to cache). When response of the fill request is 
received at the cache, the cache line is inserted into the cache and 
the corresponding MSHR entry is marked as filled. As presented 
above, as long as all the requests waiting at the filled MSHR entry 
have been responded to and serviced, the MSHR entry will be freed. 
l Write operation 

Assume that the cache uses write-back policy, in which the data 
is written only to the block in the current cache, not to lower-level 
caches. Dirty bit is commonly used to indicate whether the 
contents of a particular cache block are different to what is stored 
in the main memory. Any dirty cache lines are written back to the 
system using writeback buffer.  

If the CPU has a write request and there is a cache write hit, i.e., 
the address we want to write to is already loaded in cache, the data 
will be written into cache directly. Since there is no update on the 
main memory, the used cache block will be marked as dirty. On the 
other hand, in case of a cache write miss, the missed information 
will be recorded into MSHR. Meanwhile, it locates a cache block 
to use. If the block is dirty, it will be updated and recorded into 
writeback buffer. Note that the modified cache block is written to 
the main memory only when it is replaced; otherwise, if the block 
is clean, it updates the block in main memory and brings the block 
to the cache. The flowchart of write operation is presented in Fig.3.  
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Figure 2: Flowchart of read operation 

 
 
 

     
Figure 3: Flowchart of write operation 

3. Cache Contention on Multicore Platforms 
In this section, we first introduce a general cache contention 

model on a typical multicore platform. Then, a motivational 
example of real benchmarks on a real platform is given to explain 
cache contention. After that, the source code of memory-intensive 
programs aiming at causing as much as cache contention is 
introduced.  

3.1 Cache contention model 
A typical multicore architecture is composed of multiple 

independent processing cores, multiple layers of caches, a shred 
memory controller, and DRAM memories. In this section, we 
introduce the contention model on a general multicore architecture, 
as illustrated in Fig.4. We call the affected program a subject 
program, and call the affecting program a concurrent program or a 
co-runner. Assume that the subject and concurrent programs are 
co-located on a multicore processor, in which the processing cores 
have a split L1 cache (i.e., instruction cache and data cache) while 
sharing an integrated L2 cache. In addition, we assume that there 
is a core and memory isolation between the subject and concurrent 
programs. To be more precise, the co-runners cannot be assigned 
on the same core as the subject program, moreover, they cannot 
access the memory of subject program directly. The main purpose 
of the concurrent programs is to analyze the delay of the subject 
program’s execution time, also called performance degradation in 
this paper. 

The performance degradation of the subject is defined as 
follows: firstly, we run the subject program on core 0, and measure 
its solo execution time, denoted as T_solo. Secondly, we locate the 
number of co-runners on Cores 1-3 executing concurrently with 
subject, and measure the response time of subject program again, 
denoted as T_corun. Then, the performance degradation can be 
computed as the ratio of co-run execution time to its solo execution 
time, which is T_corun/T_solo. 

 

 
Figure 4: Cache contention model on a multicore architecture 

 

3.2 Motivational Example 
In this section, we give a motivational example to explain the 

performance impacts of cache contention. We start the analysis 
from a set of real benchmarks SPEC 2017 [7] on a real board R-
Car H3 [8]. The experiment setup is the same as described above, 
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where we first measure the solo execution time of a subject 
program on one CPU core, and co-execute it with three concurrent 
programs which are assigned on the other three CPU cores. In this 
example, we set eight SPEC 2017 Integer benchmarks as subject 
programs individually. The performance impact of each program 
on Cortex-A57 and Cortex-A53 is drawn in Fig.5, respectively. 
Evaluation results show that the performance degradation of each 
program is large than 1, which reflects that the execution time is 
indeed delayed because of cache contention. Also, it is noted that 
when the subject program is set as 505.mcf_r, the performance 
degradation becomes worse than other programs. This is because, 
the application mcf in SPEC benchmark suits executes a significant 
number of memory related operations and has larger working sets 
[9]. Requiring more accesses to the memory hierarchy makes it 
more vulnerable to performance degradation due to memory 
contention.  

 

 
(a) evaluation results of performance degradation on Cortex-

A57 cores 
 

 
 (b) evaluation results of performance degradation on Cortex-

A53 cores 
 

Figure 5: Performance degradation of SPEC 2017 Integer 
benchmarks on R-Car H3 (+3 concurrent programs) 

 

3.3 Subject and Concurrent Code 
The motivational example described above not only proves that 

the execution time is extended due to memory contention, but also 
shows that the programs with more memory accesses are more 
likely to suffer memory contention. As we focus on exploring 
different levels of performance degradation in this work, a high 
amount of memory requests are required to generate to observe the 
severity of cache contention. Therefore, besides an evaluation of 
SPEC benchmarks, we specially design two separate regulations 

doing read and write operations in memory. Fig.6 shows the source 
code of originally generated programs.  

Assume that there is a multicore platform with 2GB-sized 
shared cache. We intend to generate as many as cache accesses of 
the co-runners, thus they can cause more delays of the subject 
program’s execution time. We define an array set to a set of a 
changing variable N. More precisely, when we prepare the 
read.c/write.c as the concurrent program, we define N in Fig.6 as 
4, which implies that the array size is four times the cache size, and 
the cache miss is expected to be very high. While when we define 
the read.c/write.c as the subject program, we set the array size as 
1/4 of the cache size (i.e., N=1/4), so that it is expected to always 
hit the shared L2 cache. In other words, we wish the cache 
contention is caused by the co-execution with other programs, but 
not caused by the subject itself. It is also noteworthy to mention 
that when the processor needs to transfer data between cache and 
memory, it always operates in a cache line unit. Since the cache 
line size in our evaluated platform is 64 Bytes, the stride of array 
operation is defined as 16 (=64 Bytes/sizeof(int)) to ensure more 
cache misses occur. Finally, to measure the execution time of each 
program, we simply set the iteration of array operation as 10000. 

 
 (a) read.c source code 

 

 
(b) write.c source code 

 
Figure 6: Read and write operations in memory 
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4. Experimental Evaluation 
In this section, we present the embedded multicore platforms, 

evaluation procedures, and experimental results of the 
performance analysis. The purpose of this work is to explore the 
main factors that contribute to different levels of performance 
degradations caused by cache contention. 

4.1 Embedded multicore platforms 
We evaluate the performance impact on two embedded 

multicore platforms: R-Car H3 and Raspberry Pi 3 Model B+ [8, 
10]. The former R-Car H3 is designed based on ARM big.LITTLE 
architecture [11]. It employs four Cortex-A57 cores as the high-
performance core, which are performing out-of-order execution, 
and chooses four Cortex-A53 cores as the energy-efficient core, 
which are performing in-order execution. While the Raspberry Pi 
3 Model B+ equips a quad-core processor, i.e., an ARM Cortex-
A53 Quad Core Processor. Note that every core of the two 
platforms has its own independent L1 cache, while the identical 
cores are arranged into an integrated cluster and share a common 
L2 cache. Besides, R-Car H3 has a 4GB LPDDR4 SDRAM, with 
a 12.8GB/s data transfer, while Raspberry equips a 1GB LPDDR2, 
offering 8.5GB/s speed. The platform specifications can be seen in 
Table 1. Since the performance is highly dependent on the 
operational frequency, to make a fair comparison, in this work, we 
assume all the processing cores are operating at the maximum 
frequency. 
 

Table 1: Compared embedded platforms and core types 
Platform R-Car H3 Raspberry Pi 3 

Model B+ 
CPU 4 Cortex-A57 

(out-of-order) 
4 Cortex-A53 

(in-order) 
4 Cortex-A53 

(in-order) 
L1 Cache I: 48KB 

D: 32KB 
I: 32KB 
D: 32KB 

I: 32KB 
D: 32KB 

L2 Cache 2MB 512KB 512KB 
Memory 4GB LPDDR4 1GB LPDDR2 

Bandwidth 12.8 GB/s 8.5 GB/s 
 

4.2 Evaluation results 
To demonstrate the affecting factors on performance 

degradation, we generate two separate programs doing read and 
write operations in memory as described in section 3.3. In this 
section, we conduct evaluation experiments of two assessment 
programs on two types of cores: Cortex-A57 and Cortex-A53. 
Below, the details of the procedures and results are introduced. 
l Impact of program characteristics 

In the first experiment, we investigate the impact of program 
characteristics on performance degradation. As illustrated in Fig.7, 
both 505.mcf and read.c (N=1/4) are defined as subject programs 
executing on Core 0. We co-execute the subject program with read 
co-runners and write co-runners (N=4, executing on Cores 1-3), 
respectively. Results show that both the read and write co-runners 
cause execution time delay of subject programs, more than 14X 
delay as can be seen in Fig.7. Besides, it is also found that the 
degree of execution time delay has a dramatic effect on the 

memory operations of concurrent applications. Concretely, 
compared with read co-runners, write co-runners always cause 
server performance degradations. This is because, the generated 
read co-runners keep generating read transactions in memory, and 
they may always miss the cache since the array size is 4 times as 
the cache size. The missed loads then stress the MSHRs in the non-
blocking cache and cause performance degradation. On the other 
hand, the write co-runners perform write operations in memory. 
Although they cause cache misses as the same as read co-runners, 
the write miss may trigger dirty conditions of cache lines 
(inconsistent cache and memory data). The dirty cache lines are 
required to be saved in WriteBack buffer. Summarily, in addition 
to stressing MSHRs as read co-runners do, the write co-runners 
also stress WriteBack buffer due to the existence of dirty cache 
blocks. Thus more timing impacts occur in the case of write co-
execution.  

 

 
(a) performance impact on 505.mcf 

 

 
(b) performance impact on read.c 

 
Figure 7: Comparison of read/write co-runners on R-Car H3 (e.g., 

on Cortex-A57) 
 

l Impact of CPU designs 
In this experiment, we evaluate the performance impacts of non-

blocking caches on CPU designs. Without loss of generality, the 
processor can be classified as in-order and out-of-order. Therefore, 
we conduct the experiments on two CPU-designed ARM 
processors: out-of-order Cortex-A57 processors and in-order 
Cortex-A53 processors. We take read program (N=1/4) as the 
subject, and co-execute it with three read co-runners and write co-
runners separately. The results in Fig.8 show that the out-of-order 
designed CPUs suffer server performance impacts than in-order 
designed CPUs. We consider the reasons as follows: each core in 
out-of-order processors can generate multiple outstanding memory 
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requests at a time, while each core in in-order processors can only 
generate one. In other words, out-of-order cores can generate more 
concurrent cache access than in-order processors. The higher 
degree of parallelism supported by out-of-order execution is more 
likely to cause MSHR contention and thus degrade the 
performance. It is noteworthy that the same results can be observed 
by evaluating SPEC programs. Considering the limited space of 
paper, the experiment results are not showed here. 

 

 
(a) co-execute with read co-runners 

 

 
(b) co-execute with write co-runners 

 
Figure 8: Comparison of CPU designs on R-Car H3 

 
l Impact of implementation platforms 

Memory bandwidth is also an important aspect for performance 
analysis, as it affects how quickly the OS can get data into and out 
of memory for processing. In this experiment, we evaluate the 
effect of memory bandwidth on performance degradation.  
Instead of comparing two types of CPUs in the last experiment, we 
repeat the experiments in the type of core, but different 
implementation platforms.  

We first co-execute the subject program (read.c, N=1/4) with 
read and write co-runners (N=4) on two recent embedded 
platforms, R-Car H3 and Raspberry Pi 3 Model B+, both of which 
are equipped with four in-order Cortex-A53 cores. Experiment 
results show that when the subject program is co-executed with 
read co-runners, the execution time increase induced by cache 
contention is close, ranging from 1.04X to 1.68X, as shown in 
Fig.9(a). However, when it is co-executed with write co-runners, 
execution time increase occurred on Raspberry is much worse than 

that of R-Car H3. A gap of more than one hundred times was 
observed to be more precise. As illustrated in Table 1, both R-Car 
H3 and Raspberry Pi 3 Model B+ has four Cortex-A53 cores with 
the same sized cache, while R-Car H3 has a larger memory size 
and bandwidth. Thus, the performance degradation degree in R-
Car H3 is expected to be smaller than that in Raspberry. The 
interesting observation is that the extreme difference is only 
observed on write co-execution experiments, as can be seen in 
Fig.9(b), while the results in Fig.9(a) were not the case. Therefore, 
we suspect that because write operation causes more cache misses 
than read (illustrated in previous experiments), they are more 
susceptible to memory bandwidth.  

 

 
(a) co-execute with read co-runners 

 

 
     (b) co-execute with write co-runners 

 
Figure 9: Comparison of implementation platforms (e.g., on 

Cortex-A53) 
 

5. Conclusion 
In this paper, we made an analysis of performance degradation 

on a shared cache in multiprocessor systems. We evaluated SPEC 
2017 benchmarks and two separate read and write memory-
intensive programs, and found that the degrees to performance 
degradation are closely related to program characteristics. In 
particular, write concurrent applications cause higher memory 
contention and thus contributes to server performance degradation 
than read concurrent applications. Besides, we performed 
experiments on two recent ARM processors: in-order Cortex-A53 
and out-of-order Cortex-A57. Evaluation results showed that 
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compared with in-order processors, out-of-order processors are 
more likely to suffer MSHR related cache blocking thus cause 
more serious performance degradations. Finally, we evaluated the 
experiments on the same processing CPU, but different 
implementation platforms. It was observed that even for the same 
processors, memory bandwidth leads to significant effects on the 
variabilities in performance degradation.  Besides the 
observations presented in this paper, we also found that the cache 
prefetching technique affects the program performance and cache 
miss significantly. For future work, we plan to investigate the 
configuration and mechanism of hardware prefetchers in the 
performance issue.  
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