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Abstract

All the taxonomy databases constructed with the DNA databases of the international DNA
data banks are powerful electronic dictionaries which aid in biological research by
computer. The taxonomy databases are, however not consistently unified with a relational
format. If we can achieve consistent unification of the taxonomy databases, it will be
useful in comparing many research results, and investigating future research directions
from existent research results. In particular, it will be useful in comparing relationships
between phylogenetic trees inferred from molecular data and those constructed from
morphological data. The goal of the present study is to unify the existent taxonomy
databases and eliminate inconsistencies (errors) that are present in them. Inconsistencies
occur particularly in the restructuring of the existent taxonomy databases, since
classification rules for constructing the taxonomy have rapidly changed with biological
advancements. A repair system is needed to remove inconsistencies in each data bank
and mismatches among data banks. This paper describes a new methodology for
removing both inconsistencies and mismatches from the databases on a distributed
computer environment. The methodology is implemented in a relational database
management system, SYBASE.



1. Introduction

The increasing number of genome projects in the world have led to the further
development of biological sciences and an advancement of the technology involved. In
particular, the comparative and evolutionary studies of different genomes have become
very important. This has promoted a restructuring of taxonomies constructed from
various biological data. So far, such restructuring is carried out by a specialist who is
interested in specific species or genes. Taxonomy data are usually very complicated
because of the nature of its tree structure. It is thus important to make a taxonomy
database which can be maintained in and searched through a computer system. The
taxonomy database is a kind of electronic dictionary for searching automatically for any
taxonomy information on the computer system. If the electronic dictionary can be used
freely by biologists, it will contribute not only to genome research but also to other
biological sciences. Above all, the evolutionary studies would gain tremendous benefits
from a taxonomy database.

A typical taxonomy database is constructed at each of the international DNA data
banks [1,2,3,4,5,6,7] which are EMBL (European Molecular Biology Laboratories) Data
Library, GenBank-NCBI (National Center for Biotechnology Information)/GSDB-LANL
(Genome Sequence Database constructed at Los Alamos National Laboratory) and DDBJ-
NIG (DNA Data bank of Japan constructed at the National Institute of Genetics). These
data banks shown in Figure 1 have been collaborating in many areas through mutual
exchanges of data over the international computer network.

DDBJ(NIG)

TN

EMBL(EB) -l GenBank(NCBI)

GSDB(LANL)

Figure 1. International DNA data banks

The aim of this paper is to present a method for producing a consistent taxonomic
database that can integrate the taxonomy databases supplied by these data banks into a
single unified taxonomy database. Before integration, it is necessary for each taxonomy
database to be consistent within itself and any pair of taxonomy databases should also be
consistent with each other. We propose a new methodology for finding inconsistencies
and constructing a consistent taxonomy database as a step toward the unified taxonomy
database in a distributed computer environment. The methodology is implemented in the
relational database management system, SYBASE [8].

In summary, section 2 describes the basic concept of a recursive join which is a search
engine of the implemented system. In section 3, we describe a new neighborhood search
subsystem which is needed for clarification of error structures in the taxonomy tree. In
section 4, we describe the definition of integrity constraints for detecting errors. In
section 5, we describe the system configuration for implementing the new methodology.
In section 6, we discuss related work for comparing the system with another system in
constructing the unified taxonomy database. The final section is a summary of our
research results.

2. Recursive Join

A taxonomy has a tree structure in which each taxonomic unit is connected with some
immediately subordinate unit. Let us denote the former and latter units by "parent” node
and "child" nodes, respectively. The relationship between a child node "X" and a parent
node "Y" can be represented by a binary relation "(X,Y)", where "X" and "Y" are
defined by the same domain "D".

LetR={ (a,b) la€D,b&€D } and S={ (b,c) | bED, c€D } be two binary relations.
The join of "R" and "S", denoted as RAS, is defined as { (a,c) | Ib ( (a,b)ER,
(be)ES) ). ’



Let Ro={ (ao,bo) | a0 €D, bo €D }, Ri=Ro, Ri=Ri-1 A R. The recursive join of "R"
with an initial relation "Ro", denoted as "[R]", is defined as { U0 Ri }. Let us consider
R={ (a,b) 1 a€D, bED }, where "a" is a child node of "b". The recursive join "[R]"
computes all lineages from each node stored in the initial relation "Ro" to the oot node.
We call this "lineage processing”. The other hand is the case of R={ (a,b)la€ED,bED
}, where "a" is the parent node of "b". In this case, the recursive join "[R]" computes all
progeny from each node stored in the initial relation "Ro" to the root node. We call it
"posterity processing".

The recursive join [9] is represented by the following algorithm:

[RI=Ro; R=Ro ,
while (R' # @) do

R' =R'AR ;
[R]=[R] UR' ;
end_while

In this paper, the previous binary relation is implemented as follows:
taxonomy( tx_id, tx_tl_id, &x_tx_idp, tx_nodename, _)
taxlevel( tl_id, tl_levname, _)

Each node of the taxonomy tree is stored in the "taxonomy" table and the level or ranking
of the node in the taxonomy tree is stored in the "taxlevel” table. "tx_id" of the
"taxonomy" table specifies the identifier for each node. "tx_tl_id" specifies the pointer to
"tl_id" of the "taxlevel" table. "tx_tx_idp" specifies the pointer to a parent node in the
"taxonomy" table. "tx_nodename" specifies the name of the node. "tl_id" of the
"taxlevel" table specifies the identifier for each level name.

3. Neighborhood Search

In constructing a taxonomy database, it is very important to make it consistent.
However, we do not have definitions clear enough to create inconsistency checking in
the database design phase, because the biological information change due to rapid
advancements in biology. After the design phase, we can incrementally clarify
definitions related to the inconsistency checking in the database administration phase.
- The inconsistent (error) nodes stored in the "taxonomy" table can be incrementally
detected in the administration phase. We can repair these inconsistencies by using the
neighborhood search functions which visualize neighborhood nodes. The functions
instruct us to conduct correct revisions in perspective. Three of the functions including
the recursive join algorithm are as follows:

(1) lineage search function

This function searches for a path from a given node to the root node, which does not
have any parent node in the tree structure. The path is a set of nodes found by searching
in the "taxonomy" table. Appendix-1 shows an example of the program that was
implemented in the control flow language of SYBASE called the "stored procedure”. Our
approach includes the object-oriented database concept [10], since the procedure is a kind
of method for hiding the table structures of the "taxonomy" table. If we apply an artificial
intelligence approach, we can obtain another kind of a program implemented in prolog
{11]. This approach shown in Appendix-2 is made up with a smaller program than that is
the previous approach. If we need more complex and higher processing to search and
integrate taxonomy databases in the future, the artificial intelligence approach would be
preferable in implementing more efficient processing.

(2) posterity search function

We would like to make this function search for all paths from a given node to its leaf
nodes, which do not have any child node in the tree structure. The number of the nodes
found by the posterity processing is generally so large that the system can not visualize in
any single window system at the same time. Thus we make this function visualize only in



a given node and its child node. If we repeatedly use this function, we can find all paths
from a given node to the leaf nodes in the tree structure.

In addition, we implemented an option to compute statistics which show the number
of nodes for each level, in searching all progeny.

(3) homology search function

This function searches for nodes of the same level as a given node in the tree
structure. If we search for a parent node of a given node, we can look for all children
nodes of the parent node in the tree structure. This search visualizes homologous nodes
for a given node. The homologous nodes include the given node and are in the same
classification .

Number | Node_name

A superkingdom
B kingdom
C phylum
D subphylum
F order
Node_name | Ranking_name
E order
F order
order
ERIRILIARLI
s Node_namq Ranking namd Depth |
/mm o N .
s F1 genus 1
s 0 ! F2 genus 1
S [ 2 10 : : 1
f et ——————————— 2 35 F10 genus 1
3 74
4 226

Figure 2. Neighborhood search

Figure 2 shows a representation of the neighborhood search. If we use the three
functions, we can see a partial tree structure which spans both up-and-down and left-and-
right nodes for a given node. We can define the neighborhood area inferred from any
node using the neighborhood search functions. The neighborhood area can cover several
nodes visualized by use of the functions. If we change the given node to an other node in
the area, we can find the new area defined by the change. If we repeatedly apply the
neighborhood search, we can move to any area in the original tree structure.

In addition, we also have a search function which looks for the accession numbers of
the data entry to be connected with the taxonomy databases.

4. Integrity Constraints

It is important to maintain high quality in a database, including both facts (data) and
inference rules. This enables us to construct a database system to carry out consistency
checking using integrity constraints as defined by experts, with automatic revision of the
database to eliminate inconsistencies [12].

The set of facts should be manually revised by biological experts, since the taxonomy
database only has a set of facts without inference rules. The existent taxonomy database
of DDBJ includes both syntax and semantic errors. The syntax errors can be easily
found, if we can clarify structural inconsistencies which destroy the tree structure. The
semantic errors can be found, if we can clarify the correct and invariable contents for the



database with the advancement of biology. The difficulty lies in that a single data bank
can not define the correct contents of the taxonomy database by itself and there are no
perfect taxonomy dictionaries which reflect world-wide advancements in biology.

We are involved in an international collaboration aimed at defining the correct contents
of the taxonomy database. This provides a chance to construct a consistent taxonomy
database using the system.

Let us define two kinds of integrity constraints for detecting errors and
inconsistencies. One is named the structural integrity constraint,which searches for any
abnormal partial trees and nodes. The other is the cooperative integrity constraint, which
searches for inconsistent nodes among the taxonomy databases of the international data
banks. We show a logical sketch of the two kinds of integrity constrains in Appendix-3.
The following are some examples of SQL expressions to implement them. Namely, if
one of them does not have an empty solution, its integrity constraint is true and is
inconsistent with the database. If one of them has an empty solution, the integrity
constraint is false and is consistent with the database.

(1) Structural Integrity Constraints

The integrity constraints can detect (a) undefined node names, (b) data duplication, (c)
invalid pointers to parent nodes, so that they can detect abnormal partial trees and nodes
in the existent taxonomy database.

Undefined Node Name
We should avoid node names represented by blanks or NULL. This situation can be
shown using the following query:

select tx_nodename
from taxonomy
where tx_nodename in (""", NULL)

Data Duplication
If a user stores an input node without knowledge of the existence of the same node,

data duplication occurs. We must avoid duplication with the exception of "sp.", which
means unknown species and represents an unknown node name. We can show the
situation using the following query:

select tx_nodename
from taxonomy
where tx_nodename # "sp." --------- exception
group by tx_nodename
avin count( tx_nodename ) > 1

:

Invalid Pointers to Parent Nodes

The normal tree structure has invalid (undefined) pointers for only the parent node of
the root node and valid pointers for the parent node of another node. An abnormal tree
structure including errors, has an invalid pointer for the parent node of nodes other than
the root node. We can show the situation using the following two queries:

select tx_nodename

from taxonomy, taxlevel

where tx_tl_id=tl_id

and tl_levname not in ( "kingdom","super_kingdom" )
and tx_tx_idp = NULL

select tx_nodename

from taxonomy x

where x.tx_tx_idp # NULL

and not exists( select tx_id from taxonomy
where tx_id = x.tx_tx_idp )




(2) Cooperative Integrity Constraint

There are sometimes incorrect spellings, reverse turns for up-and-down relationships
between parent and child nodes, and unfinished restructuring (for example, splitting and
merging) in the tree structure. We can detect these errors through comparison with the
taxonomy databases of the international DNA data banks over international computer
networks. Error checking for the DDBJ-taxonomy database is conducted using this
method, where it checks whether a pair of child nodes have the same name but one of the
parent nodes has a different name. If the database is inconsistent, the following query
does not have an empty solution:

select x.tx_nodename

from taxonomy x, other_taxonomy y
where x.tx_nodename = y.tx_nodename
and X.tx_tx_idp # y.tx_tx_idp,

where the "taxonomy" table is one of the tables stored in the DDBJ-taxonomy database
and the "other_taxonomy" table is one of the tables stored in the EMBL/GenBank/GSDB-
taxonomy database. If the query has one or more solutions, it means that the DDBI-
taxonomy database is inconsistent and error nodes are shown on a display.

Table 1. Computer environments

D al atego

N:‘:: 991! Database System| Computer System

WDDBJNIG) 1. Sybase | CRAYSMP-42
GenBank (NCBI) | Sybase Sunego
GSDB (LANL) Sybase Sun2000
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EMBL (EBI) ORACLE “g;corg /XQX

S. System Configuration

Figure 3 shows the system configuration for building a consistent taxonomy database.
The neighborhood search and database maintenance subsystems are developed by
defining stored procedures implemented in both SQL and Control Flow Language (CFL)
of SYBASE. The DDBJ-taxonomy database has integrity constraints which are defined
by the stored procedure, since it is necessary to construct a consistent database. We
need other taxonomy databases to define the cooperative integrity constraint. Other
taxonomy databases are acquired automatically from EMBL, GenBank and GSDB over
international computer networks. Table 1 shows the computer environments of each
international DNA data bank.

Neighborhood Search | Data Maintenance
Subsystem Subsystem

International
DNA Databanks Recursive Join

Relational Database Management System
ntegrity
Constraints

[ EMBL_|[GenBand [ asps| [ ppad |

Figure 3. System configuration



Figure 4 shows the building process of the taxonomy database. After detecting error
nodes using the integrity constraints, we can analyze the error structures for each error
node to correctly revise all the error nodes. The structure is clarified by the neighborhood
search functions which provide lineage, posterity and homology search processing for
the tree structure. After the analysis is completed, we can revise the taxonomy database
using data maintenance functions, which provide allocation of new nodes, linkage
between two nodes, merging among identical nodes and garbage collection for unused
nodes. If we can finish the revision for one error node, we can repeatedly do the same
processing for other error nodes.

In addition, we implemented both a write (or save) function to disk and an undo (or
restore) function to execute error recovery for data revision. Both of them are
implemented in CFL and the transaction management function of SYBASE:

{ Detect Error Nodes ]

|
Select One of
the Error Nodes

I
Display
the Neighborhood Nodes
I

———l Data Revison

Figure 4. Building process for the taxonomy database

6. Related Work

TaxMan [13] and TAXSON [14] produced by NCBI are building and search systems
for the taxonomy database, respectively. AWB (Annotators workbench) [3,4,5] created
at LANL and IDEA (Interactive Data Entry and Annotation) [1,2] at EBI are,
respectively, building systems for not only the DNA database but also the taxonomy
database. AWB and IDEA have a mutual connection between the DNA and taxonomy
databases.

The taxonomy database managed by TaxMan is specified in ASN.1 (Abstract Syntax
Notation 1) and is stored in a flat-file system. The flat-file system is inadequate for
managing the taxonomy database, since we need both flexibility and high performance to
manage the taxonomy database. TaxMan has the same neighborhood search functions as
our system, but does not have an automatic error detection function using the integrity
constraint concept or a powerful merging function among the identical nodes. Moreover,
TaxMan does not have a posterity search function with computation of statistics, either.
The taxonomy database managed by TAXSON is stored in the relational database system,
SYBASE. The TAXSON database is loaded from the TaxMan database; this allows
users to use the power of the relational model for integrating the data with other systems
and the power of the tree-structured mode! for maintaining the data itself.

Both AWB and IDEA are stored in the relational database system,but neither has the
useful neighborhood search function. They have a function which searches the
taxonomy database from the DNA database but another function to do it in the reverse.

7. Conclusions

We presented a new methodology for implementation of a system to build consistency
in the taxonomy database. We focused on the existent taxonomy databases and presented
methodologies designed for error detection and revision. The error detection mechanisms



are represented by the structural and cooperative integrity constraints specified as stored
procedures. The procedures are implemented in both SQL and CFL. Moreover, we
proposed neighborhood search functions using the recursive join technique. The
neighborhood search function provides a method for revising error nodes detected by
these constraints in perspective. The error revisions are carried out using the data
maintenance subsystem.

The system has been successfully used to repair the DDBJ-taxonomy database by
DDBJ-staff since early autumn 1993.

We are planning to automatically integrate, the processes from error detection to the
error revision using a graphic interface. The implemented system has recursive join
processing as a search engine. Since the taxonomy database is increasing in size in an
explosive manner, it is important to realize high performance for the recursive join.
Parallel processing [15] is one possible solution for high performance.
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Appendix-1. An Example of Programming for a Lineage
Search Implemented in both SQL and CFL

create procedure lineage @nodename char(80) as

declare @tuples irt
declare @cnt  int

select @cnt=1
_create table tempdb..lineage(
tx_id char(16),tx_idp char(16),
level tinyint ,level_name char(32),node_name char(80))
create table tempdb..temp_table(
tx_id char(18),tx_idp char(16),
level tinyint ,level_name char(32),node_name char(80))
create table tempdb..work_table(
tx_id char(16),tx_idp char(16),
level tinyint ,level_name char(32),node_name char(80))

insert tempdb..temp_table
select tx_id,tx_tx_idp,@cnt,tl_levname,tx_nodename
from  taxonomy,taxlevel
where  tx_ti_id=tl_id
and tx_nodename=@nodename
insert tempdb..work_table
select * from tempdb..temp_table
insert tempdb..lineage
select * from tempdb..temp_table
select @tuples=count(*) from tempdb..temp_table
delete tempdb..temp_table

while @tuples!=0
begin
select @cnt=@cnt+1
insert tempdb..temp_table
select x.acc_num,y.tx_id,y.tx_tx_idp,
@cnt,tl_levname,tx_nodename
from  tempdb..work_table x,taxonomy y,taxlevel
where  tx_tl_id=tl_id
and  y.tx_id=x.tx_idp

delete tempdb..work_table

insert tempdb..work_table :

select * from tempdb..temp_table
insert tempdb..lineage

select * from  tempdb..temp_table
select @tuples=count(*)
from tempdb..temp_table

delete tempdb..temp_table
end

select * from tempdb..lineage
drop table tempdb..lineage, tempdb..temp_table, tempdb..work_table



Appendix-2. An Example of Programming for a Lineage
Search Implemented in BIM-Prolog

lineage(NODENAME ,{[TX_ID,TX_TX_IDP,LEVELNAME,NODENAME]|Result]):-
taxonomy(TX_ID, TX_TL_ID,TX_TX_IDP,NODENAME),
taxlevel(TX_TL_ID,LEVELNAME),
search(TX_TX_IDP,Result).

search(TX_ID,[[TX_ID, TX_TX_IDP LEVELNAME,NODENAME]jResult]):-
taxonomy(TX_ID, TX_TL_ID, TX_TX_IDP,NODENAME),
taxlevel(TX_TL_ID,LEVELNAME),
search(TX_TX_IDP,Result).

search(TX_ID,I}).

taxonomy(TX_ID,TX_TL_ID, TX_TX_IDP,NODENAME):-
retriave(db_taxonomy(TX_ID, TX_TL_ID, TX_TX_IDP,NODENAME, _, , , ., , , . ... )L
taxlevel(TX_TL_ID,LEVELNAME):-
retrieve(db_taxlevel(TX_TL_ID,LEVELNAME,_, )L

The "db_taxonomy" and "db_taxlevel" tables are two tables of the taxonomy database
defined in section 2.

Appendix-3. Integrity Constraints

Let AB be { DB1, DBy, ..., DBn }, where DBi is one of the taxonomy databases of
the international DNA data banks. Let "lineage(a)" be the lineage, "name(a)" be the
name, "level(a)" be the level (or ranking), "parent_id(a)" be the parent identifier, and
"id(a)" be the identifier of the node, "a". If one of the databases is consistent with the
structural integrity constraints, it is called a self-consistent database. The cooperative
integrity constraint is applied only to the self-consistent database in order to check more
semantic errors. We can logically define the two kinds of integrity constraints as follows:

1. Structural Integrity Constraints

structural_inconsistent1 <-
name( node) = @,
node € DBi.
" structural_inconsistent2 <-
name( nodep) # @,
name( nodep) = name( nodeq),
nodep € DBi, nodeq € { DBi - nodep}.
structural_inconsistent3 <-
parent_id( nodep) # @,
parent_id( nodep) # id( nodeq),
nodep € DBi, nodeq € DBi.
structural_inconsistent4 <-
name( nodep) # "root",
parent_id( nodep) = @,
nodep € DBi.

2. Cooperative Integrity Constraints

cooperative_inconsistent <-
name( nodei) = name( node;j),
lineage( nodei) # lineage( node;j),
nodei € DBi, node;j € DBj,

DBi# DBj, DBi€AB, DBj€A4B.



