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Abstract: We propose DenseNet-based robust multi-channel speech recognition in noisy environments. Recently,
DenseNet has shown its efficiency in mask generation for single-channel speech enhancement tasks. In this paper,
we propose a multi-output DenseNet for the multi-channel situation. In the structure, beamforming frontend and
acoustic model back-end share a same DenseNet block, which can generate high-quality masks for beamforming, and
also perform feature extraction at the acoustic model part. At the training step, beamforming front-end and acoustic
model back-end are trained jointly with the ASR target. The experimental result shows that lower character error rate
and word error rate are obtained by the proposed method compared with conventional BLSTM based beamformer
front-end.
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1. Introduction
Recently, multichannel speech recognition is getting more and

more attention. A neural-network-based beamformer as front-
end becomes a popular option to handle noisy speech. In
[1][2][3], a BLSTM network is trained to generate masks of time-
frequency(TF) bins to estimate signal statistics for beamformers
like Generalized Eigenvalue(GEV) and Minimum Variance Dis-
tortionless Response(MVDR). In [4][5][6], joint optimization of
the neural beamformer front-end and ASR back-end has also been
considered.

In this paper, we focus on joint training of front-end beamform-
ing and back-end ASR and propose a new method to jointly train
the two parts based on DenseNet.

2. DenseNet Architecture
DenseNet is reported to have excellent performance in im-

age recognition tasks[7] and give improvement to single-channel
speech enhancement tasks[8]. The basic idea of DenseNet is to
improve the information flow between layers by concatenating
all preceding layers as XL = HL([X0, X1, ..., XL−1]), where [...]
denotes the concatenation and the composite functions HL() typ-
ically consists of a normalization layer, an activation layer and a
convolutional layer with k feature maps. A transition layer, which
consists of a normalization layer, a convolution layer and a pool
layer, is used between DenseBlocks to reduce the dimension and
number of the feature maps passed on to the following layers.
Such a dense connected structure enables all layers to receive the
gradient directly and also reuse features computed in preceding
layers. Figure 1 illustrates the DenseBlock.

1 Tokyo Institute of Technology, Tokyo, Japan
www.ts.ip.titech.ac.jp

Fig. 1 DenseBlock Structure.

3. DenseNet-based Front-end Beamforming
The process of front-end beamforming is similar to the one

in ESPnet[9]. The difference is that we use DenseNet for mask
estimation instead of BLSTM. The network outputs the time-
frequency masks as follows:

Zc = DenseNet(xt, f ,c
T
t=1)

mS
t,c = sigmoid(linearS (Zc)

mN
t,c = sigmoid(linearN(Zc)

where xt, f , c ∈ C is an STFT coefficient of c-th channel noisy
signal at a time-frequency bin(t,f), Z is the output sequence of
DenseNet, while linearS and linearN are used to obtain speech
noise masks respectively. These masks are averaged over chan-
nels and used to compute the power spectral density (PSD) ma-
trices of speech ΦS and noise ΦN at frequency bin b as follows:

ΦS ( f ) =
1∑T

t=1 mS
t, f

T∑
t=1

mS
t, f xt, f xH

t, f

ΦN( f ) =
1∑T

t=1 mN
t, f

T∑
t=1

mN
t, f xt, f xH

t, f

From the speech PSD and noise PSD, MVDR beamforming
filter is computed as follows:

g( f ) =
ΦN( f )−1ΦS ( f )

Tr(ΦN( f )−1ΦS ( f ))
u
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Fig. 2 Multi-output DenseNet Structure.

where u ∈ [0, 1] is a weight vector to microphone channels,
and Tr(·) is the matrix trace operation.

Finally, the enhanced STFT signal is obtained as follows:

x̂t, f =

C∑
c=1

gt, f ,cxt, f ,c

4. Multi-output DenseNet
Our proposed multi-output DenseNet network consists of two

DenseBlocks and is shown in Figure 2. The size of the input
tensor to the network is provided as B, C, T, F, with B, C, T, F
being batch size, number of microphone channels, numbers of
frame and frequency respectively. The initial convolutional layer
transfers microphone channel axis to the initial number of feature
maps. The first DenseBlock is shared by the front-end beamform-
ing and back-end acoustic model, while the second DenseBlock
is used only for further feature extraction for the acoustic model
part. Each of the DenseBlock consists of 3 sets of one batch nor-
malization layer, ReLU activation layer and convolutional layer
with the growth rate of 16 and therefore add 3*16 feature maps
to the input.

For the front-end beamforming part, the output sequence is ob-
tained from the first DenseBlock and passed on to two linear lay-
ers for mask generation. Note that the linear layers are apart from
the second DenseBlock and are used for generating the masks
for speech and noise separately. After the enhanced signal is ob-
tained using masks and noisy input STFT, it is passed back to
the first DenseBlock for feature extraction. To make the input
size uniformed to the first DenseBlock, we add a C=1 axis to the
single-channel enhanced STFT signal.

For the acoustic model part, two DenseBlocks are used for fea-
ture extraction. A transition layer parametrized with 0.5 is con-
nected to each DenseBlock to reduce the dimension of the feature
map to half. Then a linear layer is used to transit the DenseNet
subnet to the BLSTMP subnet. Then following 3 BLSTMP lay-
ers generate the final encoded sequence. During the training step,
we also adopt multi-condition training strategy, the noisy signal
will randomly skip the front-end beamforming part and be passed

Table 1 Details of Chime-4 Dataset)

Train Set Development Set Evaluation Set
Hour real 3 2.9 2.2
Hour simu 15 2.9 2.2
Speaker real 4 4 4
Speaker simu 83 4 4
Channel 6 6 6

Table 2 CER and WER Results of Evaluation Set

CER WER
real simu real simu

Baseline 11.4 8.9 20.7 16.3
DenseNet Backend 11.0 8.9 19.8 16.4
DenseNet Frontend 11.1 8.8 20.6 16.5
DenseNet Frontend+Backend 10.9 9.0 20.9 17.6
Multi-output DenseNet 10.4 8.3 19.6 15.9

straight to the acoustic model part.

5. Experimental Evaluation
We train and evaluate our proposed method on the Chime-4

dataset[10]. The details of the dataset is shown in table 1.
ESPnet toolkit[9] is used for end-to-end speech recognition,

which is based on a hybrid combination of connectionist tem-
poral classification(CTC) and attention-based encoder-decoder
model. In the Chime-4 baseline of ESPnet, BLSTMP is used
as frontend mask estimation and VGGBLSTMP is used as en-
coder.The front-end beamforming and back-end acoustic model
is trained jointly. For front-end beamforming and acoustic model,
80-dimensional log Mel filterbank energy is used as input fea-
ture, which is computed from 400-dimensional STFT coefficients
with window length as 400, the number of window shift as 160,
and window function as hanning. In the encoder, we use 3-layer
BLSTMP with 1024 units and 1-layer LSTM with 1024 units in
the decoder. The CTC-attention weight is fixed as 0.3. The word-
based RNN language model is used. We trained the proposed
model under the adadelta optimizer for 20 epochs.

The experiments compare Character Error Rate(CER) of the
baseline and our multi-ouput DenseNet for the 6-channel track.
The results are shown in table 2.

Our multi-output DenseNet with BLSTMP performs the best
in both real and simulated condition and improved the Chime-4
baseline in terms of CER by 10.5% relative on real condition and
8.0% on the simulated condition, which suggests that our pro-
posed multi-ouput DenseNet can generate high-quality masks in
the front-end beamforming while having the ability to extract ef-
fective features from noisy and enhanced signal in the back-end
acoustic model.

6. Summary
In this paper, we present a new model topology for handling

front-end beamforming and back-end acoustic model based on
multi-output DenseNet. Experimental results on the Chime-4
dataset shows that both CER and WER are reduced by our pro-
posed model on both real and simulation condition.
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