Electronic Preprint for Journal of Information Processing Vol.28

Regular Paper

mROS: A Lightweight Runtime Environment of
ROS 1 nodes for Embedded Devices

1,2,a) 1 1,71 1

Hipekt TAKASE Tomovya Mor1® KazuyosHr TAKAGI Naorumi TAKAGI

Received: May 22, 2019, Accepted: November 7, 2019

Abstract: The Robot Operating System (ROS) has attracted attention as a design platform for robot software devel-
opment. One of the problems of ROS is that it is necessary to employ high-performance and power-hunger devices
since ROS requires a Linux environment for operation. This paper proposes a novel solution called mROS, which
is a lightweight runtime environment of ROS nodes, to execute robot software components on mid-range embedded
devices. mROS consists of a real-time operating system (RTOS) and a TCP/IP protocol stack to provide a tiny ROS
communication library. It provides connectivity from the edge node to the host and other nodes through the native ROS
protocol. Additionally, we design mROS APIs that are compatible with ROS 1. Therefore, native ROS nodes can be
ported from Linux-based systems to RTOS-based systems as mROS nodes. Experimental results confirmed that mROS
meets the performance requirement for practical applications. Moreover, we showed the size of the library constituting
mROS is small for target embedded devices. We further conducted a case study to validate the portability of mROS
from ROS nodes. Our work is expected to contribute to the power saving and real-time performance enhancement of

mobile robot systems.

Keywords: robot operating systems, real-time operating systems, distributed systems, TCP/IP protocol

1. Introduction

In the sophisticated information society era, demand for mobile
robot systems has been increasing to support social life in various
situations, such as care support, disaster relief. Unlike the indus-
trial robots that have been developed so far, these robots must
operate using energy from an internal battery, rather than an ex-
ternal power supply. The robot system should provide advanced
and multi-functional services with limited power supply. In order
to improve the quality of service provided by such mobile robots,
it is necessary to achieve multiple functions with limited power
consumption.

Recently, the Robot Operating System (ROS) [19] has attracted
attention as a design platform to accelerate the productivity of
robot software. ROS aims to realize the component-based devel-
opment of robot systems. A software component is expressed as
anode, and a robot system is realized by combining a plurality of
nodes. ROS also serves as middleware, providing a communica-
tion layer between nodes. The communication is based on a pub-
lish/subscribe messaging model that identifies data to be transmit-
ted and received via topics. One of the major reasons to employ
ROS is that about 3,000 open source packages are available. De-
velopers can use them to achieve the desired robot systems.

Since the implementation of ROS that is widely used at present

I Graduate School of Informatics, Kyoto University, Kyoto 606-8501,
Japan

PRESTO Program, Japan Science and Technology Agency, Kawaguchi,
Saitama 332-0012, Japan

Presently with Graduate School of Engineering, Mie University

¥ takase @i.kyoto-u.ac.jp

© 2020 Information Processing Society of Japan

assumes operation in a Linux/Ubuntu environment *!, it is nec-
essary to adopt a high-performance and power-hunger device.
Therefore, it is difficult to achieve power saving in a robot sys-
tem using this ROS. Furthermore, it is also difficult to enhance
the real-time performance of robot systems. Here, real-time per-
formance means that respective tasks can be completed within a
certain time. Although some existing methods [1], [2], [3], [4],
[71, [81, [12], [13], [15], [16], [17], [20], [21], [22] offer the adop-
tion of embedded systems for ROS, it is not possible to use them
to port open source ROS packages directly on the embedded de-
vices.

In this paper, we propose a lightweight runtime environment
of ROS nodes called mROS *?, which is designed to be operated
on an embedded device having a mid-range micro-processor. Be-
cause the power consumption of such embedded devices is low,
their usage can reduce power consumption in the robot systems.

mROS provides a communication library to the host device,
which is operated on native ROS/Linux. In order to allow the
program executed on the embedded device to behave as an ROS
node, we support two communication protocols that are compli-
ant with the ROS to transfer data with the host system. We de-
sign APIs of the mROS communication library to be the same
as those used in the native ROS program. mROS consists of a
real-time operating systems (RTOS) and an embedded TCP/IP
protocol stack. Currently, we are implementing mROS for GR-
PEACH [5] using TOPPERS/ASP kernel [18] and IwIP protocol
stack [10].

#1

#2

In this paper, we discuss ROS 1 unless otherwise noted.
The name of mROS is responsive to mruby, that is the implementation
of Ruby for embedded systems.

Electronic Preprint for Journal of Information Processing Vol.28

The contributions of our work are summarized as follows;

e Providing such a lightweight runtime environment can
makes it easier to employ embedded devices in robot sys-
tems that utilize ROS.

e Given that it is possible to design applications with a native
ROS manners, the learning cost required for the transition of
design development can be reduced. This also leads to im-
prove the design productivity when utilizing existing pack-
ages for adopting mROS.

e We can utilize them for designing a system that guarantees
real-time performance, because it is also possible to use the
API provided by the mbed library and the TOPPERS/ASP
kernel. real-time performance can be ensured easily. In ad-
dition, Our work might contribute to facilitate the use of low-
power embedded devices that could not previously be incor-
porated into ROS systems.

The reminder of this paper is organized as follows. Section 2
introduces ROS as the preliminary of this work. Section 3 de-
scribes our proposal in detail. Section 4 shows the evaluation
results of mROS. Section 5 demonstrates the case study with
mROS for the distributed robot system. Section 6 introduces re-
lated works. Finally, Section 7 concludes this paper and identifies
directions of future works.

2. Robot Operating System (ROS)

ROS [19] is a development platform for robot systems started
by Willow Garage and Stanford University in 2009. Currently,
Open Robotics holds the lead in development for the open source
community. ROS has been developed for enhancing the produc-
tivity and reusability of robot systems. Thus far, about 3,000 open
source packages that comply with ROS are published and avail-
able.

In ROS, a program is expressed as a node, and a robot system is
realized by combining nodes to realize the component-based de-
velopment process. The communication layer of ROS is provided
as middleware of Linux/Ubuntu. Therefore, it is possible to sep-
arate an application node that executes a complicated algorithm
from a device driver node that controls hardware. Robot hard-
ware often varies depending on the purpose of use and developer
preference. Even when using different hardware, it is possible to
communicate via the ROS communication layer by providing a
node that serves a corresponding device driver. In addition, by
dividing and realizing functions by nodes, debugging and testing
of the program for each node becomes easy.

2.1 Communication Model

There are two models for communication between nodes pro-
vided on ROS. One is the publish/subscribe messaging model,
which is mainly addressed in this work. It classifies data types
according to topic and transfers data between the publisher node
and the subscriber node. The other is the server/client messag-
ing model, which makes requests for data and responds to such
requests.

Figure 1 shows the publish/subscribe messaging model with
ROS nodes and topics. Note that words publish and subscribe
are often abbreviated as pub and sub, respectively. Each sub-

© 2020 Information Processing Society of Japan

subscribe_s{ node

topic:A
publish oP!

node sub

PUb N topic:B — node

Fig. 1 Publish/Subscribe messaging model in ROS.

master sub pub

O

1
@

@ |

=>:XML-RP(|
-»:TCPROS

B

.
N N 4

Fig. 2 Publish/Subscribe communication flow in ROS.

scriber node obtains data from publisher nodes. It is possible to
retrieve data by designating the topic name for performing point-
to-multipoint communication. By matching the name of topic
to be published by nodes corresponding to I/O devices of differ-
ent hardware, nodes can be used without modification to different
robot hardware. In addition, the component set that is pair of
node and hardware can easily be changed to the other if the name
of topic is changed. When executing the robot software, the mas-
ter node called roscore manages the namespace of each node
for the communication of nodes in the robot systems.

2.2 Communication Flow

There are two protocols to realize ROS communication.
XML-RPC encodes communication data in the XML format and
transports the encoded data via HTTP as a procedure call [14].
ROS uses its protocol for procedure calls between the ROS mas-
ter and nodes. TCPROS is an ROS-specific protocol for ROS data
communication through TCP/IP communication. In the TCPROS
protocol, a unique field is defined corresponding to the setting of
the node in order to identify the data content. The data corre-
sponding to each field is given a bit string of 4 B length as one
message. When a publish/subscribe connection is established,
data transfer can be performed continuously after the connection
header of a node is transmitted.

Figure 2 shows the communication flow of the publish/
subscribe messaging model for ROS communication.
(1) The subscribe node registers its node name and topic name.
(2) The ROS Master tells XML-RPC port number of publisher

node.

(3) The subscribe node sends subscribe request.
(4) The publish node tells TCPROS port number.

Electronic Preprint for Journal of Information Processing

Table 1 Measured intra-device communication between ROS nodes [us].

Method Average Worst

TCP 4661.59 9785.13

TCP + shared_ptr 2090.04 4421.55
Nodelet 1006.20 6088.76
Nodelet + shared_ptr 50.35 507.54

(5) TCPROS port is connected by sending TCPROS header.
(6) The publish node sends TCPROS header.
(7) Then, the publish node sends data to the topic.

2.3 Intra-Device Communication Method

In ROS, the inter-node communication of ROS is performed
using the TCP/IP protocol. Therefore, the communication over-
head increases when data communication is performed on the
same device via the TCP socket. To address this issue, a func-
tion called Nodelet[9] is provided. It uses shared memory for
intra-device data communication between nodes. Therefore, it
is possible to realize efficient communication only by memory
copying without performing serialization/deserialization process.

We measured the performance of intra-device communica-
tion for TCP socket and Nodelet by using the package pub-
lished in Ref.[21]. As the measurement environment, we
used NEC’s LAVIE Hybryd ZERO which has Intel Core-i7
2.4GHz and 16 GB memory, Ubuntu 14.04 LTS for the host
OS and indigo for the ROS distribution. In ROS, smart pointer
(boost: :shared_ptr) can be used to provide data sharing func-
tions within the node. Table 1 shows the average communica-
tion time and the worst case communication time in microsec-
onds when 1,000 times of publish/subscribe communication was
performed for 3MB of data. Compared with communication
using ordinary TCP socket, Nodelet can achieve about 4 times
faster node-to-node communication. Also, when combined with
a method of passing data by reference, it is possible to achieve
800 times faster. Nodelet is therefore highly effective to speed up
node communication in the device.

2.4 Provided APIs
ROS provides APIs to describe the application as a ROS client
library. Developers can construct ROS nodes by defining behav-
ior of nodes using provided APIs. APIs for C++ are as follows.
init(node name) Itis the initialization function, that takes the
name of the node and the command line argument as argu-
ments.

NodeHandle It creates a handler to the node. The node is ini-
tialized when the first handler is created and the resources
used by the node are released when the last handler is de-
stroyed.

NodeHandle: :advertise<topic_type>(topic_name)

It creates the publisher node and registers it to the ROS
master. It takes the topic name to be published, the data
type of the topic and the buffer size as arguments. It returns
ros: :Publisher object as the return value.

Publisher: :publish(message data) The node that has
been registered by advertise() publishes topic data us-
ing its method of the ros: :Publisher object. It takes the
message data as an argument.

© 2020 Information Processing Society of Japan

Vol.28

NodeHandle: :subscribe(topic_name, Call_back)
It create the subscriber node and registers it in the ROS mas-
ter. It takes the topic name to subscribe, buffer size and call-
back function as arguments. In the argument of the regis-
tered callback function, it is necessary to take a pointer indi-
cating the destination where the topic is held.

3. mROS

This section describes details of mROS which enables oper-
ating ROS nodes on embedded devices in a lightweight runtime
environment. The first subsection describes requirements and the
development goals of our work. The second subsection describes
the software structure of mROS. Then, we propose the communi-
cation method provided by the mROS communication library. Fi-
nally, we introduce the programming model supported by mROS.

3.1 Requirements and Goals

In this research, we target a distributed robot system that con-
sists of the host device, on which a native ROS is operated in
Linux, and edge devices on embedded devices. The ROS master
is operated on the host device. ROS nodes are executed on both
the host and edge devices. They communicate with each other
for data transfer via topics. We design mROS for the purpose of
power saving and ensuring real-time performance. In addition, by
providing an application to be executed by mROS with the ROS
programming model, we aim to enable the execution of the ROS
open source package as it is.

We target mid-range class embedded devices for achieving
low-power computing. This means that RTOS and TCP/IP proto-
col stack can be operated on these devices; however, Linux can-
not be used since they do not have high-performance control units
such as the MMU (Memory Management Unit).

A program executed on the embedded device behaves as an
ROS node. To execute programs of ROS nodes onto embedded
devices, it is necessary to provide a communication library for
embedded devices that supports ROS communication. For native
ROS in a general-purpose device, data communication between
nodes is performed via a communication layer using the TCP/IP
protocol stack provided by Linux. Therefore, in embedded de-
vices equipped with mROS, it is necessary to employ a TCP/IP
protocol stack that can operate without Linux for communicating
with ROS. In addition, it is necessary to manage the communi-
cation process as well as the program resources on the embedded
device. We realize these functions by employing RTOS. The
functions of RTOS makes it possible to ensure the real-time per-
formance for ROS nodes executed on mROS.

We are planning to utilize embedded devices in the distributed
robot system, which consists of a host device with Linux and em-
bedded devices with mROS running ROS nodes as edge termi-
nals. In distributed robot systems, applications to be executed as
edge computing devices are assumed to target processing based
on inputs of sensors or cameras, and controlling actuators. As-
suming that the data to be published is an image file from the cam-
era in the QVGA format, we set the goal of publishing approxi-
mately 512 KB of data at 100 ms intervals. In contrast, assuming
that the data to be subscribed is mainly the control instruction data

Electronic Preprint for Journal of Information Processing Vol.28

set, the size of subscription data is set to be a maximum of 1 KB.
To guarantee the subscription of important data such as control
commands at high speed, we set the goal of subscribing less than
1 KB in 1 ms. In addition, because it is desirable that the environ-
ment of mROS be as lightweight as possible, we aim to realize
mROS in an environment with a memory of 10 MB at most.

3.2 Software Structure

Figure 3 shows software structure of mROS. We employ
RTOS and TCP/IP protocol stack in the mROS environment for
providing the mROS communication library.

As RTOS is responsible for scheduling communication pro-
cesses and managing program resources, we adopt TOP-
PERS/ASP kernel [18], which is published by TOPPERS project
in Japan and complied to the uITRON specification. TOP-
PERS/ASP kernel provides several resources such as tasks,
semaphores and data queue. The reason why we employ TOP-
PERS kernel is that it is suitable for embedded systems, because
TOPPERS/ASP kernel statically generates these resources. In ad-
dition, one of the main advantages for TOPPERS kernel com-
pared to other kernels is its higher quality of source code and the
expandability of applied area. TOPPERS project has published
various kernels, such as a multi-core version, an automotive ver-
sion, and an enhanced version for memory protection.

As the TCP/IP protocol stack, we adopt IwIP [10], which is in-
cluded in the Arm mbed library. Because IwIP is a lightweight
stack that is designed for embedded devices and is widely used
as open source, we think that it is suitable for mROS. The mbed
library includes unified device drivers of various devices and pe-
ripherals for Arm processors. In addition, because various li-
braries are published as open source, program implementation
can be expected to be easy.

As shown in Fig.3, our mROS communication library is lo-
cated above RTOS and TCP/IP protocol stack layers. This means
that our library does not depend on the hardware platform. In
other words, mROS can be ported on embedded devices where
TOPPERS kernel and IwIP are operated.

3.3 Communication Library

Our mROS library offers the communication function to ROS
nodes on the host devices. mROS enables programs on the edge
device to behave as an ROS node by using the functionality of the
mROS communication library.

mROS supports the publish/subscribe messaging model of
ROS. To realize the communication flow, as shown in Fig. 2, we
implement following functions in the mROS communication li-
brary.

e data publication

e data subscription

e procedure call between the ROS master and other nodes

e acceptance of procedure call from nodes to the master

mROS receives and responds as the slave in XML-RPC com-
munication, and it creates data in the XML format for transporta-
tion via HTTP as the master. When a connection between nodes is
established, the TCPROS function in mROS generates a connec-
tion header in the TCPROS format and transports it to the publish

© 2020 Information Processing Society of Japan

IWIP (TCP/IP stack)
device drivers

XML-RPC for ROS
TCPROS
HTTP method

mROS
communication library

RTOS
(task scheduling &
resource management)

TOPPERS/ASP kernel

Fig. 3 Software structure of mROS.

— :inter-task communication
= =» :TCP/IP communication

user task 1 user task 2
(sub node) (pub node)
<

SUB TASK PUB TASK XML MAS XML_SLV

TASK TASK

ROS ROS ROS master
pub node sub node

host device

embedded device
| mROS comm. lib

Fig. 4 Task structure in communication library.

node. Subsequently, topic data are encoded and transported to
subscribe nodes, and the data received from the publish node is
decoded. In ROS, data communication is performed using either
TCP or UDP, but mROS currently supports only TCP.

3.3.1 Task Structure

In TOPPERS/ASP kernel, application resources are managed
as task units. Therefore, the functions provided in the mROS
communication library are constructed by multiple tasks. The
mROS communication library consists of four tasks: SUB, PUB,
XML_MAS and XML_SLV TASKs. SUB TASK performs the data sub-
scription from publish nodes, such as a node on the host device.
PUB TASK publishes data to the subscription tasks on the host
device. XML_MAS and XML_SLV TASKs attain the behavior that is
compliant with XML-RPC protocol. These tasks are automatically
provided as system tasks according to the user task description
by including the mros. cfg file, which is the TOPPERS configu-
ration file of the mROS communication library. Figure 4 shows
the structure and the data flow among system tasks, user tasks,
and external ROS nodes. In a user task, designers can describe
a program using native ROS APIs. It is possible to execute mul-
tiple nodes on the same device by implementing multiple user
tasks. So, user task 1 and 2 are designed as TOPPERS tasks,
but are also executed as ROS nodes, such as sub and pub nodes
in Fig.4. In the mROS communication library, ROS-compliant
APIs are realized by calling each task. ROS APIs can be exe-
cuted on the embedded device without any modification.

In the mROS communication library, the data queue and shared
memory specified by uITRON are utilized for communication be-
tween tasks. The size of a data queue in mROS is set to 32 bits,
and we call it a message ID. The message ID is composed of an

Electronic Preprint for Journal of Information Processing Vol.28

8-bit node ID and 24-bit data length. The node ID is a key value
for referring to the node information. The data length indicates
the data size stored in the shared memory. Because the message
ID has a data length of 24 bits, the maximum data size for com-
muication is 16 MB. Considering the requirement of the edge ter-
minal in the system configuration, we assume that the maximum
data size to be published is approximately 512 KB (image data
in the QVGA format) and to be subscribed is 1 KB (e.g., control
command).

The node information is expressed as a node structure. The in-
formation of the nodes about each topic is stored as a node list
in vector form. The node list is managed as global variables that
can be referenced from all system tasks. Information on each
node includes the node type (subscriber or publisher), node name,
topic name to be handled, node ID, TCP socket, node URI, IP
address of the correspondent node, port number, field informa-
tion required for TCPROS, and a pointer to the callback func-
tion. In mROS, a node object is generated in each case when a
node becomes a publisher or a subscriber for a plurality of top-
ics. Data communication between tasks is performed by storing
the data body encoded in XML in the shared memory, notifying
other tasks of the message ID in the data queue, and extraction of
the data from the shared memory by the receiving task. At this
time, the shared memory area is statically allocated according to
the inter-task communication.

3.3.2 Communication Method to External Nodes

mROS allows describing the user task by using ROS APIs.
Functions corresponding to each ROS API are provided by
the mROS communication library. Implementations of ROS-
compliant APIs in the mROS communication library are as fol-
lows.

advertise() registers a node on mROS as a publisher to the
ROS. Figure 5 shows the execution flow of advertise() *3,
(1) user task notifies XML _MAS TASK of the initialization re-

quest of the topic name for subscription to via the data queue.
XML_MAS TASK assigns the node ID to user task and reg-
isters it in the node list of mROS.

(2) XML_MAS TASK generates the XML header and sends it to
ROS master.

(3) ROS master replies with the result of registration through
the XML-RPC communication.

(4) XML_MAS TASK notifies PUB TASK of the message ID for ini-
tialization via the data queue. PUB TASK performs the cor-
responding initialization process and generates the object of
the TCP socket for data publication. When the initialization
of the publisher task is completed, XML_SLV TASK starts the
acceptance of the connection request from the external sub
node.

(5) When a topic request from sub node occurs, XML_SLV
TASK, which is periodically executed, returns the port num-
ber of PUB TASK as the response.

(6) XML_SLV TASK sends the arrival request to PUB TASK.

(7) PUB TASK accepts the TCPROS connection and exchanges
TCPROS connection headers to establish the connection for

*3 Note that series of vertically long rectangles and one of horizontally long

rectangles in Figs. 5, 6, 7, 8 mean the data queue and shared memory.

© 2020 Information Processing Society of Japan

P embedded device
User tas 0 2)

) 2) |
:]]Im:—’ AML_MAS { ROS master
—— . TASK %
(6) (4)
> PUB
su:gide el ™ Xh?—;giw .’m’\ TASK <— [T, - XML-RPC
; : —>:TCPROS
\/(7) \‘—/ data queue

— :inter-task comm.

Fig. 5 Execution flow of advertise().

user task @) embedded device

: PUB (4) , Ros
publish() L Tasc '@

-E ==»:XML-RPC
(1) @) —»:TCPROS
shared mem. —> :inter-task comm.

Fig. 6 Execution flow of publish().

@) >
®3)

embedded device (

¥ @) 7
@, (XMLMASSR g Task " Ros
:I]]]I:—b < TASK. N s pub node

subscribe()
~t— —
—. M) - XML-RPC
—» :TCPROS

(10) g‘ (©)

Fig.7 Execution flow of subscribe().

—> :inter-task comm.

the TCP socket of data subscription.
publish() is the member function of Publisher structure
that is registered by advertise(). It takes the publication data
as the argument. Figure 6 shows the flow of publish().

(1) user task writes the publication data in the shared mem-
ory of publish().

(2) The message ID is generated from the node ID and length of
the publication data and sent to PUB TASK.

(3) PUB TASK receives the message ID via the data queue and
encodes it with the TCPROS protocol.

(4) PUB TASK searches for the corresponding TCP socket from
the node list according to the node ID and publishes the data
in the external sub node.

subscribe() takes the topic name to be subscribed and call-
back function as arguments. Figure 7 shows the execution flow
of subscribe().

(1) user task notifies the initialization request to XML_MAS
TASK in subscribe().

(2) XML_MAS TASK generates the XML header and sends it to
ROS master through the XML-RPC protocol.

(3) ROS master replies with the result of registration and sends
the URI of the external pub node.

(4) XML_MAS TASK notifies SUB TASK of the initialization of
user task.

(5) SUB TASK sends the request for subscribing the topic to
XML_MAS TASK after the initialization has completed.

(6) XML_MAS TASK notifies SUB TASK about the port number of
the external pub node, which is obtained from the subscrip-
tion request.

(7) The TCPROS connection header is generated for the sub-
scription request and exchanged between SUB TASK and pub
node to establish the connection of socket.

SUB TASK is periodically operated to subscribe to the topic.

Electronic Preprint for Journal of Information Processing Vol.28

--»:XML-RPC)
_. A ROS master
— :intra-device comm. P L

(1) /XML_MAS (4) SUB

IJ]IDI-V TASK = m-b TASK
(6) I (8)

(5) = ()

Fig. 8 Flow of intra-device communication.

The following are executed when topic data have arrived:

(8) The callback is activated in the context of SUB TASK.

(9) SUB TASK writes the return value of the callback function in
the shared memory.

(10) user task obtains the return value of the callback func-
tion from the shared memory.

3.3.3 Communication Method of Intra-Device Nodes

In mid-range embedded devices targeted by mROS, the perfor-
mance and memory resources of the microprocessor are consid-
ered sufficient to execute multiple nodes. For example, in ad-
dition to a node from which to detect data from the sensor, a
node that publishes to the host device after processing its data
can be implemented on the same embedded device. In such a
case, rather than publishing the sensor value as it is in the host
device, the amount of communication may be reduced by data
processing. Therefore, we think that it is worthwhile to provide
an intra-device communication method for improving communi-
cation within a device in mROS. In fact, we suggest that expedit-
ing the node communication in the device is highly effective.

We further design an intra-device communication method for
ROS nodes. We employ the shared memory for data communi-
cation between nodes. Whether data publication is performed in
the subscriber node in the device or not is designed to be judged
in the context of the user task.

Figure 8 shows the execution flow of the intra-device commu-
nication method. In this figure, user task 1 is executed as the
subscribe node, and user task 2 is the publish node.

(1) When user task 1 executes subscribe(), XML_MAS
TASK is notified of the initialization request of its task.

(2) XML_MAS TASK generates the XML header and sends it to
ROS master.

(3) ROS master replies with the result of registration via XML-
RPC communication, and sends the URI of the publish node.
In XML MAS TASK, the IP address and port number of the
publish node are expressed from the received URI.

(4) XML_MAS TASK notifies SUB TASK of the initialization of the
subscribe node. SUB TASK judges whether the publish node
is on the same device by comparing its IP address with the
notified IP address. If the publish node is on the same device,
SUB TASK appends the node information to the node list of
mROS. Note that the request for the topic subscription is not
performed.

(5) When user task 2 publishes data by publish(), PUB
TASK writes corresponding data in the shared memory.

(6) In the process of publish(), PUB TASK judges whether its

© 2020 Information Processing Society of Japan

B

#include ”../mros—1lib/ros.h”
#include “user.h”
void user_function (int argc, charss argv){
ros::init(argc, argv, “mros_node”);
ros :: NodeHandle n;
ros :: Publisher chatter_pub =
n.advertise (”mros_-msg”, 1);
string msg;
while (1) {
chatter_pub.publish(msg.c_str ());
}
}

Fig. 9 Example of user. cpp.

INCLUDE (”../ mros—1ib /mros.cfg 7);

#include ”../mros—1lib/mros.h”

#include “user.h”

CRE_TSK (USER_TASK, {TANULL, O, user_function ,
MROS_USR_TASK_PRI, MROS_PUB_STACK_SIZE, NULL });

Fig. 10 Example of user.cfg.

address is in the device from the node list. If the publica-
tion address is in the device, mROS generates the message
ID and sends the data queue of SUB TASK.

(7) When SUB TASK receives the arrival of the topic, SUB TASK
reads the data from the shared memory.

(8) The callback function is activated in the SUB TASK.

If there is an external subscribe node on the same topic, mROS
also generates the message ID for the publish task and notifies the
publication to the external device of the publication. These pro-
cesses are executed in the back end through the API. Therefore,
the same function can be used for the ROS node in the descrip-
tion of a user task. Consequently, the porting of nodes between
devices equipped with the mROS environment is easy.

3.4 Programming Model

In mROS, an application that communicates with the ROS sys-
tem can be designed by using the API provided by the mROS
communication library. APIs of mROS are defined with the
same name as ROS APIs which were introduced in Section 2.4.
Therefore, developers can describe the mROS application with a
knowledge of ROS programming. We think that it is possible to
port existing open source ROS packages onto embedded devices
which employs mROS.

Figure 9 shows the example of ROS node description in
mROS. By including mros-1ib/ros.h, developers can use APIs
provided by mROS communication library. This example ex-
presses the publish node and the publication of msg string value.
Also, a configuration file is required to generate tasks to execute
ROS nodes. Figure 10 shows the description of the configura-
tion file required as the specification of the TOPPERS kernel.
We provide a template like Fig. 10 for mROS user application.
Therefore, the single task configuration file can be realized only
by rewriting the function name to be executed as a task. Argu-
ments of CRE_TSK(), that indicates the creation of task, should
be set as default, but it is also possible for users to specify them.

Meanwhile, it is also possible to realize multitasking of appli-
cations by using TOPPERS API. This makes it possible to utilize
the characteristics of the conventional embedded system, so that
real-time performance is guaranteed. Applications of various de-
vices can also be described by utilizing arm mbed library.

Electronic Preprint for Journal of Information Processing Vol.28

4. Evaluation

4.1 Environmental Setup

In this work, we implemented mROS onto the Renesas GR-
PEACH board [5], which is adopted to TOPPERS/ASP kernel
and Arm mbed library. To setup the evaluation environment of
distributed robot systems, we used GR-PEACH equipped with
mROS as the edge device and NEC’s LAVIE HybrydZERO with
ROS as the host device. GR-PEACH has an RZ/A1H 400 MHz
microprocessor and 10 MB internal RAM. LAVIE HybrydZERO
has an Intel Core-i7 2.4 GHz processor and 16 GB memory. We
used Ubuntu 14.04 LTS as the host OS and indigo as the ROS dis-
tribution. We assumed that the host and the edge are connected
by a wired LAN cable via a router in the same local network

4.2 Communication Performance

For the communication time, we evaluate the execution time
of data publication and data subscription from the ROS node on
mROS to the node on the host system. We used get_utm(),
which is a microsecond precision measurement API provided by
TOPPERS kernel.

4.2.1 Execution Time of publish()

We measured the execution time of publish() on mROS,
which includes the execution of the mROS library and IwIP pro-
tocol, and the communication of the packet through the network.
We varied the data size from 2B to 512KB in a power of 2.
Figure 11 shows the average execution time for 200 executions.
We found that publication of less than 16 KB of data can be per-
formed in less than 1 ms. In addition, there is no significant differ-
ence between the worst execution time and the average execution
time. Small data such as data derived from sensors can be pub-
lished at high speed. We also found that the execution time to
publish 512 KB of data is less than 100 ms. Therefore, the publi-
cation of image data from a camera, which is expected to be used
in edge devices equipped with mROS, can be realized at 10 fps.
According to Ref. [11], a characteristic in ROS communication is
that the communication time becomes large for large data because
packet division occurs at 16 KB. We observed similar character-
istics in mROS.

4.2.2 Execution Time of subscribe ()

In this experiment, we measured the execution time of
subscribe() from the loading of data into the socket buffer of
IWIP to the start of the callback function of the subscribe node.
We varied the data size from 1 B to 256 KB in powers of 2. Fig-
ure 12 shows the average execution time for 200 executions. We
found that subscription of less than 2 KB of data and the cor-
responding callback function call can be performed in less than
0.1 ms. However, the execution time sharply increases as the data
size becomes larger than 4 KB because large data cannot be re-
ceived in one reception loop.

4.2.3 Evaluation of Intra-Device Communication

We also evaluate the performance of the intra-device com-
munication method. Figure 13 shows the execution time of
publish() to the same device with the intra-device communi-
cation method and compares it with the corresponding execution
time for publishing to the host device. We found that the execu-

© 2020 Information Processing Society of Japan

1.00
0.90 100
_.0.80
=
£0.70
£ 0.60 .
Zo050 .
£ 0.40 .
3
g 0.30 e
020 ceeesse
0.10 10 .
.
0.00 o ¢ ¢
1 16 256 4096 16K 32K 64K 128K 256K 512K
data size [B] data size [B]

execution time [ms]
w
o

Fig. 11 Execution time of publish() on mROS.

100

~
o

©

S]

= ~
«n =)

[
=)

execution time [ms]
execution time [ms]
@«
S

4
n
~
S

10 +

o
o

1 8 64 512 4096 4K 8K 16K 32K 64K 128K 256K
data size [B] data size [B]

Fig. 12 Execution time of subscribe () on mROS.

10
= .
E 8
()
£ 6
pe . o
S 4 e e
ER I
5] B emet!”
8 2 e

o Eer

0 50K 100K 150K 200K 250K 300K
data size [B]

® To the same device * To the host device

Fig. 13 Execution time of publish() with intra-device communication
method.

Table 2 Size of runtime environment [B].

Name text data bss dec
kernel.a 99,676 0 16,408 116,084
libmbed.a | 264,477 52,940 45,711 363,128
libmros.a 57,950 28 2,097,310 2,155,288
Total 422,103 52,968 2,159,429 2,634,500

tion time of data publication to the same device is much smaller
regardless of the data size. The execution time for publishing
4 KB data is less than 100us. Therefore, our intra-device com-
munication method can contribute to the reduction of the execu-
tion time of node communication. In addition, we found a linear
correlation between the execution time and data size. This im-
plies that the execution time can be estimated and real-time per-
formance can be guaranteed easily.

4.3 Size of Runtime Environment

Table 2 lists the result for the mROS size. We used size com-
mand on kernel. a, which is a library file of TOPPERS/ASP ker-
nel; 1ibmbed. a, which is an Arm mbed library; and 1ibmros.a,
which is an mROS communication library.

The size of the mROS environment was approximately 2.6 MB,
which means that we can implement a sufficiently lightweight

runtime environment. The reason why the bss section of

Electronic Preprint for Journal of Information Processing Vol.28

libmros.a became very large is that mROS statically assigns the
shared memory capacity for inter-task communication. The cur-
rent implementation of the shared memory is set to 2MB. Note
that it is possible to make the size smaller by adjusting the size of
the shared memory according to the design choice.

4.4 Discussion about Power Consumption

This subsection discusses the effect on power consumption for
mROS. In general, one of the most popular choice in the develop-
ment of robot system is surely Raspberry Pi. We think this is no
more an embedded systems since it has a high-performance com-
puting resources and native versions of Linux and ROS can be
operated on it. Also, it is employed as not only edge devices but
also the central computer on distributed robot systems. Accord-
ing to a well-known article published on the web *#, the amounts
of current of the entire board at high load are said to be 730 mA
for Raspberry Pi 3B and 980 mA for 3B+. On the other hand, the
amount of current of GR-PEACH is said to be 165 mA *3. In addi-
tion, typical embedded processors, such as the RZ/A1H [6] which
is mounted on GR-PEACH, have some low power modes in order
to save power consumption. Of course we know that these nu-
merical comparison and discussion are nonsense, we would like
to suggest that mROS on mid-range embedded devices can con-
tribute to power savings of distributed robot systems.

5. Case Study

This section demonstrates the case study of mROS to discuss
the usefulness of our work.

5.1 Target System

We developed a feature point detection system of an image file
obtained from a CMOS camera by using an existing ROS pack-
age. We constructed its distributed system by using GR-PEACH
with mROS as the edge and LAVIE HybridZERO as the host de-
vice which is proposed in Section 3.3.3.

Figure 14 shows the structure of the target system, which con-
sists of 4 ROS nodes. camera node is the device driver for the
camera to obtain the image file. We used the GR-PEACH AU-
DIO CAMERA shield for the CMOS camera. The device driver
of the camera was implemented using the mbed library. camera
node publishes the data of obtained image to /image_raw topic.
image_converter node subscribes to the image and compresses
it by using the OpenCV library. fast node detects feature points,
following which mask node performs mask processing to create
grayscale image data. Finally, the processing result is published
to /image_fast_pc.

5.2 Implementation Result

Figure 14 (a) shows the case where only camera node is ex-
ecuted on the edge device. In order to discuss the portabil-
ity that is contributed by mROS, we attempted to port the code
of image_converter node to the edge device, as shown in
Fig. 14 (b). The original ROS package includes the cv_bridge

4 http://www.pidramble.com/wiki/benchmarks/power-consumption
*5 https://os.mbed.com/forum/team-886-GR-PEACH _producer_meeting-

community/topic/5432/

© 2020 Information Processing Society of Japan

(b) System that two node is executed on edge device.

Fig. 14 Organization of the distributed system.

nodes
=M executed
g, on mROS

ode from ROS package
onto embedded device!!

edge original
detection camera
result image

Fig. 15 Snapshot of developed systems.

library, which mutually converts the image object by the OpenCV
library to the image object handled by the ROS. However, since
cv_bridge library uses the function of dynamically generating
threads, it could not be ported to the mROS environment. There-
fore, we implemented the function to convert image objects for
image compression by the OpenCV library. The communication
between camera and image_converter nodes is performed on
shared memory with our intra-device communication method.

We confirmed that the same function as the original ROS pack-
age could be realized on the distributed robot system. Figure 15
shows a snapshot of the developed system, which includes the
image obtained by extracting feature points and a graph visual-
ization of the ROS component obtained with rqt_graph. Nodes
indicated by the red circle in rqt_graph are those running on
mROS. Therefore, we were able to confirm that mROS has the
portability for utilizing existing ROS packages onto the embed-
ded device. In the systems in Fig. 14 (b), the binary size of the
application in the edge device was 3,416 KB, even including the
OpenCV library. Most of the source code of image_converter
in the existing package could be diverted to the mROS environ-
ment. In addition, we confirmed the reduction in the communica-
tion overhead by processing data on the edge device.

5.3 Discussion

In this case study, camera node in the system processes 320 X
240 size BGRAS format and publish it. Therefore, in the case of
the system of Fig. 14 (a) in which only the camera node is exe-
cuted on the edge device, it is necessary to publish about 300 KB
of data to the host device. From the results in Section 4.2.1, the
execution time for data publication was about 20 ms. In the sys-
tem of Fig. 14 (b) in which image_converter node is executed

Electronic Preprint for Journal of Information Processing Vol.28

in addition to camera node, it is possible to reduce the data to be
published by compressing the image data. In this package, com-
pression is performed on image data of 160x120 size BGRAS for-
mat. Therefore, data size to the host device will be about 75 KB
of data and data publication time can be about 600 us. Also, com-
munication related to /image_raw topic can be performed at high
speed by proposed intra-device communication method. From
the results in Section 4.2.3, it takes about 6 ms to transfer 300 KB
of data.

We found that it is possible to reduce the communication over-
head by processing data on the edge device equipped with mROS.
Moreover, it is possible to further reduce the communication
overhead by porting another nodes which were not implemented
in this work onto mROS.

Although we used the OpenCV library that was ported
to the RZ/AIH processor in order to implement the
image_converter node on the edge device, most of source code
of image_converter in the existing package could be diverted
in mROS environment. Therefore, we can utilize existing ROS
package resources onto the embedded device by using mROS.

6. Related Works

This section describes related works that proposed a method to
utilize embedded devices in ROS based systems.

Ref. [3] introduces brief summaries of existing communication
interfaces between ROS host system and external embedded de-
vices. Rosserial [4] that is introduced as one of them is a se-
rial communication interface between embedded device and ROS
host node. It supports Arduino, ChibiOS, embedded Linux and
other environments by providing ROS client libraries. However,
rosserial only offers the low-speed serial communication between
host and embedded devices. rosc [8] and uROSnode [15] provide
ROS client libraries for embedded systems. Both of them make
it possible to connect and exchange messages with ROS nodes
by describing and building the system in C language. rosc cov-
ers bare-metal systems with small memory resources. Ref.[12]
uses uROSnode as the interface to the host system to realize the
robot system prototyping. However, these software have not been
updated since 2013 to 2014 and have not been maintained. In
Ref. [7], a communication layer between the ROS system and
non-ROS program is established. rosbridge provides a higher
level abstraction layer for the ROS system, making it possible to
access using the web socket. In the non-ROS program, the com-
munication message is described in JSON format. rosbridge con-
verts its message into data for the ROS system. The most prob-
lematic point in these methods is that the programs executed on
the embedded device are related on each environment, and ROS
node cannot be executed directly. Therefore, there is no chance
to port open source ROS packages onto embedded devices.

Ref. [1] proposes a method that achieves complicated process-
ing required for robot system and reduction of power consump-
tion at same time. Processing for executing complicated algo-
rithms is executed with advanced devices, and loop control is per-
formed in robot devices that require high energy efficiency. For
the embedded platform with the LUNA [2] environment, which
is a hard real-time framework, they provide the communication

© 2020 Information Processing Society of Japan

bridge interface between different platforms to the ROS sys-
tem. In Ref.[20], a hybrid real-time ROS architecture is pro-
posed for the purpose of guaranteeing real-time performance in
robot systems. The proposed architecture is realized by using
RGMP [22] which is a software framework as the virtual com-
munication channel between CPUs. Nuttx as a RTOS and Linux
as a general-purpose OS are employed to build an execution envi-
ronment of ROS nodes. To support communication between ROS
nodes on different CPUs by using RGMP, guaranteeing real-time
performance can be achieved to ROS nodes executed on RTOS.
Ref. [13] proposes PX4 which is a middleware for embedded sys-
tems that provides a programming environment enabling commu-
nication to the ROS communication layer for programs on em-
bedded devices. However, the communication method between
the target embedded device and the device executing the ROS
node is only serial communication. In Ref.[17], authors point
out the problems that it is difficult to guarantee real-time perfor-
mance for the intra-system network provided by ROS when the
network becomes huge. They propose a method of dividing a
system configured using ROS into subsystems by using Smart
Resource [16]. Each of these studies provides their own RTOS
or runtime environment, and also provides an original commu-
nication bridge between them and ROS. This policy is similar
to mROS. However, mROS has the advantage of improving the
portability of ROS nodes through API compatibility.

Currently, ROS version 2 (ROS 2) has been developed as a
next-generation version of ROS. It is designed to be executable
in various OS environments including RTOS. However, there is
no compatibility between ROS and ROS 2 since the communi-
cation protocol of ROS 2 is different from ROS. Therefore, ex-
isting resources such as open source packages for ROS cannot
be ported to ROS 2 based systems. In Ref.[11], the character-
istics of ROS and ROS 2 are evaluated. Authors measured the
communication performance of ROS and other ROS compatible
middleware. In the publish/subscribe communication model of
ROS, authors pointed out that there is a possibility of losing data
immediately after the start of communication, and the occurrence
of packet division due to data size.

We assumed that embedded devices with mROS are used as
edge devices of a distributed robot system. In such a case, it is
expected that the embedded device can be easily used without
much effort such as modifying the source code. In addition, by
utilizing the functions of RTOS, it becomes easy to design a real-
time system.

7. Conclusion

This paper proposed a lightweight runtime environment for
ROS nodes. We designed mROS, which provides the commu-
nication function to a host device and enables ROS nodes to be
executed on an embedded device. In order to be operated on an
embedded device having a mid-range micro-processor, we em-
ployed TOPPERS/ASP kernel as RTOS and IwIP as TCP/IP pro-
tocol stack to design the internal structure of mROS. Currently,
we have published mROS as open source on GitHub *°. Exper-

#6 https://github.com/tlk-emb/mROS

Electronic Preprint for Journal of Information Processing Vol.28

imental results confirmed that mROS meets the performance re-
quirement for practical applications.

We evaluated the execution time of the API provided by mROS
communication library. The result shows that the target perfor-
mance of mROS can be achieved for the application. In addition,
as a result of evaluation of communication time between nodes in
the device, we showed that the proposed intra-device communi-
cation method becomes faster than the inter-node communication
between devices. Moreover, we evaluated the size of the library
that composes mROS and showed that it matched to the target
embedded devices. In addition, we showed the case study of uti-
lization of mROS in development of distributed robot system. We
found that it is possible to utilize the existing ROS package in the
mROS environment.

In the future, we will develop a server/client communication
model to mROS. It is also necessary to perform a quantitative
evaluation of mROS while considering related methods to utilize
embedded devices in ROS-based systems. Additionally, we are
planning to establish correspondence of the mROS communica-
tion library with the ROS 2, which is expected to become the
mainstream.

Acknowledgments The part of this work was supported
by JST PRESTO Grant Number JPMJPR18MS8 and JSPS
KAKENHI Grant Numbers JP18K18024. We thank Prof. Takeshi
Ohkawa for providing the native ROS version of the edge detec-
tion package as the case study of this work.

References

[1] Bezemer, M. and Broenink, J.: Connecting ROS to a real-time control
framework for embedded computing, 2015 IEEE 20th Conference on
Emerging Technologies & Factory Automation (ETFA), pp.1-6, IEEE
(2015).

2] Bezemer, M. and Wilterdink, R.: LUNA: Hard Real-Time, Multi-
Threaded, CSP-Capable Execution Framework, Concurrent System
Engineering Series, No.WoTUG-33, pp.157-175, I0S Press (2011).

[3] Bouchier, P.: Embedded ROS [ROS Topics], IEEE Robotics Au-
tomation Magazine, Vol.20, No.2, pp.17-19 (online), DOI: 10.1109/
MRA.2013.2255491 (2013).

[4] Bouchier, P. and Purvis, M.: rosserial (2018), available from ¢http://
wiki.ros.org/rosserial).

[5] Renesas Electronics Corporation: Gadget Renesas GR-PEACH board
(2018), available from ¢http://gadget.renesas.com/en/product/peach.
html).

[6] Renesas Electronics Corporation: RZ/A1H (2018), available from
(https://www.renesas.com/en-us/products/microcontrollers-
microprocessors/rz/rza/rzalh.html).

[7] Crick, C., Jay, G., Osentoski, S., Pitzer, B. and Jenkins, O.C.:
Rosbridge: Ros for non-ros users, Robotics Research, pp.493-504,
Springer (2017).

[8] Ensslen, N.: Introduction rosc, ROS Developers Conference (2013).

[9] Foote, T. and Rusu, R.B.: nodelet (2018), available from ¢http://wiki.
ros.org/nodelet).

[10] Goldschmidt, S. and Ziegelmeier, D.: IwIP - A Lightweight TCP/IP
stack (2018), available from (https://savannah.nongnu.org/projects/
Iwip/).

[11] Maruyama, Y., Kato, S. and Azumi, T.: Exploring the Performance of
ROS2, 2016 International Conference on Embedded Software (EM-
SOFT), pp.1-10 (2016).

[12] Matteucci, M., Migliavacca, M. and Bonarini, A.: Practical applica-
tions of the R2P embedded framework for robot rapid development,
IEEE International Conference on Technologies for Practical Robot
Applications (TePRA), pp.1-6 (2015).

[13] Meier, L., Honegger, D. and Pollefeys, M.: PX4: A node-based mul-
tithreaded open source robotics framework for deeply embedded plat-
forms, 2015 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp.6235-6240 (2015).

[14] Merrick, P., Allen, S. and Lapp, J.: XML remote procedure call
(XML-RPC) (2018).

© 2020 Information Processing Society of Japan

[15] Migliavacca, M., Zoppi, A., Matteucci, M. and Bonarini, A.:
pROSnode: Running ROS on microcontrollers, ROS Developers Con-
ference (2013).

[16] Munera, E., Alcobendas, M.M., Poza-Lujan, J.-L., Yague, J.L.P,
Simo-Ten, J. and Noguera, J.EB.: Smart Resource Integration for
Robot Navigation on a Control Kerned Middleware Based System,
International Journal of Imaging and Robotics, Vol.15, No.4 (2015).

[17] Munera, E., Poza-Lujan, J.-L., Posadas-Yague, J.-L., Simo, J. and
Noguera, J.E.B.: Distributed Real-time Control Architecture for ROS-
based Modular Robots, /FAC-PapersOnLine, Vol.50, No.1, pp.11233—
11238 (2017).

[18] TOPPERS Project: TOPPERS/ASP kernel (2018), available from
(https://www.toppers.jp/en/asp-kernel.html).

[19] Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs,
J., Wheeler, R. and Ng, A.Y.: ROS: An open-source Robot Operat-
ing System, ICRA Workshop on Open Source Software, No.3.2, p.5
(2009).

[20] Wei, H., Huang, Z., Yu, Q., Liu, M., Guan, Y. and Tan, J.: RGMP-
ROS: A real-time ROS architecture of hybrid RTOS and GPOS
on multi-core processor, 2014 IEEE International Conference on
Robotics and Automation (ICRA), pp.2482-2487 (2014).

[21] yoneken: measure message passing (2018), available from (https://
github.com/yoneken/measure_message_passing).

[22] Yu, Q., Wei, H., Liu, M. and Wang, T.: A novel multi-OS archi-
tecture for robot application, 2011 IEEE International Conference
on Robotics and Biomimetics, pp.2301-2306 (online), DOI: 10.1109/
ROBIO.2011.6181641 (2011).

Hideki Takase is an Associate Professor
at Kyoto University, and also a PRESTO
researcher at Japan Society and Technol-
ogy Agency. He received his Ph.D. degree
of Information Science from Nagoya Uni-
versity in 2012. From 2009 to 2012, he
was a research fellow of the Japan Society
for the Promotion of Science (DC1). He
had been an Assistant Professor at Graduate School of Informat-
ics, Kyoto University since 2012, and promoted to current title in
2018. He received the Incentive Award from Computer Science
group of IPSJ in 2008, the Funai Research Incentive Award from
the Funai Foundation for Information Technology in 2015. His
research interests include runtime platform and system-level de-
sign methodology for embedded/real-time/IoT computing. He is
the member of IEICE and RSJ.

Tomoya Mori received his M.E. degree
of informatics from Kyoto University,
Kyoto, Japan in 2018. His research inter-
est is the software platform for robot soft-
ware and embedded systems. He received
the Incentive Award from Computer Sci-

ence group of IPSJ in 2018.

Electronic Preprint for Journal of Information Processing Vol.28

Kazuyoshi Takagi received his B.E.,,
M.E. and Dr. of Engineering degrees in in-
formation science from Kyoto University,
Kyoto, Japan, in 1991, 1993 and 1999, re-

| P spectively. From 1995 to 1999, he was
\/ a Research Associate at Nara Institute of
- il - Science and Technology. He had been an
Assistant Professor since 1999 and pro-

moted to an Associate Professor in 2006, at the Department of
Information Engineering, Nagoya University, Nagoya, Japan. He
moved to Department of Communications and Computer Engi-
neering, Kyoto University in 2011. In 2019, he joined Depart-
ment of Information Engineering, Mie University, as a Professor.
His current interests include system LSI design and design algo-

rithms.

Naofumi Takagi received his B.E., M.E.,
and Ph.D. degrees in information science
from Kyoto University, Kyoto, Japan, in
1981, 1983, and 1988, respectively. He
joined Kyoto University as an instructor
in 1984 and was promoted to an associate

professor in 1991. He moved to Nagoya
University, Nagoya, Japan, in 1994, and
promoted to a professor in 1998. He returned to Kyoto Univer-
sity in 2010. His current interests include computer arithmetic,
hardware algorithms, and logic design. He received Japan IBM
Science Award and Sakai Memorial Award of the Information
Processing Society of Japan in 1995, and The Commendation for
Science and Technology by the Minister of Education, Culture,
Sports, Science and Technology of Japan in 2005.

© 2020 Information Processing Society of Japan

