
IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 1

Analysis of Performance Degradation on Shared Cache in Multicore
Systems

YANG QIN1,a) SHINYA HONDA1
HIROAKI TAKADA1 GANG ZENG2

Abstract: Modern microprocessors usually employ shard cache to keep high-speed communication with programs. Since many
tasks in real-time embedded systems have implicit timing requirements, unpredictable execution time due to cache contention has
become a major challenge. With carefully engineered concurrent applications, up to 168X execution time increase was observed
on a real embedded multicore platform. Moreover, cache contention can cause different degrees of performance degradation
concerning the characteristics of concurrent applications and processing processors. In this paper, we focus on analyzing the main
factors contributing to varying performance degradations caused by the cache contention in multicore platforms. We evaluate eight
SPEC 2017 benchmarks and two separate regulations doing read and write operations in memory. Evaluation results show that the
application characteristics, CPU designs and implementation platforms cause significant effects on the variabilities in performance
degradation.

Keywords: Shared cache, Performance Degradation, Application characteristics, CPU designs, Implementation platforms

1. Introduction

Multicore processors are widely used in real-time embedded
systems to perform more tasks with better system performance.
In modern multicore processors, shared cache architecture has
become common since it brings more benefits than does dedicated
cache, such as increasing cache utilization, offering faster inter-
core communication, reducing cache coherency complexity and
false sharing penalty. However, since many tasks in real-time
embedded systems may have implicit performance requirements,
it also becomes a major concern to achieve predictable
performance in multicore systems because of the shared resources.
For example, the shared L2 cache technology allows all the cores
in the system to access the entire L2 freely, which in turn leads to
resource contention and decreases the application performance.
Non-blocking caches are often used as shared caches in multicore

processors to server concurrent memory requests. The problem is
when any of the internal buffers become full, the cache becomes
blocked and no further requests can be served any more until the
buffers are available again. If a program induces shared cache
blocking, it may cause significant performance impacts on the
tasks executing on other cores, as none of the cores can access the
cache when it is blocked. Therefore, it is to attribute the cache
contention in special hardware buffers in non-blocking caches. In
this work, we aim at exploring the performance impacts on non-
blocking shared caches in multicore platforms.
Many research effort has been focused on improving memory

performance in multicore platforms. For shared cache, cache
partitioning technology which divides the cache space among
applications based on their memory demands to provide capacity
benefits with performance isolation, has been extensively studied
[1]. However, Valsan et.al first experimentally showed that such
partitioning solution does not necessarily guarantee performance
isolation in modern processors that use non-blocking caches to
exploit Memory-Level-Parallelism (MLP) [2]. In recent research,

 1 Graduate School of Informatics, Nagoya University, Chikusa-ku, Nagoya 464-
8603, Japan

memory bandwidth as well as internal hardware structures of non-
blocking cache, e.g., Miss-Status-Holding-Registers (MSHRs) and
write buffers, have gained much attention to analyze and control
the timing impacts on a shared cache. For example, Yun et.al
suggested a memory bandwidth reservation system, which uses a
hardware performance counter to regulate the maximum memory
bandwidth, to support efficient memory performance isolation in
multicore platforms [3]. Valsan et.al identified that MSHRs in non-
blocking caches are a significant source of contention, and a
hardware and OS collaborative approach was suggested to help
eliminate the MSHR contention to improve the cache access [2].
Recently, Bechtel et.al identified cache MSHR and WriteBack
(WB) buffer as two important attack vectors in denial-of-service
(DoS), and an OS-level solution based on MemGuard was
suggested to mitigate shared cache DoS attackers [4].
In this work, we experimentally investigate the performance

effects of non-blocking caches in real multicore platforms.
According to the evaluation results of concurrent experiments, it is
found that read and write operations in memory cause different
performance degradation degrees as they may stress different
internal structures of cache. It is also observed that cache blocking
occurs not only in out-of-order processors but also in in-order
processors, and the former architecture causes server execution
time increases without a doubt. While it is surprisingly observed
that up to 168X increase of execution time occurs on an in-order
architecture based platform. Besides, we investigate
the performance degradation that the processes suffer due
to memory bandwidth constraints. Experiments show that
main memory bandwidth contention negatively impacts the
process performance; in two embedded platforms with the same
core type, performance degradation difference can grow up to a
hundred times for some of the applications. In summary, three
main factors that cause different performance degradations are
analyzed in real-world embedded platforms. The observations are
expected to be applied to the improvement of performance issues

 2 Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-
8603, Japan

Vol.2019-ARC-240 No.38
Vol.2019-SLDM-191 No.38

Vol.2019-EMB-53 No.38
2019/2/28

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 2

in both the industry and academia in the future.
The remainder of the paper is organized as follows. In section 2,

the basic background of a non-blocking cache is introduced. In
section 3, we present the relevant cache contention model,
motivational examples, and memory access code. In section 4,
evaluation experiments of different concurrent applications on
different embedded platforms are conducted. Finally, section 5
concludes the paper and addresses some possible future work.

2. Non-Blocking Cache

Non-blocking cache is one of the most effective techniques used
for tolerating cache-miss latency in modern processors. It was first
proposed by Kroft in [5], which allows execution to proceed
concurrently subsequent cache accesses after a cache miss occurs.
In this section, we present the fundamental background of a non-
blocking cache, together with the flowcharts of read and write
operations correspondingly.

2.1 Internal organization
The internal organization of a non-blocking cache is shown in
Fig.1. In order to allow non-blocking operations and multiple
misses, Miss-Status-Holding-Registers (MSHRs) are used to
record the miss related information, i.e., the address and cache line
of the data block, the word that caused the miss, and the function
unit or register to which the data is to be routed [6]. Usually, a non-
blocking cache is capable of serving multiple outstanding misses,
and the degree to which this can occur depends on the size of
MSHR structure. As long as the corresponding cache line is
fetched from next-level memory hierarchy, the MSHR entry will
be cleared; otherwise, it can continue serving further cache misses,
until the MSHR becomes full.

Another key hardware structure on a non-blocking cache is write
buffer. If the cache is write-back, a WriteBack (WB) buffer is
needed. In the write miss case, the request is sent to the main
memory and space is only allocated when this request is answered.
However, we do not want to send the data to the main memory only
for it to be returned. Therefore, the WriteBack buffer can be
temporarily used to hold data being written from the next memory
hierarchy level. The detailed information will be introduced in
section 2.2.

It is noteworthy to mention that when the MSHR or the write
buffer becomes full, i.e., all buffer entries are occupied, the cache
is blocked. In other words, the cache can no longer accept any other
memory requests until both of MSHR and WriteBack buffer are
available.

2.2 Memory operation
Generally speaking, memory operation can be simply classified

as read and write operations. When the processor needs to read or
write a location in main memory, it first checks for a corresponding
entry in the cache. In this section, we introduce basic steps taken
by a cache memory to resolve to a memory access.

Figure 1: Structure of a non-blocking shared cache (adopted from

Fig.1 in [4])

l Read operation
The flow chart of memory read operation is illustrated in Fig.2.
When the CPU has a read request for data, the tag array of the
cache will be accessed. If there is a cache read hit, the data will be
returned from cache directly. Since all the read operations are
finished in the cache, there is no need to access the main memory.
On the contrary, if there is a cache miss, which implies that the data
is not in the cache, the main memory has to be fetched to bring the
data. In this case, the CPU will first try to locate a free cache block
to use. Then the missed related information (introduced in section
2.1) will be recorded into the MSHR table. If there is no pending
request for that cache block, a fill request is generated (read
memory data to cache). When response of the fill request is
received at the cache, the cache line is inserted into the cache and
the corresponding MSHR entry is marked as filled. As presented
above, as long as all the requests waiting at the filled MSHR entry
have been responded to and serviced, the MSHR entry will be freed.
l Write operation

Assume that the cache uses write-back policy, in which the data
is written only to the block in the current cache, not to lower-level
caches. Dirty bit is commonly used to indicate whether the
contents of a particular cache block are different to what is stored
in the main memory. Any dirty cache lines are written back to the
system using writeback buffer.

If the CPU has a write request and there is a cache write hit, i.e.,
the address we want to write to is already loaded in cache, the data
will be written into cache directly. Since there is no update on the
main memory, the used cache block will be marked as dirty. On the
other hand, in case of a cache write miss, the missed information
will be recorded into MSHR. Meanwhile, it locates a cache block
to use. If the block is dirty, it will be updated and recorded into
writeback buffer. Note that the modified cache block is written to
the main memory only when it is replaced; otherwise, if the block
is clean, it updates the block in main memory and brings the block
to the cache. The flowchart of write operation is presented in Fig.3.

Vol.2019-ARC-240 No.38
Vol.2019-SLDM-191 No.38

Vol.2019-EMB-53 No.38
2019/2/28

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 3

Figure 2: Flowchart of read operation

Figure 3: Flowchart of write operation

3. Cache Contention on Multicore Platforms
In this section, we first introduce a general cache contention

model on a typical multicore platform. Then, a motivational
example of real benchmarks on a real platform is given to explain
cache contention. After that, the source code of memory-intensive
programs aiming at causing as much as cache contention is
introduced.

3.1 Cache contention model
A typical multicore architecture is composed of multiple

independent processing cores, multiple layers of caches, a shred
memory controller, and DRAM memories. In this section, we
introduce the contention model on a general multicore architecture,
as illustrated in Fig.4. We call the affected program a subject
program, and call the affecting program a concurrent program or a
co-runner. Assume that the subject and concurrent programs are
co-located on a multicore processor, in which the processing cores
have a split L1 cache (i.e., instruction cache and data cache) while
sharing an integrated L2 cache. In addition, we assume that there
is a core and memory isolation between the subject and concurrent
programs. To be more precise, the co-runners cannot be assigned
on the same core as the subject program, moreover, they cannot
access the memory of subject program directly. The main purpose
of the concurrent programs is to analyze the delay of the subject
program’s execution time, also called performance degradation in
this paper.

The performance degradation of the subject is defined as
follows: firstly, we run the subject program on core 0, and measure
its solo execution time, denoted as T_solo. Secondly, we locate the
number of co-runners on Cores 1-3 executing concurrently with
subject, and measure the response time of subject program again,
denoted as T_corun. Then, the performance degradation can be
computed as the ratio of co-run execution time to its solo execution
time, which is T_corun/T_solo.

Figure 4: Cache contention model on a multicore architecture

3.2 Motivational Example
In this section, we give a motivational example to explain the

performance impacts of cache contention. We start the analysis
from a set of real benchmarks SPEC 2017 [7] on a real board R-
Car H3 [8]. The experiment setup is the same as described above,

Vol.2019-ARC-240 No.38
Vol.2019-SLDM-191 No.38

Vol.2019-EMB-53 No.38
2019/2/28

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 4

where we first measure the solo execution time of a subject
program on one CPU core, and co-execute it with three concurrent
programs which are assigned on the other three CPU cores. In this
example, we set eight SPEC 2017 Integer benchmarks as subject
programs individually. The performance impact of each program
on Cortex-A57 and Cortex-A53 is drawn in Fig.5, respectively.
Evaluation results show that the performance degradation of each
program is large than 1, which reflects that the execution time is
indeed delayed because of cache contention. Also, it is noted that
when the subject program is set as 505.mcf_r, the performance
degradation becomes worse than other programs. This is because,
the application mcf in SPEC benchmark suits executes a significant
number of memory related operations and has larger working sets
[9]. Requiring more accesses to the memory hierarchy makes it
more vulnerable to performance degradation due to memory
contention.

(a) evaluation results of performance degradation on Cortex-

A57 cores

 (b) evaluation results of performance degradation on Cortex-

A53 cores

Figure 5: Performance degradation of SPEC 2017 Integer
benchmarks on R-Car H3 (+3 concurrent programs)

3.3 Subject and Concurrent Code
The motivational example described above not only proves that

the execution time is extended due to memory contention, but also
shows that the programs with more memory accesses are more
likely to suffer memory contention. As we focus on exploring
different levels of performance degradation in this work, a high
amount of memory requests are required to generate to observe the
severity of cache contention. Therefore, besides an evaluation of
SPEC benchmarks, we specially design two separate regulations

doing read and write operations in memory. Fig.6 shows the source
code of originally generated programs.

Assume that there is a multicore platform with 2GB-sized
shared cache. We intend to generate as many as cache accesses of
the co-runners, thus they can cause more delays of the subject
program’s execution time. We define an array set to a set of a
changing variable N. More precisely, when we prepare the
read.c/write.c as the concurrent program, we define N in Fig.6 as
4, which implies that the array size is four times the cache size, and
the cache miss is expected to be very high. While when we define
the read.c/write.c as the subject program, we set the array size as
1/4 of the cache size (i.e., N=1/4), so that it is expected to always
hit the shared L2 cache. In other words, we wish the cache
contention is caused by the co-execution with other programs, but
not caused by the subject itself. It is also noteworthy to mention
that when the processor needs to transfer data between cache and
memory, it always operates in a cache line unit. Since the cache
line size in our evaluated platform is 64 Bytes, the stride of array
operation is defined as 16 (=64 Bytes/sizeof(int)) to ensure more
cache misses occur. Finally, to measure the execution time of each
program, we simply set the iteration of array operation as 10000.

 (a) read.c source code

(b) write.c source code

Figure 6: Read and write operations in memory

Vol.2019-ARC-240 No.38
Vol.2019-SLDM-191 No.38

Vol.2019-EMB-53 No.38
2019/2/28

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 5

4. Experimental Evaluation
In this section, we present the embedded multicore platforms,

evaluation procedures, and experimental results of the
performance analysis. The purpose of this work is to explore the
main factors that contribute to different levels of performance
degradations caused by cache contention.

4.1 Embedded multicore platforms
We evaluate the performance impact on two embedded

multicore platforms: R-Car H3 and Raspberry Pi 3 Model B+ [8,
10]. The former R-Car H3 is designed based on ARM big.LITTLE
architecture [11]. It employs four Cortex-A57 cores as the high-
performance core, which are performing out-of-order execution,
and chooses four Cortex-A53 cores as the energy-efficient core,
which are performing in-order execution. While the Raspberry Pi
3 Model B+ equips a quad-core processor, i.e., an ARM Cortex-
A53 Quad Core Processor. Note that every core of the two
platforms has its own independent L1 cache, while the identical
cores are arranged into an integrated cluster and share a common
L2 cache. Besides, R-Car H3 has a 4GB LPDDR4 SDRAM, with
a 12.8GB/s data transfer, while Raspberry equips a 1GB LPDDR2,
offering 8.5GB/s speed. The platform specifications can be seen in
Table 1. Since the performance is highly dependent on the
operational frequency, to make a fair comparison, in this work, we
assume all the processing cores are operating at the maximum
frequency.

Table 1: Compared embedded platforms and core types
Platform R-Car H3 Raspberry Pi 3

Model B+
CPU 4 Cortex-A57

(out-of-order)
4 Cortex-A53

(in-order)
4 Cortex-A53

(in-order)
L1 Cache I: 48KB

D: 32KB
I: 32KB
D: 32KB

I: 32KB
D: 32KB

L2 Cache 2MB 512KB 512KB
Memory 4GB LPDDR4 1GB LPDDR2

Bandwidth 12.8 GB/s 8.5 GB/s

4.2 Evaluation results
To demonstrate the affecting factors on performance

degradation, we generate two separate programs doing read and
write operations in memory as described in section 3.3. In this
section, we conduct evaluation experiments of two assessment
programs on two types of cores: Cortex-A57 and Cortex-A53.
Below, the details of the procedures and results are introduced.
l Impact of program characteristics

In the first experiment, we investigate the impact of program
characteristics on performance degradation. As illustrated in Fig.7,
both 505.mcf and read.c (N=1/4) are defined as subject programs
executing on Core 0. We co-execute the subject program with read
co-runners and write co-runners (N=4, executing on Cores 1-3),
respectively. Results show that both the read and write co-runners
cause execution time delay of subject programs, more than 14X
delay as can be seen in Fig.7. Besides, it is also found that the
degree of execution time delay has a dramatic effect on the

memory operations of concurrent applications. Concretely,
compared with read co-runners, write co-runners always cause
server performance degradations. This is because, the generated
read co-runners keep generating read transactions in memory, and
they may always miss the cache since the array size is 4 times as
the cache size. The missed loads then stress the MSHRs in the non-
blocking cache and cause performance degradation. On the other
hand, the write co-runners perform write operations in memory.
Although they cause cache misses as the same as read co-runners,
the write miss may trigger dirty conditions of cache lines
(inconsistent cache and memory data). The dirty cache lines are
required to be saved in WriteBack buffer. Summarily, in addition
to stressing MSHRs as read co-runners do, the write co-runners
also stress WriteBack buffer due to the existence of dirty cache
blocks. Thus more timing impacts occur in the case of write co-
execution.

(a) performance impact on 505.mcf

(b) performance impact on read.c

Figure 7: Comparison of read/write co-runners on R-Car H3 (e.g.,

on Cortex-A57)

l Impact of CPU designs
In this experiment, we evaluate the performance impacts of non-

blocking caches on CPU designs. Without loss of generality, the
processor can be classified as in-order and out-of-order. Therefore,
we conduct the experiments on two CPU-designed ARM
processors: out-of-order Cortex-A57 processors and in-order
Cortex-A53 processors. We take read program (N=1/4) as the
subject, and co-execute it with three read co-runners and write co-
runners separately. The results in Fig.8 show that the out-of-order
designed CPUs suffer server performance impacts than in-order
designed CPUs. We consider the reasons as follows: each core in
out-of-order processors can generate multiple outstanding memory

Vol.2019-ARC-240 No.38
Vol.2019-SLDM-191 No.38

Vol.2019-EMB-53 No.38
2019/2/28

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 6

requests at a time, while each core in in-order processors can only
generate one. In other words, out-of-order cores can generate more
concurrent cache access than in-order processors. The higher
degree of parallelism supported by out-of-order execution is more
likely to cause MSHR contention and thus degrade the
performance. It is noteworthy that the same results can be observed
by evaluating SPEC programs. Considering the limited space of
paper, the experiment results are not showed here.

(a) co-execute with read co-runners

(b) co-execute with write co-runners

Figure 8: Comparison of CPU designs on R-Car H3

l Impact of implementation platforms

Memory bandwidth is also an important aspect for performance
analysis, as it affects how quickly the OS can get data into and out
of memory for processing. In this experiment, we evaluate the
effect of memory bandwidth on performance degradation.
Instead of comparing two types of CPUs in the last experiment, we
repeat the experiments in the type of core, but different
implementation platforms.

We first co-execute the subject program (read.c, N=1/4) with
read and write co-runners (N=4) on two recent embedded
platforms, R-Car H3 and Raspberry Pi 3 Model B+, both of which
are equipped with four in-order Cortex-A53 cores. Experiment
results show that when the subject program is co-executed with
read co-runners, the execution time increase induced by cache
contention is close, ranging from 1.04X to 1.68X, as shown in
Fig.9(a). However, when it is co-executed with write co-runners,
execution time increase occurred on Raspberry is much worse than

that of R-Car H3. A gap of more than one hundred times was
observed to be more precise. As illustrated in Table 1, both R-Car
H3 and Raspberry Pi 3 Model B+ has four Cortex-A53 cores with
the same sized cache, while R-Car H3 has a larger memory size
and bandwidth. Thus, the performance degradation degree in R-
Car H3 is expected to be smaller than that in Raspberry. The
interesting observation is that the extreme difference is only
observed on write co-execution experiments, as can be seen in
Fig.9(b), while the results in Fig.9(a) were not the case. Therefore,
we suspect that because write operation causes more cache misses
than read (illustrated in previous experiments), they are more
susceptible to memory bandwidth.

(a) co-execute with read co-runners

 (b) co-execute with write co-runners

Figure 9: Comparison of implementation platforms (e.g., on

Cortex-A53)

5. Conclusion
In this paper, we made an analysis of performance degradation

on a shared cache in multiprocessor systems. We evaluated SPEC
2017 benchmarks and two separate read and write memory-
intensive programs, and found that the degrees to performance
degradation are closely related to program characteristics. In
particular, write concurrent applications cause higher memory
contention and thus contributes to server performance degradation
than read concurrent applications. Besides, we performed
experiments on two recent ARM processors: in-order Cortex-A53
and out-of-order Cortex-A57. Evaluation results showed that

Vol.2019-ARC-240 No.38
Vol.2019-SLDM-191 No.38

Vol.2019-EMB-53 No.38
2019/2/28

IPSJ SIG Technical Report

ⓒ2020 Information Processing Society of Japan 7

compared with in-order processors, out-of-order processors are
more likely to suffer MSHR related cache blocking thus cause
more serious performance degradations. Finally, we evaluated the
experiments on the same processing CPU, but different
implementation platforms. It was observed that even for the same
processors, memory bandwidth leads to significant effects on the
variabilities in performance degradation. Besides the
observations presented in this paper, we also found that the cache
prefetching technique affects the program performance and cache
miss significantly. For future work, we plan to investigate the
configuration and mechanism of hardware prefetchers in the
performance issue.

Reference
[1] Mittal, S. (2017). A survey of techniques for cache partitioning in

multicore processors. ACM Computing Surveys (CSUR), 50(2), 1-39.
[2] Valsan, P. K., Yun, H., & Farshchi, F. (2016, April). Taming non-

blocking caches to improve isolation in multicore real-time systems.
In 2016 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS) (pp. 1-12). IEEE.

[3] Yun, H., Yao, G., Pellizzoni, R., Caccamo, M., & Sha, L. (2013, April).
Memguard: Memory bandwidth reservation system for efficient
performance isolation in multi-core platforms. In 2013 IEEE 19th
Real-Time and Embedded Technology and Applications Symposium
(RTAS) (pp. 55-64). IEEE.

[4] Bechtel, M., & Yun, H. (2019, April). Denial-of-service attacks on
shared cache in multicore: Analysis and prevention. In 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS) (pp. 357-367). IEEE.

[5] Kroft, D. (1998, August). Lockup-free instruction fetch/prefetch
cache organization. In 25 years of the international symposia on
Computer architecture (selected papers) (pp. 195-201).

[6] Chen, T. F., & Baer, J. L. (1992). Reducing memory latency via non-
blocking and prefetching caches. ACM SIGPLAN Notices, 27(9), 51-
61.

[7] “SPEC CPU® 2017.” https://www.spec.org/cpu2017.
[8] “R-Car H3.”

https://www.renesas.com/kr/en/solutions/automotive/soc/r-car-
h3.html.

[9] Singh, S., & Awasthi, M. (2019, April). Memory Centric
Characterization and Analysis of SPEC CPU2017 Suite.
In Proceedings of the 2019 ACM/SPEC International Conference on
Performance Engineering (pp. 285-292). ACM.

[10] “Raspberry Pi 3 Model B+.”
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.

[11] Jeff, B. (2012). Advances in big. little technology for power and
energy savings. ARM White paper, 33.

 Acknowledgments The author Yang Qin thanks for the
financial support from China Scholarship Council (CSC,
201606090182).

Vol.2019-ARC-240 No.38
Vol.2019-SLDM-191 No.38

Vol.2019-EMB-53 No.38
2019/2/28

