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Abstract: Large volumes of data are typically used during analyses. Data preprocessing, which involves detecting
outliers, handling missing data, data formatting, integration, and normalization, is essential for achieving accurate
results. Many tools and methods are available for reducing preprocessing time. However, most analysts face diffi-
culties when using them. This paper proposes a method for handling outliers and missing data, called Automated
PRE-Processing for Sensor Data (APREP-S). For reducing analysis resources, we combine programming by example
and machine learning via Bayesian inference, inputting human knowledge to APREP-S as an example and calculating
a proper proportion by machine learning via Bayesian inference. We also define k-Shape as the calculation of the rate
of similarity of time-series data. In evaluation, we use sensor data of temperature and humidity and compare the sum
of the square of the errors of four methods, between original data and outputs of each methods, (1) APREP-S, (2)
mean of the entire data, (3) mean of the around-the-target imputation data, and (4) spline interpolation. It is verified
that APREP-S is a more suitable method for humidity data than temperature data. preprocessing method. we consider
the reason is that humidity data have more changing points.
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1. Introduction

In the field of information technology, it has recently become
possible to analyze integrated data obtained from sensors or wear-
able devices, besides utilizing data on existing systems. Hence,
large amounts of various data, including customer behavioral pat-
terns in a shop, autonomous motion of robots, and fault detection
during credit card use, can now be analyzed from multiple per-
spectives. However, these data often include outliers and miss-
ing data, inconsistencies in units and device specifications, or
ambiguities within the data [1]. The data analysis flow involves
“considering the aim of analysis”, “transformation (preprocess-
ing)”, “creating the model”, and “documenting for sharing knowl-
edge”, called data mining. The data mining flow in sensor data
is shown in Fig. 1. In particular, data acquired from certain net-
works, including sensor data, require preprocessing owing to the
noise and missing data, which inevitably occur because of being
occasionally delayed or not being received by the load transfer.
The examples of sensor data analysis include human vital data,
smarthomes, and industrial prediction maintenance. These sen-
sor analysis systems use 1) wireless networks, 2) sensors having
a battery, and 3) time-series data. Therefore, the sensor data have
more outliers and missing data than general time-series data be-
cause of collection through the network and use of a battery. It
is necessary to check for outliers and missing data and to mod-
ify them as required. These processes, termed preprocessing, use
80% of the resources, even for an ordinary analysis system [2].
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Fig. 1 Overview of sensor data analysis.

An example of preprocessing is shown in Fig. 2. Two types
of data are available from the sensors or dataset: weather data
and person location data. The data include outliers and missing
data; there are differences in data formats besides inconsistencies
in units and interval time due to device specifications. There-
fore, it is necessary to obtain a uniform format for integration,
and depending on the aim of the analysis, outliers and missing
data should be imputed. The preprocessing procedure for joining
temperature data and person location data is as follows:
• Handling outliers or missing data: remove the data where

id = −1 for weather data and calculate the mean of the tem-

perature column if the data is NULL for imputation.
• Transformation of the time-series data: transforming Unix-

time data format to “yyyy/MM/dd HH:mm”, such as “2018-
08-10 12:20”.

• Discretization: make the interval of measurement time be-
tween two tables uniform for joining, which is the same as
creating a join key in this case.

We previously proposed a data mining framework, called
“APREP-DM (Automated PRE-Processing for Data Min-
ing) [3]”, which includes automated preprocessing to reduce
tasks of analysts. The preprocessing in APREP-DM comprises
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Fig. 2 Example of preprocessing.

“common processes for data cleaning” and “other processes for
data cleaning”. Common processes for data cleaning can run
automatically, e.g., detecting outliers or handling missing data.
On the other hand, other processes for data cleaning need to find
a suitable model through trial-and-error for obtaining the analysis
result, that is, they cannot run automatically. In this paper, we
consider outliers and missing data in “the common processes
for data cleaning” in APREP-DM as the targets. We propose an
analysis method that can reduce the required number of tasks via
integration, “business understanding”, which incorporates human
knowledge and machine learning based on the programming
by example (PBE) approach. For imputation of outliers and
missing data, the analyst defines a rule, e.g., single imputation
or multi-imputation. However, single imputation needs to define
just one rule, and multi-imputation takes considerable time.
Thus, we propose a method, called Automated Pre-Processing
for Sensor data (APREP-S),”which integrates human knowledge
and machine learning using the PBE approach. The specifics
of single imputation and multi-imputation are described in
Section 2.2, and those of PBE are described in Section 2.3. In
this paper, we do not refer to the method of detecting outliers.

The following are the contributions of this paper.
• Proposing an automatic imputation method for outliers and

missing data based on machine learning integrated with hu-
man knowledge using a PBE approach to reduce the number
of analysis resources.

• To verify the effectiveness and suitable data of APREP-S us-
ing data that have outliers and missing data by comparing the
accuracy of imputation with three existing imputation meth-
ods.

The imputation method determines how to calculate inputting
values instead of outliers and missing data.

Section 2 presents a brief overview of the relevant literature.
Section 3 shows the workflow of tasks related to the analysts and
APREP-S. In Section 4, the features and details of APREP-S are
described. Section 5 evaluates APREP-S, including the results
and discussion of the evaluation. A summary of the main conclu-
sions is presented in Section 6.

2. Related Work

The imputation method for outliers and missing data can be

classified into two categories: “manual processing” and “auto-
mated processing”. The “PBE approach” is a method for inte-
grating the knowledge of the analyst into automated processing.
These approaches are specifically described in the following sec-
tions.

2.1 Manual Processing
“Manual processing” is a method in which the analyst de-

fines and develops the preprocessing processes on their own and
checks the data profile to determine whether there are outliers,
missing data, or inconsistencies in the format or spelling. To re-
duce the number of tasks that must be performed, several tools are
available, e.g., OpenRefine [4] and Trifacta Wrangler [5]. These
tools can assist analysts in sorting, aggregating, and detecting
data that need to be transformed on the GUI. Moreover, ana-
lysts can iterate the process automatically if the flow is the same,
using the record function of the process logs.However, analysts
need to maintain on their own when the flow changes. In ad-
dition, they must consider the data handling rule of imputation
and removal. That is, the analysts must select the correct opera-
tions and parameters for the data transformation task. Hence, data
transformation tools are difficult to use for people who have no
experience with them or programming skills [6]. Thus, we need
a method using which the analysts can select a correct operation
that requires fewer and easier tasks than manual processing.

2.2 Automated Processing
“Automated processing” is a method that imputes data with-

out manual processing. It includes complete-case analysis (list-
wise deletion), single imputation, and multiple imputation for
MCAR. Missing data are often categorized into the following
three types: missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR) [7], [8]. As
the missing data occur completely randomly in a sensor network,
we consider MCAR data in this paper. The complete-case anal-
ysis (list-wise deletion) is a method of removing missing data.
However, it might discard valuable data and weaken the statistical
power because of a reduction in sample size. Single imputation is
based on the same one rule, e.g., “inputting the mean of an entire
column” or “inputting median of an entire column”. However,
the result is potentially biased and the amount of error difference
increases when the range of the target data is wide and is an effect
of the data trend. Multi-imputation is a method of selecting the
most suitable rule among multiple rules through simulation. The
approach has a higher accuracy than single imputation because of
testing multiple imputation methods using various sampling data.
However, the process is time-consuming.

In automated processing, it is difficult to generate a high-
accuracy model when the data pattern cannot be defined, while
the imputed data can be calculated automatically.

2.3 PBE
The PBE [2], [9] approach is an automated transformation

method with more than one example for input and output. The
model infers a rule from inputted examples and generates other
values in the same data using the same rule. PBE has three main
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Fig. 3 Example for PBE: generate Datetime from Date and Time.

Table 1 Comparison of manual, automated, and proposed methods.

Manual Automated Proposed
processing processing approach

Customization Easy Difficult Easy
Automated Work Nothing All Almost

Accuracy Normal (*) High High
(*) however, what we can work manually is limited.

processes: 1) a search algorithm that can efficiently search a
match rule from the input data provided by analysts, 2) a rank-
ing program to choose the most suitable process that satisfies the
input examples provided by the analysts, and 3) an interaction
model to facilitate usability for analysts [2]. This paper proposes
the PBE approach for selecting the imputation method. Although
it is too difficult to write the desired macros or scripts by the an-
alysts who are not familiar with programming [9], PBE can help
reduce the number of tasks of analysts without knowledge. An
example of PBE is shown in Fig. 3. Now, we have Date column
and Time column. If “Date + Time” format data is required, we
input “2019-01-07 12:20” into the Datetime column in the first
line. Then, the model infers that rule and automatically inputs the
data into other rows using the inferred rule “Date + Time”.

Recently, PBE has been focused on as a data transformation
method for big data. The PBE approach uses data extraction,
transformation, or formatting, such as Flash Fill [10] and Flash-
Normalize [11], and code transformation, such as Foofah [6].
PBE can integrate machine learning, and is more efficient for
general code refactoring, application migration, and noise detec-
tion [2], [12], [13].

Our target is to reduce the number of analyst tasks while main-
taining high-accuracy results. Therefore, we combine PBE and
machine learning via Bayesian inference, inputting the human
knowledge to the proposed processing as examples and recom-
mending the most appropriate method of handling outliers and
missing data by machine learning via Bayesian inference. If
learning from one or a few examples, we might miss the cor-
rect result [14]. Correctly handling ambiguous problems is the
strength of Bayesian inference.

Using the PBE approach, we propose an integration “Cus-
tomization (of the model)”, which is the advantage of manual
processing to “automated work (reduce the analysts’ workload)”,
and “accuracy”, which is the main advantage of automated pro-
cessing. Manual processing, automated processing, and the pro-
posed processing (APREP-S) are summarized in Table 1.

3. Workflow for APREP-S

3.1 Overview of APREP-S Workflow
We propose a model termed APREP-S, which initially de-

Algorithm 1 k-Shape algorithm: adapted from [15] Algorithm 3.
INPUT: X is an n-by-m matrix containing n time-series of

length m are initially z-normalized.

k is the number of clusters to produce.

OUTPUT: IDX is an n-by-1 vector containing the assignment of

n time-series to k clusters (initialized randomly).

C is a k-by-m matrix containing k centroids of

length m (initialized as vectors with all zeros)

1: iter ← 0

2: IDX′ ← []

3: while IDX! = IDX′ and iter < 100 do

4: IDX′ ← IDX

5: // Refinement step

6: for j← 1 to k do

7: X′ ← []

8: for i← 1 to n do

9: if IDX(i) = j then

10: X′ ← [X′; X(i)]

11: end if

12: end for

13: C( j)← S hapeExtraction(X′,C( j))(∗)
14: end for

15: // Assignment step

16: for i← 1 to n do

17: mindist ← ∞
18: for j← 1 to k do

19: [dist, x′]← S BD(C( j), X(i))

20: if dist < mindist then

21: mindist ← dist

22: IDX(i)← j

23: end if

24: end for

25: end for

26: iter ← iter + 1

27: end while

(*) “S hapeExtraction()” that is reffer to Algorithm 2 in paper [15].

fines the imputation methods, and subsequently, calculates the
proportion of the likelihood of each method and makes recom-
mendations to the analyst. The APREP-S workflow comprises
the analysts’ tasks and automated tasks. The entire workflow of
APREP-S is shown in Fig. 4. The analysis of APREP-S needs
three phases: the analysis preparation phase, the model training
phase, and the operation phase. A detailed flow of APREP-S is
described in Section 4. Here, we show the analysis tasks involved
in this workflow.

First, in the analysis preparation phase, the analyst calculates
the rate of similarity of each dataset to decide the training data
for target imputation data, which indicates the position of out-
liers and missing data. We use “k-Shape”, which is a clustering
method based on the similarity of time-series data. The analyst
inputs multiple time-series data, including the data that the ana-
lyst wants to impute, to k-Shape. Then, k-Shape returns the clas-
sified cluster number of each data. The analyst selects one data in
the same cluster with the target imputation data as training data.
We describe k-Shape in Section 3.2.

Next, in the model training phase, the analyst inputs the train-
ing data selected in the analysis preparation phase to APREP-S.
Then, APREP-S generates the model. After this phase, the ana-
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Fig. 4 Workflow of the analyst and APREP-S: The green area denotes the analyst’s tasks and the blue
area denotes the APREP-S tasks. Our proposal is the model training phase and the model opera-
tion phase. The analyst uses an existing method “k-Shape” in the analysis preparation phase.

lyst can use the APREP-S model.
Last, in the model operation phase, the analyst operates data

imputing by using the APREP-S model generated in the model
training phase. This phase includes the model maintenance flow.
The analyst inputs the inference data, which has outliers or miss-
ing data, to APREP-S. Then, APREP-S returns the pairs of rec-
ommendation proportion and the imputation value that refers to
input data instead of outliers and missing data. The proportions
and values are calculated using the same imputation method, and
the multiple methods are defined in APREP-S. The analyst can
select one imputation method, checking whether the proportions
and values are appropriate. After that, the analyst inputs the se-
lected method to APREP-S, and then, APREP-S updates a model
based on the data added by the selected method. When the analyst
inputs other target imputation data, APREP-S uses an updated
model. For iterating this operation phase, the model accuracy im-
proves.

3.2 k-Shape
We use the “k-Shape [15]” method for evaluating the data sim-

ilarity. This method considers the shape of the time series in clus-
tering tasks, in contrast to traditional methods such as k-means.
It treats the observations in time-series data as independent at-
tributes. In general, we consider the invariance of data before
clustering, e.g., amplitude scaling, time-shifting, data length scal-
ing, or occlusion. The k-Shape method is focused on ampli-
tude scaling invariance and time-shifting invariance. Moreover, it

does not depend on the domain form because it calculates cross-
correlation by using normalized data as the distance measure for
the similarity of data in clustering. It uses an independent method,
named “shape-based distance (SBD)”, by considering scaling and
shifting with normalized data. SBD is expressed as

S BD(x, y) = 1 −max
ω

⎛⎜⎜⎜⎜⎜⎝ CCω(x, y)√
R0(x, x) · R0(y, y)

⎞⎟⎟⎟⎟⎟⎠ (1)

Let x = (x1, ..., xm) and y = (y1, ..., ym) be sequences, and

CCω(x, y) = Rω−m(x, y), ω ∈ 1, 2, ..., 2m − 1 (2)

Rk(x, y) =

⎧⎪⎪⎨⎪⎪⎩
∑m−k

l=1 xl+k · yl, k ≥ 0
R−k(y, x), k < 0

(3)

k-Shape’s algorithm refers to Algorithm 1. This algorithm is
adapted from the paper [15] Algorithm 3. Function “ShapeEx-
traction(X, C)” refers to paper [15] Algorithm 2. This algorithm
extracts the shape of time-series data.

The k-Shape method computes the centroid of the cluster and
compares it with each time-series data. The data are classified
into the closest cluster. The centroid is recalculated whenever
a new time-series data joins. The k-Shape method iterates the
calculation of the centroid until the cluster membership does not
change.

4. Proposed Model - APREP-S

We propose a model termed APREP-S, whose workflow is
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Algorithm 2 Generation of APREP-S model (model training
phase)
INPUT: tr m is a selected method number list.

x is a list of normalized features which are calculated from TRN LIST.

Q is the number of features.

OUTPUT: APREP-S model

1: α← Gaussian distribution (μα, σα)

β (Q-by-K matrix containing)← Gaussian distribution (μβ, σβ)

2: for k ← 1 to K do

3: for q← 1 to Q do

4: y = α + β xq ← α, β

5: p(mk |y) = exp(y(xq))/
∑K

i=1 exp(y(xi))← mk , y

6: p(y|mk)← tr m

7: C(mk |y)← y, p(y|mk)

8: αp, βp ← sampling with C(mk |y)
9: end for

10: end for

11: y← αp,βp

12: APREP-S model← y

shown in Fig. 4. In this section, we show the APREP-S tasks.
In the model training phase, after receiving training data from
the analyst, APREP-S searches the target imputation data on the
training data. Then, APREP-S calculates the features and nor-
malizes them. Last, APREP-S generates a model that has two
parameters: α and β. The specific tasks and algorithm (Algo-
rithm 2) of this generated model are shown in Section 4.3.1. In
the model operation phase, after receiving target imputation data,
APREP-S searches for target imputation data on received data.
Then, APREP-S calculates features and normalizes them. Next, it
infers the likelihood of each method using the generated model in
the model training phase. APREP-S has some imputation meth-
ods of outliers or missing data. Therefore, APREP-S calculates
the recommendation proportions of each method from the fea-
tures and two model parameters α and β. Then, APREP-S cal-
culates the imputation value of each method. Last, APREP-S
returns the pairs of recommendation proportions (means likeli-
hood) and imputation values of each method to the analyst. More-
over, the analyst inputs the selected method to APREP-S, which
then updates the model. When the analyst inputs other data next,
APREP-S uses the updated model. The accuracy of the model
improves through the iteration of these flows. The specific tasks
and algorithm (Algorithm 3) of this generated model are shown
in Section 4.3.2.

Figure 5 is a diagrammatic representation of APREP-S. It
shows an example of a case in which the analyst inputs infer-
ence time-series data, indicated by a red line. The red line data
have four outliers or missing data, that is, four target imputations,
on this target imputation data. In addition, the black dashed line
data in the training data of the red line, both of which are similar
data. The black dashed line has three outliers or missing data, all
of which have already decided the imputation method: the first
one is method2, the second one is method1, and the third one is
method1. As APREP-S has three imputation methods in this ex-
ample, it returns three pairs of recommendation proportion and
imputation value based on the training data. The analyst can se-
lect one suitable method, checking the recommendation propor-

Fig. 5 Example of APREP-S: the red line denotes target imputation data,
the black dashed line indicates training data, and the black or red
circle indicates outliers or missing data. The red line has four red
circles and each black circle on the training data has already decided
an imputation method. APREP-S has three imputation methods.

tions and imputation values.
The features of APREP-S are described as follows.

4.1 Formalism of our Approach
In general, a time-series data provides pairs of values: O =

(t1, o1), ..., (tN , oN), t means time and o means observation val-
ues. Assuming sensor data, some data oi (1 ≤ i ≤ N) are outliers
or missing data. Our goal is that APREP-S outputs the pair of
the recommendation proportion P and imputation value u of each
method m1,m2... ∈ M (m is finite) when the analyst inputs O.
TR LIS T, INF LIS T ∈ O: TR LIS T indicates the data that the
analyst inputs in the model training phase, and tr is a list of target
imputation data extracted from TR LIS T . INF LIS T indicates
data that the analyst inputs in the model operation phase, and
in f is a list of target imputation data extracted from INF LIS T .
APREP-S needs a method number list of tr. tr m is a list that
stores the method number that an analyst selects for each element
of tr.

In case of an example Fig. 5, TR LIS T is a black dash line
and tr m=(2, 1, 1), INF LIS T is a red line. The method M has
m1=“Mean of the two values”, m2=“Median of the target col-
umn”, m3=“Spline interpolation”. The outputs of APREP-S are
P=(60%, 10%, 30%), u=(25, 30, 28).

4.2 Probability Model
In this paper, we infer the probability of each imputation

method mk ∈ M that APREP-S has. APREP-S calculates each
likelihood based on Bayesian inference. As M is a discrete
value, p can be calculated from the proportion of likelihoods in
M in each mi. The posterior probability of p(mk |y) is based on
Bayesian inference [16], [17]:
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p(mk |y) = p(y|mk)p(mk)∑K
i=1 p(y|mi)p(mi)

=
exp(y(xk))∑K
i=1 exp(y(xi))

(4)

y(xq) = α + β xq (1 ≤ q ≤ Q) (5)

Let x1, x2, ... ∈ x(x is finite) be a set of features for the APREP-S
model, and m1,m2, ... ∈ M (m is finite) be a method type de-
fined in APREP-S. p(y|mk) is a prior distribution of each method,
which can be calculated from tr m at first in the model training
phase. α and β are the parameters of the APREP-S model. In
Eq. (4), we use the Softmax function as y because the number of
methods will be naturally more than two. Each method has a y,
which is also a parameter of the likelihood function of APREP-S.
The likelihood function is

C(M|y) =
K∏

k=1

(yuk

k ) (6)

Let uk denote the probability that the method is mk, 0 ≤ yk ≤ 1,
and
∑

k yk = 1. Given p(mk |y) is a normalized exponential func-
tion, because

∑K
i=1 p(mi|y) = ∑K

i=1 ui = 1. Hence, the likelihood
(Eq. (4)) equals a proportion P.

4.3 APREP-S Model
4.3.1 Model Training Phase: Parameters α, β

In the model training phase, APREP-S has the main task,
termed “generate a model”. During training, the model learns
the parameters α and β, which characterize the conditional prob-
ability of a program given the input p(mk |y). The algorithm refers
to Algorithm 2 with the following specific flow:
( 1 ) Input two data: a list tr m of each imputation method num-

ber extracted from TR LIS T in “search target imputation
data” and a normalized feature list x generated in “calculate
features”.

( 2 ) Set two probability parameters α and β, where β is a Q-by-K
matrix, Q is the number of elements of x, K is the number
of types of methods M 
 m1,m2, ...,mK . Both parameters α
and β are Gaussian distribution.

( 3 ) Define a linear function of x: y (Eq. (5)) with α and β.
( 4 ) For each m ∈ M, define a posterior probability: p(m|y)

(Eq. (4))
( 5 ) For each m ∈ M, define a prior probability: p(y|m) from a

likelihood function C(M|y) (Eq. (6)). The first prior proba-
bility is calculated from a method number list tr m.

( 6 ) Sampling y including α, and β with the C(M|y).
( 7 ) Define y having posterior distributions αp, and βp as the

APREP-S model.
Therefore, the APREP model for each method mi is

p(mk |y) =
exp(αp + βpmk)∑Q

q=1 exp(αp + βpmq)
(7)

4.3.2 Model Operation Phase: Inference with APREP-S
model

In the model operation phase, APREP-S has the main task
termed “infer likelihood of each method”. In this paper, we
define α and β as fixed values of the mean of each method.

Algorithm 3 Calculation of the recommendation proportion of
each method based on likelihood (model operation phase)
INPUT: x is a list of normalized features calculated from INF LIS T .

Q is the number of features.

APREP-S model is a generated model in Algorithm 2.

αp, βp are parameters of APREP-S model.

OUTPUT: proportion P (unit:%)

1: y← APREP-S

2: for k ← 1 to K do

3: for q ← 1 to Q do

4: Eα[α|mk] =
∑
q

p(αp |mk)αp

5: α← Eα[α|mk]

6: Eβ[β|xq,mk] =
∑
q

p(βp|mk , xq)βp

7: β← Eβ[β|xq,mk]

8: end for

9: y = α + βx← α, β

10: p(mk |y) = exp(α + βx)/
∑K

k=1 exp(α + βx)← x

11: Pk(mk |y) = 100 * p(mk |y)
12: end for

First, APREP-S calculates the expectations of each parameter,
and then, calculates the likelihoods of each method for obtaining
the recommendation proportion. The algorithm refers to Algo-
rithm 3 and the following specific flow:
( 1 ) Input two data: a normalized feature list x generated in “cal-

culate features” and an APREP-S model generated in the
model training phase.

( 2 ) Calculate each expectation as fixed values Eα and Eβ using
αp and βp.

( 3 ) Define the APREP-S model for inference y with Eα and Eβ
( 4 ) For each element of in f and each m ∈ M, calculate likeli-

hoods p(m|y) using the APREP-S model.
( 5 ) Calculate the recommendation proportions based on the like-

lihoods of each method.

5. Evaluation

We evaluate the “model training phase” and “model operation
phase” in Fig. 4.

In this evaluation, we compare the sum of the square of the
errors (ERR) between Org and APREP-S output values u, and
between Org and the values calculated using other methods: i)
mean of the entire data, ii) mean of the around-the-target imputa-
tion data, and iii) cubic spline interpolation. The specific is shown
in Section 5.2.3. The model that corresponds to a smaller ERR is
the one with higher accuracy. We create a dataset with outliers
and missing data based on the original data and let the original
data [18] list be Org=(org1, org2, ..., orgN). If the number of tar-
get imputation data is oi ∈ O (i=1,...,N, oi is a data that the analyst
inputs), the APREP-S model returns imputation values vi. There-
fore, ERR is given as

ERR =
1
2

I∑
i=1

(orgi − vi)2 (8)

5.1 Evaluation Preparation
Before the evaluation, we need to define a dataset (including

calculating data similarity), methods, and features. Each specific
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is described as follows.
5.1.1 Evaluation Dataset

We use a dataset [18] composed of wireless temperature and
humidity sensors (DHT-22) installed inside or outside a home.
The well-known sensors measure pressure, temperature, humid-
ity, magnetometer, gyroscope, accelerometer, image, etc. In this
evaluation, we select temperature and humidity as popular sensor
data because they are numerical and time-series data having daily
trends.

This dataset has 29 columns, e.g., measurement time, temper-
ature, humidity, pressure, and wind speed. The temperature and
humidity columns have nine sensors each, installed on the first
floor, second floor, and outside, e.g., sensor1 measures temper-
ature T1 and humidity RH1. There are four sensors on the first
floor; sensor1 is in the kitchen area, sensor2 is in the living area,
sensor3 is in the laundry room, and sensor4 is in the office room.
Sensor1 and sensor2 are in the same room. There are five sensors
on the second floor; sensor5 is in the bathroom, sensor6 is at the
north side outside the house, sensor7 is in the ironing room, sen-
sor8 is in the children’s room, and sensor9 is in the parents’ room.
The time span of the original dataset is 137 days (4.5 months),
with 19,735 rows per sensor. Each sensor transmits data approx-
imately every 3.3 min, which are then aggregated from 3.3 to 10
min. The digital DHT-22 sensors used have an accuracy of ±
0.5◦C for temperature measurements and ± 3% for relative hu-
midity. We create evaluation data including outliers and missing
data based on this dataset. Let the occurrence probability of miss-
ing data depend on the exponential distribution

f (e) =
1
ε

exp
(
−e
ε

)
(500 ≤ ε ≤ 1000) (9)

and define nine outliers and one missing data out of every 10
datasets. The outlier difference between the original data and the
evaluation data depends on a Gaussian distribution.

f (e) =
1√

2πσ2
exp

{
− (e − orgi)2

2σ2

}
(0 ≤ σ2 ≤ 10) (10)

Let σ2 be the variance.
We calculate the rate of similarity of evaluation data using “k-

Shape” for classification, as mentioned in Section 3. This is an
analysis preparation phase in Fig. 4. In this paper, we extract ev-
ery 30 min of data from the original dataset for calculating simi-
larity. The results are shown in Fig. 6 and Fig. 7. First, we need
to decide a cluster number to be inputted to k-Shape. There-
fore, we use an elbow chart for deciding the number of clusters
in a chart (a). As elbow charts, the best T ’s cluster number is
three and RH’s cluster number is four. The k-Shape results are
indicated by the line graph (b). T is classified as cluster1 =
[T2, T6], cluster2 = [T1, T3], cluster3 = [T4, T5,T7, T8, T9].
RH is classified as cluster1 = [RH3,RH4,RH7,RH8,RH9],
cluster2 = [RH6], cluster3 = [RH1,RH2], cluster4 = [RH5].
In addition, we calculate DTW [19], [20], which detects patterns
in a data stream or time series by the distance measure between
the data. The distance of DTW is shown as a heat map (c). A
deep blue color indicates a large difference, while a light color
indicates a small difference between the two data. However, T ’s

heat map is without T6, while RH’s heat map is without RH5 and
RH6, because the differences are too large between them and the
other data because of T6, and RH6 is installed outside and RH5
is installed in the bathroom.

We choose three pairs of data: [tr, in f ]=[T1, T3], [RH1, RH2],
[RH2, RH1], and [RH3, RH4]. Each pair is classified in the same
cluster by the k-Shape, and indicated by a light color in the DTW
heat map. T1 is configured to have 20 outliers and missing data
with Eq. (9) and Eq. (10), T3 has 39, RH1 has 36, RH2 has 37,
RH3 has 20, and RH4 has 38.
5.1.2 Evaluation Methods

We define three methods m1,m2,m3 ∈ M for evaluation in
APREP-S. m1 is a mean of front and behind, m2 is an imputation
of the front data without the transform, and m3 is a cubic spline
interpolation [21]. In this evaluation, we define single imputation
methods because it is a well-used imputation method.
• m1(oi) = (oi−1 + oi+1)/2
• m2(oi) = oi−1

• m3(oi) = a j(oi − o j)3 + b j(oi − o j)2 + c j(oi − o j) + d j

(1 ≤ j ≤ N − 1)
Let i (i = 1, ...,N) be a target imputation data in tr or in f .
5.1.3 Evaluation Features

We define three features x1, x2, x3 ∈ x. x1 is the gradient of the
front and before data, x2 is the trend of the two front data, and x3

is the difference between the mean of the front and the behind and
that of all data. Let i (0 ≤ i ≤ N) be one of the target imputation
data in tr or in f .
• x1(oi) = (oi−1 + oi+1)
• x2(oi) = (oi−2 + oi−1)
• x3(oi) = |(oi−1 + oi+1)/2| −mean(o)

5.2 Evaluation Measuring
5.2.1 Model Training Phase

The two parameters of APREP-S α and β depend on Gaus-
sian distribution (mean: μ=0, variance: σ2=2). In addi-
tion, an analyst inputs a selected method number list tr m,
which is shown below for each imputation method on the tar-
get imputation data. Each tr has each tr m, e.g., T1 has
(3, 1, 1, 3, 2, 3, 1, 1, 2, 2, 3, 2, 3, 2, 3, 3, 3, 1, 3, 3) (the list size is
20). The flow of generating the APREP-S model is as follows:
( 1 ) Searching outliers and missing data (target imputation data)

and creating method number list tr m

( 2 ) Calculating features of target imputations: x1, x2, x3, and
normalizing x1, x2, x3

( 3 ) Infer model parameters α and β by using Algorithm 2. Input
data are tr m list, methods M, features x. Output is APREP-
S model.

5.2.2 Model Operation Phase
For data in f , we search target imputations and calculate fea-

tures as well as tr. Then, we infer the likelihood of each method
for each in f by using each APREP-S model. For example, we
infer the imputation method of T3 using the APREP-S model,
which generates T1, as in f=T3 is a pair of tr=T1. The recom-
mendation proportions P of the first three imputation targets are
as follows.
1st: m1 = 39.67%, m2 = 4.97%, m3 = 55.36%
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Fig. 6 Result of similarity of temperature (T ) data: (a) elbow chart, (b) classification of k-Shape: T data
classified three clusters, (c) heat map of dynamic time warping (DTW) (deep blue color denotes a
large difference, while light blue color denotes a small difference).

Fig. 7 Result of similarity of humidity (RH) data: (a) elbow chart, (b) classification of k-Shape: RH data
are classified into four clusters, (c) heat map of DTW (deep blue color denotes a large difference,
while light blue color denotes a small difference).
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2nd: m1 = 9.02%, m2 = 0.22%, m3 = 90.76%
3rd: m1 = 12.23%, m2 = 0.22%, m3 = 87.55%

Then, APREP-S calculates imputation values of each method.
The values u of the first three imputation targets are as follows.
1st: m1 = 20.60, m2 = 20.60, m3 = 21.00
2nd: m1 = 19.34, m2 = 19.29, m3 = 19.70
3rd: m1 = 20.13, m2 = 20.20, m3 = 19.78

In this evaluation, we assume that an analyst selects a
method of the highest probability. As a result of inference
T3 by APREP-S, the selected method number list of T3 is
in f m=(3, 3, 3, 1, 1, 2, 3, ..., 3, 3) (the list size is 39).
5.2.3 Comparing Model

We define three single imputation methods for comparing with
APREP-S: (i) Mean of the the entire data = mean(o), (ii) Mean
of the around the target imputation data = mean(o j) (i− 36 ≤ j ≤
i+36), (iii) Cubic spline interpolation=a j(oi−o j)3+b j(oi−o j)2+

c j(oi − o j) + d j (i − 36 ≤ j ≤ i + 36). We use a sensor data every
10 min (Section 5.1.1). Therefore, the range of the target data
is defined for each of the 6 h before and after the target imputa-
tion data oi (36 × 2 +1 = 73 rows). “Mean of the entire data”
inputs the mean of all in f data. “Mean of the around-the-target
imputation data” inputs the mean of the 6 h before and after the
target imputation data. This corresponds to 12 h, 72 rows. “Cubic
spline interpolation” inputs the median of the list that has 73 rows
from the model that learns based on the original 72 rows of data.

5.3 Evaluation Result
The result of the accuracy is shown in Table 2. We calculate

the sum of squares error (Eq. (8)) for each method - APREP-S,
mean of the entire data, mean of the around the target imputa-
tion data, spline interpolate, and original data. In the inference of
RH2 based on RH1, RH1 based on RH2, and RH4 based on RH3,
the highest-accuracy method is APREP-S. In the inference of T1
and T3 pair, the highest-accuracy method is Spline, and that with
the third highest accuracy is APREP-S. Single imputation has the
worst accuracy in each tr and in f pairs. Therefore, APREP-S is
the most suitable method for RH data, but not the best method for
T data. We discuss this reason in Section 5.4.

5.4 Evaluation Discussion
We consider that APREP-S is suited for data which has more

changing points. The number of changing data and the percent-
age are shown in Table 3. There are more target imputation data
at the changing point in RH data than T data; for example, T3 has
only two changing points in the target imputation data, whereas
RH1 has seven changing points. In this evaluation, we create the
imputation value at random, as mentioned in Section 5.1.1. As
RH data is more fluctuating than T data, the possibility that the
changing points become the target imputation data is higher than
that of becoming the T data. The line graph of RH and T data
during one week is shown in Fig. 8. The above lines indicate RH

data, while the below lines indicate T data. As a result, although
the accuracies of spline interpolation and mean are enough for
gentle data, they are not suitable methods as the imputation of
the changing point. On the other hand, the accuracy of APREP-S
is not too low for gentle data and the highest for imputation of

Table 2 Comparison of accuracy using sum of squares error (Eq. (8)).

tr in f APREP-S All Around Spline
T1 T3 5.81 88.96 2.61 0.20

RH1 RH2 0.15 175.18 16.87 0.99
RH2 RH1 355.49 935.75 683.26 526.80
RH3 RH4 0.16 370.97 8.40 0.21
(*) “All” indicates Mean of the entire data

“Around” Mean of the around-the-target imputation data
“Spline” Cubic Spline Interpolation

Table 3 Feature of evaluation data.

RH1 RH2 RH3 RH4 T1 T3
changing point(*) 7/36 5/37 2/20 5/38 2/20 2/39
percentage 19% 14% 10% 13% 10% 5%
(*) changing point: changing points / all imputation targets

Fig. 8 Line graph of T and RH data during a week.

the changing points. That is, we consider that APREP-S is suited
for fluctuating data such as humidity data, human motion, and
trajectory data.

6. Conclusion

This paper proposes APREP-S based on the PBE approach,
which imputes values into data such as sensor data, including
outliers and missing data. APREP-S integrates the advantages
of manual processing, “customization”, and those of automated
processing, “automated work” and “accuracy”.

The following are the conclusions of this paper:
• By comparing APREP-S with other imputation methods, it

is verified that APREP-S based on the PBE approach is an
effective imputation method.

• For generating the APREP-S model, we can use similarity
data as training data.

• As an evaluation result, we consider that APREP-S tends to
be more suitable for fluctuating data. It is accurate enough
even for imputation by only mean and only spline interpola-
tion in the gentle data.

We find that APREP-S is a suitable method for imputation of
outliers and missing data. However, the effectiveness of APREP-
S is slightly weak in gentle data, as indicated by the evaluation
result. If we define a more suitable method for gentle data in
APREP-S, the accuracy of APREP-S can be improved. More-
over, in the evaluation of this paper, we create imputation values
at random, which are not continuous. We consider the application
scope of APREP-S, not only non-continuous imputation but also
area imputation, if we define the bulk imputation method as an
imputation method that can be selected in APREP-S. Therefore
we research these methods as a next step. In addition, “k-Shape”,
which is the method for checking the similarity of data in the
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analysis preparation phase, needs to decide the number of clus-
ters before classification. We assume that the analysis prepara-
tion phase can be included in the model training phase to use any
method of classification without deciding the number of clusters.
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