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A Study of Process Algebras for Active Databases

Yoshinao ISOBE, Isao KOJIMA, Kazuhito OHMAKI

Information Base Section, Computer Science Division, Electrotechnical Laboratory
1-1-4 Umezono, Tsukuba, Ibaraki 305, Japan

The purpose of this research is to analyze production rulesin active databases and to exploit an assistant
system for rule programming. Each production rule is a specification including an event, a condition, and
an action. The action is automatically executed whenever the event occurs and the condition is satis-
fied. An active database, which is a database with production rules, can spontaneously update database
states and check their consistency. Production rules provide a powerful mechanism for knowledge-bases.
However, it is very difficult in general to predict how production rules will behave due to cascading rule
triggers, concurrency, and so on. ’

In order to describe and analyze concurrent and communicating systems, process algebras such as CCS,
CSP, ACP, and w-calculus, are well known. We are attempting to adopt a process algebra as a basic tool
to analyze production rules. However, there are difficulties to apply existing process algebras to analysis

of production rules, for example, multi-way local communications between a parent-process and created
child-processes.

In this paper, we propose a process algebra named CCSPR (a Calculus of Communicating Systems with
Production Rules), which is an extension of CCS. The advantage of CCSPR is to easily describe variable |
process trees. Therefore, production rules can be appropriately analyzed in CCSPR. First, we explain
how to analyze production rules by CCS and point out problems of the analysis. Second, we introduce
CCSPR and show its advantages for analysis of production rules.
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—147—



1 Introduction

Active databasesI4! can spontaneously react to spe-
cific situations, by means of production rules. Pro-
duction rules specify relations between situations
and (re)actions. Each rule is a specification includ-
ing an event, a condition, and an action. When an
event occurs, all rules including the event are trig-
gered simultaneously, and they can be transacted
concurrently. In each transaction, the action in the
triggered rule is executed if the condition in the
rule is satisfied. Furthermore, the action execution
can trigger other rules which are transacted as its
child-transactions (also called nested transactions).
Thus, cascading rule triggers produce a transaction
iree. S

Relations between a parent-transaction and a child-
transaction are specified by coupling modes. There
are three possible coupling modes!14l:

1. immediate : A child-transaction is immedi-
ately executed after triggered, and its parent-
transaction has to wait to commit until the
child-transaction committing.

2. separate : A child-transaction is immedi-
ately executed after triggered, but its parent-
transaction has not to wait to commit until
the child-transaction committing.

3. deferred : A child-transaction execution is
delayed just prior to the top-level-transaction
committing of the transaction tree including
the child-transaction.

In most cases, the first coupling mode immediate
may be used. In some cases, such as display of mes-
sages without respect to parent-transactions com-
mitting, the second coupling mode separate may
be used. In other cases, such as consistency con-
straints, the third coupling mode deferred may be
used.

Users of an active database system want to freely
design production rules, so that the system auto-
matically react to specific situations. However, it
is very difficult in general to design rulesIBIB] be-
cause of cascading rule triggers, coupling modes,
concurrency, communications, and so on. Hence,
it is important to analyze behaviors of rules before
they are executed and to aid rule programming.

We are attempting to adopt a process algebra as a
basic tool to analyze production rules. In order to
describe and analyze concurrent and communicat-
ing systems, process algebrassuch as ccstel csplm,
ACP®l, and n-calculus!®), are well known. We tried
to apply existing process algebras to analysis of pro-
duction rules. We have at least three requirements
in order to analyze production rules as follows:

1. A process can call out saved processes and to
create executable processes for them.

2. Relations between parent-processes and child-
processes must be uniquely determined in or-
der to construct a process treel.

3. Multi-way local communications between a

parent-process and child-processes are needed
in order to implement coupling modes.

It may be possible to describe the above properties
by existing process algebras. However, there are dif-
ficulties to describe by them. In order to construct
a process tree, for example, a notion of process-id is
available, but it explosively increase cost of calculus
for analysis by process algebras.

In this paper, we propose a process algebra named
CCSPR. CCSPR is ‘a Calculus of Communicating
Systems with Production Rules’, and it is an ex-
tension of CCS. An important feature of CCSPR
is to explicitly indicate relations between parent-
processes and child-processes by Subordinate com-
positions ) instead of process-id’s.

In Section 2, we show an example of a scheduler
with production rules and explain how to analyze
it by process algebras. Then, problems of existing
process algebras for production rules are pointed
out. In Section 3, combinators of CCSPR are infor-
mally introduced, and it is explained how to create
child-processes. In Section 4, definitions of CCSPR
are given. In Section 5, the example given in Sec-
tion 2 is analyzed using CCSPR.

2 An analysis of production
rules by process algebras

In this section, we give an example of production
rules and analyze the scheduler using CCS. Then,
problems of existing process algebras for production
rules are pointed out.

2.1 An example of production rules

In this Subsection, an example of a scheduler with
seven production rules is given. For simplify, we as-
sume that a condition in each rule is always true and
can be omitted. Therefore, each rule includes an
event, an action, and a coupling mode. The action
consists of scheduled events al,---,a7 and trigger-
ing events el, - -, e7. Assume that triggering events
are hidden from its environment. In other words,
rules can be triggered by only a rule managers and
actions in rules. The production rules are specified
in Figure 1.

11t corresponds to a transaction tree in active databases.
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[ Name | Event | Action | Coupling Mode |

Rule 1| el al;e3 | immediate
Rule 2| el aZ;ed | immediate
Rule 3| e3 | a3;eb deferred
Rule 4| e4 | ad;el separate
Rule 5| e4 a5 immediate
Rule 6 eb ab immediate
Rule 7| e7 a7 deferred

Figure 1: The specification of each production rule

Figure 2: The process tree of this example

ai —-\
evi < /55’» - 26 -=commit

a2 = a5

Figure 3: The expected order of scheduled events

For simplify, the rule manager M can perform only
the event el when an event evl is signaled from its
environment, and it becomes an inaction process af-
ter committed. When the event el occurs, Rule 1
and Rule 2 are triggered. And cascading rule trig-
gers produce a process tree as shown in Figure 2.
The order of scheduled events is expected as shown
in Figure3, by means of coupling modes. For exam-
ple, the action in Rule 3 is delayed just prior to M
committing. The commitment of M is delayed until
Rule 2 committing. The commitment of Rule 2
is delayed until only Rule 5 committing, because
Rule 4 has a coupling mode separate. Therefore,

the action in Rule 3 is executed after the actions in
Rule 1, Rule 2, and Rule 5. On the other hand,
the action in Rule 7 waits for only Rule 4, because
Rule 4 and Rule 7 are separated from other rules.

2.2 An application of CCS

It is impoftzmt to check whether the scheduler with
the seven production rules behave as shown in Fig-
ure 3, or not. We tried to apply existing process
algebras to this checking. We explain how to de-
scribe the scheduler in CCS (a Calculus of Commu-
nicating Systems) which is a fundamental process
algebra proposed by R.Milner!6].

Each rule is described as follows?:

Rule(X,Y) " (s.X[d/done]|Y)\{s,d}

def

Rl = el1(,7)-(Rule(AL(), IM1(4,§))| R1)
R2 Y els(4, 5).(Rule(A2(i), IM2(i, 5))| R2)
Rr3 ¥ e3(4, 7).(Rule(A3(:), DF1(i, §))| R3)
R4 % ey (4, j).(Rule( A4(), SP1(i, 1))| R4)
R5 % eda (i, 5).(Rule(A5(3), IMO(i, 1)) R5)
R6 % e6(i, 7). Rule(AB(:), I MO(i, 7)) R6)

RT % e7(1,5).(Rule(AT(i), DFO(i, )| RT)
R %' (R1|R2|R3|R4|R5| R6| RT)

Rule(X,Y) is an operator upon processes. A pro-
cess substituted into X is controlled a process sub-
stituted into Y. In this case, a process for executing
an action is substituted into X, and a process for a
coupling mode is substituted into Y. For example,
R1 which is a process for Rule 1 creates a pro-
cess Al(7) for its action and a process IM (3, j) for
its coupling mode, when an event el;(,j) occurs.
The parameters : and j are a self-process-id and a
parent-process-id, respectively. The process-id’s are
received from its parent-process thought the event
ely (4, 7), when its parent-process calls out.

Each action is described as follows:®

AL() % TT.getid(k).e3(k, 7).done.0

.
A2(5) " a2 getid(k). ok (F, 1).getid(k).eda (F, 3).done.0
A3() % T3 getid(k).2B(F, 7).done.0

A4(i) ' 3T getid(k). STk, 7). done.0

A5() % 25.2om6.0

A6(3) ' 26.dome.0

AT() & a7 done.0

2w.P denotes a process which performs an event w there-
after becomes a process P. | denotes a concurrency com-
position. \ denotes a restriction of a communication. [a/b]
denotes a relabelling of a event from b to a.

3In CCS, overlined events such as @ is used for output
events, and unoverlined events such as a is used for input
events. Complementary events such as a and @ can sponta-
neously occur and they can communicate.
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getid(k) is an event for binding a new process-id where, ; and | are defined as a Sequential composi-

into k from a process ID(:) defined as follows: tion and a Parallel composition, respectively. {(P))
et means separation of the process P. FAl,---, FA7
ID(3) = getid(i).ID(i + 1) contain only scheduled events unlike Al,---, A7,

Processes for coupling modes depend on the number because triggering events can not be observed.
of child-processes called out by action executions. = We can check whether the scheduling system SY'S
behave as the expected oreder ORDER shown in

IMO(”J) s d.5.sd;.cd;.0 Figure 3 or not, using algebraic laws in CCS. We

IMl(hJ) ' 5.d.ci.T.0d; 55 cd; o350 proved SY'S = ORDER?* using CWBI*! (Concur-
IM2(i,5) 2 5.d.c.ci.T.0d; 5d5.50;5.cd;.cd;.cd;.0 rency workbench).

SPOG, 5) < ((5.4.0)|(c7.0d;.2d;.0))

SP1G,J) é (5.d.cs.55.0d:.0)|(55.5;.78;.0) 2.3 Problems to be resolved
S’P2(z,]) ((3.d.c,‘.c;‘m.s_d;.cd;.cdi‘o)l(bjsdj Ed_J-O))

As shown in Section 2.2, it is possible to analyze
Codef production rules in CCS. However, there are prob-
DF0(¢,j) = €.sd;.5.d.cd;.0 lems as follows:

DF1(,5) %' ©.5d; 5.d.c; 5d;.cd;.cd;.0

DF2(i,5) & & .5d; 5.d.ci.ci 5di.d;.cdy.cdi od;.0 1. Parameters such as process-id’s explosively in-
IMO, IM1, and IM2 are processes to implement a crease cost of calculus for analysis.
coupling mode immediate to control actions which 2. Processes for coupling modes depend on the

call out zero, one, and two child-process(es), respec-
tively. SP and DF are processes for coupling modes
separate and deferred, respectively. s and d are
events to control a start point and an end point of
an action execution. ¢; is an event to transmit to a
parent-process that its child-process with a coupling
mode immediate is committed. sd; is an event
to start a deferred child-process from the parent-

process. thi.iS a;lzvent to tr@ﬁmit to 1:,* parendt- of process-id’s. For the second problem, multi-way
: > ted b P and SC .
of the scheduler is built as follows: are supported by an

number of child-processes.

For the first problem, a process with parameters
must be translated to processes with no parame-
ter for analysis. The number of processes with no
parameter is equal to the number of state of pa-
rameters. In order to avoid this increase, it may be
elegant to use private links in m-calculus!® instead

However, it seems that there is not a process alge-

SYS S (RIM|ID(W\L bra comprehending the properties above mentioned.
at For describing production rules, a process algebra

M ‘= evl.getid(k).el;(k,0).getid(k).el2(k,0) such as m-calculus may be extended to describe multi-
.cg.co.5dp.sdg.cdg.cdg .0 way communications. It may be possible. However,
passing events among processes in w-calculus makes

L' = {s,d} U{el1,ely,e3,ed;,eds, e6,eT} L. .
U{,c,-,.sd;,cdg ci€ {0, 1’2”3,4 1 a calculus be complex, although it is very useful in

general. We want to analyze production rules as
easily as possible. Thus, in our research, a specific
process algebra for production rules is preferred to
a general useful process algebra.

M is a process for the rule manager. L is a set for
hiding events in it from environment.

Next, we describe expected oreder ORD ER in shown
Figure 3. It is described in CCS as follows :

X:¥ 4 (X[d/donel|dY)\d 3 Introduction of CCSPR

xpy & def (X [dy/done]|Y [d2 /done]|dy .d2.done)\d1, d2

(xy % (X[d/done”dAOIm.O)\d The first idea in CCSPR is to introduce processes

named resources. Each resource holds processes and

EA1 ¢ al done.0 EA2 a2 done.0 a running process can call out the processes from
E A3 fef a3 Jone.0 EAg & a4 Jone.0 the resource as its child-processes. We will use re-
E A5 def —= =10 EA6 % 6. dome.0 sources for holding production rules. In this sec-

tion, we informally introduce new combinators of
EA7 a7.done.0 cCoM def com.done.0 Y . .
d‘; one com.done CCSPR and explain how to create child-processes
ORDER = evl.(EAl|(EA2;(EA5|(EA4; EATY)) from resources in CCSPR.
s EA3; EA6; COM)

4The = is observation congruence in ccslél,
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3.1 New combinators of CCSPR com-
pared with CCS

We extend CCS to a process algebra CCSPR (CCS
with Production Rules), adding seven basic combi-
nators |, ), /,p>, { } .=, and [ ] for analysis of
production rules. Furthermore, local-up-events |a]
and local-down-events [a] are added for local com-
munications between a parent-process and child-
processes. The function of each new combinator
is informally explained as follows:

¢ Synchronous composition ||. It is similar to a Com-
position | in CCS except for synchronization of only
local-up-events |a|. For example:
laf
((la]-P1) | (|a].P2)) == (P1|P2)

It is similar to a concurrency combinator | in CSP.

Subordinate composition ). It is similar to a Com-
position | in CCS except for multi-way local communi-
cations between a parent-process and child-processes.
For example:

[a]

((fal.PO) ) (lal-P1}lal.P2)) — (PO ) (P1|F2))
where both P1 and P2 are child-processes of P0. No-
tice that the event on the transition is [a] instead of
7.5 This implies that further communications with
other child-processes are possible.

Hiding /. It is exactly the same to a Hiding / in
CSP. For example:

(fa].P3)/[a] = P3/[d]
In CCS, since a Hiding can be defined by a Composi-

tion and a Restriction, it is removed from basic com-
binators. But in CCSPR, it is needed for local-events.

Supplier p>. It supplys child-processes from left side
of > to right side. For example:

{2.Q1} > (@.P3) - {a.Q1}>(P3)Q1)

where {{ } is a Resource combinator as explained next.

*

Resource {{ }. It builds a resource from processes.
Processes in a resource are called out by their initial
events. For example:

{a.Q1} = {a.Q1}>Q1

¢ Union :: It unites two resources into one resource.
If resources hold processes with same initial events,
then such processes are simultaneously called out. For
example:

fa.Q1}:{a.Q2+5.Q3} = {c.Q4}
-5 ({a.Q1}:{a.Q2+ 5.Q3} = {c.Q4}) > (QLIQ2)

Packing [ ]. It is used for making two or more parent-
processes. For example :

fa.Q1}[a.P1| P2) %» {a.Q1}([P1] P2DQ1)
£a.Q1}>[a.P1] P2] - {a.QI}>[(P1)Q1) | P2

In this case, parent-processes of Q1 are always both
P1 and P2.

.

5In CCS, an internal event such as a communication is
represented by 7.

3.2 Creation of child-processes

Penetration

A Supplier > can penetraie seven combinators +, |,
I, ) [],\ and /, and it can supply child-processes
from resources. A Packing [ ] is used for forbidding
the penetration. For example:

{0.Q1} > ([a.P1{P2]\a| P3)

— {a-Q1}>([P11P2D)Q1\|P3)
where parent-processes of Q1 are always both P1
and P2. If the Restriction \@ is removed, the follow-
ing transition is also possible :

fa.Q1} > ([@.P1|P2]|P3)
— {a.Q1}>((IP1|P2]|P3))Q1)
On the other hand, if the Packing [ ] is removed,
the following transition is also possible :

{a.Q1}1>((a.P1|P2)\G| P3)
— {a.Q1}>(((P1)Q1)| P2)\a|P3)

Therefore, the example Ez.1 indicates that a pair
of a Packing and a Restriction is useful in order
to avoid nondetermination of parent-processes. It
is important to notice that new child-processes are
created inside of Restrictions and outside of Pack-
ings.

(Ex.1)

Cascading creation

Child-processes can also create their child-processes
by penetration. For example:

(fa.(3.QL\B} = {b.Q2}) > (@.P1)\G (Ez.2)

- (£a-(0.QU\B} = {b.Q2}) b (PLY(B.QL)\B)\&

— (a.B.QU\F}: £6.Q21) > (P1)(Q1)Q2)\B)\7
where, Q1is a child-process of P1, and Q2 is a child-
process of Q1. P1 can not directly communicate
with @2 through local-events. Accordingly, Q2 is a
grandchild-process of P1.

Sequential creation

One process can also sequentially create its child-
processes. For example:

({{a.er]}::{{b.QQ]})b(h‘.E.Pl)\_{E,E}
- ({a-Q1}={b.Q2}) 1> (5.P1)Q1)\ {5, 5}
— (fa.Q1}:{b.Q2})>((P1)Q1))Q2)\ {3, b}
where, both Q1 and Q2 are child-processes of P1.

Compare the locations of parentheses in Ez.2 with
in Ez.3.

(Ez.3)

4 The definitions of CCSPR

In this section, we formally define events, syntax,
and semantics of CCSPR.
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4.1 Events

We first assume that an infinite set N = {a,b,¢,- -}
of names is given. It is ranged over by a. Then, we
define sets of events, where 7 ¢ A and 7 is a special
event called an internal event.

Definition 4.1 We define the following five sets of
events:

e Eg = {a,@:a €N} is a set of global-events.

o Ery ={la) : a € N} is a set of local-up-events.

o Epp = {[d] : a € N'} is a set of local-down-events.
e Ep = ErLy UELD is a set of local-events.

o Event = EgU EL U {7} is a set of events.

where G = a. ' 1

In this paper, the sets Eg and Event are ranged
over by p and w, respectively.

4.2 Syntax

We define the set £ of CCSPR expressions as fol-
lows: '

Definition 4.2 The set of process ezpressions, &
ranged over by E, F,- - -, is the smallest set including
the following expressions:

X : a Variable (X € X)
A : a Constant (4 € X)
R : a Resource (R € R)
I : a Synchronous identity
w.E : a Prefix (w € Event)

TicrEi : a Summation (I is an indexing set)
E1]E2 : a Synchronous composition
E;|E2 : an Asynchronous composition
E1)E; : a Subordinate composition
E[f] : a Relabelling (f € F)
E\L : a Restriction (L C Eg U EL)
E/L : a Hiding (L C EgUEL)
{E] : a Packing
RBE : a Supplier (RE€R)
where E, E; are already in €. X and K are sets

of process variables and process constants, respec-
tively. F is a set of relabelling functions. The set
of Resources, R ranged over by R, Ry, Ry, -+, is the
smallest set including the following expressions:

{P} : a Resource (P €P)
Rj1=R2 : an Union

where Ry, Ry are already in R. The set of process,
P ranged over by P,Q,---, is the smallest set in-
cluding the following ezpressions:

A(eK), R(e Rr), I, w.P, T;e1Pi, Pi||Ps, P1| P,
Py)Po, P[f], P\L, P/L, 1, RpP

where P, P; are already in P. 1

A Constant is an process whose meaning is given
by defining equation. In fact, we assume that for
every Constant A there is a defining equation of the
following form:

def

A=P (P eP)

where each occurrence of A in P is within some
subexpression w.P’. In other words, A is weakly
gquarded® in P.

A special process inaction 0 is defined by using
Summation as follows:

0% Bi B

4.3 Semantics

The semantics of CCSPR is defined by the following
labelled transition system like one of CCS:

(€, Bvent,{—>: w € Event})

For example, E - E' (E,E' € &) indicates that the
process expression F may perform the event w and
thereafter become the process expression E’. The
semantics of process expressions consists of a defi-
nition of the transition relations —= over £.

Before defining the semantics, we define a set of
syntactic initial global-events for each process P.

Definition 4.3 We define a set ev(P) of syntactic
initial global-events of a process P as follows:

ev{w.P) = { %w}

ev(Tier Pi) = Uie[ ev(P;)
ev(P|Q) = ev(P) U ev(Q)
eo(PIQ) = eo(P) Uev(Q)
o(P)Q) = ev(P) U eo(Q)
ev(P[f]) = {f(p) : p € ev(P)}
ev(P\L) = ev(P)- L
ev(P/Ly = ev(P)— L
ev([P]) = ev(P)
({PY) = eo(P)
ev(Ry = Ry) = ev(R1) U ev(R2)
ev(RD>P) = ev(P)
ev(I) =0

ev(A) = ev(P)

(w € Eg)
(w¢ Eg)

(A€ P) [
Since a Constant A must be weakly guarded, ev(P)
can be always evaluated. Then, the semantics of

CCSPR is defined as follows:

Definition 4.4 The transition relation —— over pro-
cess expressions is the smallest relation satisfying
the following inference rules. The each Tule means
that if the transition relations above the line exist
and the side conditions are satisfied, then the tran-
sition relation below the line also exists.
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Event =
wE — E
E; = E!
Sumj‘]__’wl“,‘ (el
DierEi — E'j

E . E
Syne;—E=E' (¢ By
VEIF = EF

synC2_b_1‘:__. (w ¢ ELy)

RBE; — RB>E. )

S.Sum; J_’, L— (jeI)

Rp(Tigr Ei) — RPE;

) RpE - RpE'

R>(E|F) = R>(E'|F)
RbF — RpF'

R>(E|F) = R (E|F")

T !
S.Comy — RPE > ROE
Rb>(E|F) — R>(E'|F)

S.Sync

S.Syncg

[ '
E|F — E|F B S.Comg— BB F == RpF' :
Syncg £ Ny oy ol R (E|F) — RB(E|F')
T e T 1)
B|F — E'|F" S.Suboy FDFE — gDEE, =
o pMp  plp R>(B)F) T Rb(E)F)
yncy T,
ElF - gy S.Subog—ARE — RDF
oo b (E)F) — Rb(E)F)
C P B AV 2N T /
MEr = EF SRel—ARE— RbE
w Rp(E[f]) — R>(E'(f])
F— F
Comz—;——-———- RbE; RbE'
E|F < E|F'
, 1= £ . Rb(E\L) - R>(E'\L)
13 f
Goms £ -’E}fp = E,fpl_' £ S.Hide— EPE — RO E'

Subo; —E=E (4, ¢ Bp)
E)F — E')F

w
Suboz—F—_—*—Fi— (w ¢ Ery)

Rp>(E/L) - Ri-(E'/L)

/!
S.ConfBP — RbP. (4 df p
Rp>A — RBP |

EYF 25 BYF' Penetration of a Supplier is implemented by means
P P2 of S.Sumj, S.Syncy 9, 5.Comj 9, 5.8uboj 2, S.Rel,
Subog E)F - E'VF' S.Res, S.Hide, and S.Con. It may seem that the
Mo, o inference rule Pack is useless, but notice that there
Subo, E—F A F—=F is not an inference rule such as S.Pack. Thus, a
EYF — E"F' Packing can forbid the penetration.
E-LE
M = e L ,
Res B=2B (o 5 An application of CCSPR
€8 e
E\L = E\L
Hide; —£ B! (weL) In this section, the example of the scheduler used

E/L S E'/L

. E =, E
Hideg —~—"5—— (wé¢ L
25 =g @D
Pack—E—FE '—:‘*U
[E] — [E']

in Section 2 is analyzed in CCSPR. The produc-
tion rules in the system is described in CCSPR as
follows:
Rule(X,Y) & ([s.X[d/done][Y]\L)/H
L = {s,d,el,e2,e3,e4,€5,e6,eT}

Id 7 U{5,d,el,e2,e3,ed,e5,¢6,¢7}
1251 H = {[d,[sd],[ed]}
p-2, p def
c AZP
on = ( ) IM € 5.4.d. | |sd] . [sd).[ed]. |cd] T
def ,,_
Reso— L= P SP "% (5.4.[A-fsd].fod].O)T)
!
:{P]} — {P}pP DF ' |of.|sd) 5.d.[d].[sd]. [ed].|cd] I
. P —— —
Uniy Mo b (p ¢ ev(Ra2)) Al ¥ a1 3.done.0 Rl e1.Rule(A1,IM)
(B1:Rp) — (R1=Ra)>P def — — —— def
Ro o Bub P A2 = a2.ed.done.0 R2 = el.Rule(A2,IM)
Unig ———"2 =22 (o ¢ ev(R1)) A3 ' 33.26.done.0 B3 < 3. Rule(43,DF)
(B2 Ra) == (R = Fa) > P A4 T Tone.0 R4 % e4 Rule(A4,S
Unig R 2, RibP Ry -2+ R, >Q d:f a_;—z aone: - d:f ed.Bule(4d, P)\
(Ra=Ra) 2 (R =R2)b(P]Q) A5 = ﬁ one.0 R5 (:r e4.Rul§(A5,IM)
- A6 = ab.done.0 R6 = e6.Rule(A6,IM)
R RpP E-L def = —— def ’
Supp RoE 5 Ro (5 P) A7 = a7.dome.0 R7 = e7.Rule(A7,DF)
B where, IM, SP, and DF are processes for imple-
Nosupp —

o E = R B menting coupling modes immediate, separate, and
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deferred, respectively. Notice that these processes
can be used for every rules, without respect to ac-
tions in the rules. Then, the system is described as

follows: def

5vs < R ((M\L)/H)
R = {R1}:z{R2}={R3}={R4}={R5}:{R6}={RT}
M % ev1.21.[q.[sd). [od] Zom.done.0
We can check whether the scheduling system SY S
behave as the expected oreder ORDER defined in
Section 2.2 or not, using CCSPR. We proved SY'S =
ORDER using CWBU after we expanded SY'S
into an expression including only Prefixes and Sum-
mations by ezpansion laws which we have already
obtained. '

Notice that the expression in CCSPR has no process-
id’s. In CCSPR, local-up-events of child-processes
and local-down-events of its parent-processes aré
automatically connected when the child-processes
are called out. The following transition is shown
as a simple example of automatic connections:
{a.b]. PO} > ((a.[6]. P1)\a | [5].P2)
s fa.b]. PO} > (([8].P1) {b.PO)\a | [6].P2)

After (@.[b]..P1) calls out ({b].P0) as its child-process,
{8] in ([b].P1) is automatically connected to 4] in

(|b].P0). Hence, (|b].P0) can locally communicate

with ([b].P1) through |b| and [b], but can not com-

municate with ([b].P2).

6 Related work

Production rules are analyzed in directed trigger-
ing graphsd?Bl and Petri netss). Our approach is
adopting a process algebra as an analysis tool. Since
a process algebra can be one kind of programming

languages, it seems useful as base of an active database

language with static analysis ability.

We already proposed a process algebra CCSGP!12
for analysis of active database. CCSPR is more use-
ful than CCSGP. For example, two or more parent-
processes can be described by Packings in CCSPR,
but can not be described in CCSGP. But the def-
inition of CCSPR is simpler than one of CCSGP.
For example, CCSPR has 37 inference rules for the
semantics, while CCSGP has 51 rules.

7 Conclusion

‘We have stated difficulties of design of database pro-
duction rules, and therefore necessity of an assistant
system of rule programmers. We adopted a process
algebra as a basic tool to analyze production rules,
and have proposed a specific process algebra CC-
SPR for production rules.

In Section 2, we have pointed out problems for an
application of existing process algebras to produc-
tion rules. And in Section 5, we have shown that
production rules can be easily analyzed in CCSPR.
CCSPR is appropriate to analysis of concurrent sys-
tems with the following features:

s Processes can call out new processes from resources,

e Process trees must.be constructed, and

e Multi-way local communications between a parent-
process and child-processes are possible.

Active database systems have the above features.
There are still remaining the researches for equiva-
lence relations. We hope to have more powerful al-
gebraic laws enough to prove equivalence relations
between processes.
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