
Online Row Sampling from Random Streams

Masataka Gohda1,a) Naonori Kakimura2,b)

Abstract: This paper studies spectral approximation for a positive semidefinite matrix in the online setting. It is
known in [Cohen et al. APPROX 2016] that we can construct a spectral approximation of a given n × d matrix in the
online setting if an additive error is allowed. In this paper, we propose an online algorithm that avoids an additive error
with the same time and space complexities as the algorithm of Cohen et al., and provides a better upper bound on the
approximation size when a given matrix has small rank. In addition, we consider the online random order setting where
a row of a given matrix arrives uniformly at random. In this setting, we propose time and space efficient algorithms to
find a spectral approximation. Moreover, we reveal that a lower bound on the approximation size in the online random
order setting is Ω(dε−2 log n), which is larger than the one in the offline setting by an O

(
log n

)
factor.

Keywords: algorithmic spectral graph theory, spectral approximation, online algorithm, random streams

1. Introduction
Spectral sparsification is to compress the Laplacian matrix of a

dense graph to the one of a sparse graph maintaining its quadratic
form for an arbitrary vector. It was introduced by Spielman
and Teng [38] as a generalization of cut sparsification, and they
presented a nearly-linear-time algorithm for spectral sparsifica-
tion. Since then algorithms for spectral sparsification have be-
come faster and more refined [4], [30], [39] and brought a new
paradigm to numerical linear algebra and spectral graph theory.
In particular, it led to efficient algorithms for several problems
such as linear systems in symmetric diagonally dominant matri-
ces [12], [24], maximum s-t flow problems [22], [34], and linear
programming [28]. Spectral sparsification has been generalized
to positive semidefinite (PSD) matrices [13], [31], [32], which
we call spectral approximation to distinguish from spectral spar-
sification. For a matrix A in Rn×d, a matrix Ã ∈ Rn′×d is called a
(1±ε)-spectral approximation for A if, for every x ∈ Rd, x>Ã>Ãx
approximates x>A>Ax within a factor of 1 ± ε. The number of
rows in Ã, n′, is called the approximation size. It is known that
there exists an algorithm that returns a (1 ± ε)-spectral approxi-
mation with approximation size O(d/ε2) [4], [30], while the ap-
proximation size is Ω(d/ε2) in the worst case [4].

Due to space limitations, we omit almost all proofs and refer
the reader to the full version of the paper [17].

1.1 Our Results
Recently, spectral approximation has been studied in restric-

tive settings such as the semi-streaming setting and the online
setting [14], [25]. In the line of research, this paper focuses
on the online setting. In the online setting, a matrix A is not

1 The University of Tokyo, Bunkyo, Tokyo 113–8656, Japan
2 Keio University, Kohoku, Kanagawa 223–8522, Japan
a) masataka goda@mist.i.u-tokyo.ac.jp
b) kakimura@math.keio.ac.jp

known in advance, and each row of A arrives one-by-one. Each
time we receive a row of A, we decide irrevocably whether to
choose the row for a resulting spectral approximation or not
and cannot discard or reweight it later. Cohen et al. [14] pro-
posed a simple algorithm for an (ε, δ)-spectral approximation,
where an (ε, δ)-spectral approximation is a matrix Ã such that
(1 − ε)A>A − δI � Ã>Ã � (1 + ε)A>A + δI. The approxima-
tion size is shown to be O

(
dε−2 log d log

(
ε‖A‖22/δ

))
. They further

improved the approximation size to O
(
dε−2 log

(
ε‖A‖22/δ

))
by an

O(log d) factor with the aid of a method to obtain linear-sized ap-
proximation [30]. This is asymptotically optimal in the sense that
no algorithm based on row sampling can obtain an (ε, δ)-spectral
approximation with o

(
dε−2 log

(
ε‖A‖22/δ

))
rows [14].

The main contributions of this paper are threefold. First, we
revisit the online spectral approximation algorithm by Cohen et
al. [14], and remove the additional parameter δ to obtain a (1±ε)-
spectral approximation. Second, we consider the case when each
row arrives uniformly at random for the online spectral approx-
imation problem, and propose a fast and memory-efficient algo-
rithm that achieves a (1 ± ε)-spectral approximation. Finally, we
reveal a lower bound on the approximation size in the online ran-
dom order setting. Let us describe our results in more detail.
1.1.1 Online setting.

The online spectral approximation algorithm by Cohen et
al. [14] is simple and optimal with respect to the approximation
size, but it entails the additive error δ. It is not difficult to modify
their algorithm to the one for finding a (1 ± ε)-spectral approxi-
mation by setting δ = ε mini

(
σmin(Ai)2

)
, where Ai is the matrix

composed of the first i rows in A and σmin(Ai) is the smallest
non-zero singular value of Ai. However, this requires us to know
some estimation of mini

(
σmin(Ai)2

)
beforehand. Our first result

is to present spectral approximation algorithms without such prior
information. We propose two algorithms (Theorem 1.1 and The-
orem 1.2) by analogy with Cohen et al. [14].

1ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-AL-176 No.2
2020/1/29

To state our results, we denote

µ(A) def
=

‖A‖22
min1≤i≤n

(
σmin(Ai)2) . (1)

Note that µ(A) may be 1, e.g., when A is the identity matrix. We
say that an event with A ∈ Rn×d happens with high probability if
it happens with probability at least 1 − 1/poly(d)
Theorem 1.1. Let A ∈ Rn×d be a matrix of rank r, and
ε ∈ (0, 1/2] be an error parameter. Then, in the on-
line setting, we can construct with high probability a (1 ±
ε)-spectral approximation for A whose approximation size is
O

((
r log µ(A) + r + log d

)
ε−2 log d

)
.

Theorem 1.2. Let A ∈ Rn×d be a matrix of rank r, and ε ∈ (0, 1)
be an error parameter. Then, in the online setting, we can con-
struct a (1 ± ε)-spectral approximation for A whose approxima-
tion size is O

(
rε−2 log µ(A) + rε−2

)
in expectation.

We remark that, using the same instance as in Theorem 5.1 of
Cohen et al. [14], it turns out that the approximation size in The-
orem 1.2 is asymptotically optimal. That is, no algorithm can ob-
tain a (1±ε)-spectral approximation with o

(
rε−2 log µ(A) + rε−2

)
rows.

Let us compare our algorithms with (ε, δ)-spectral approxima-
tion algorithms in [14]. If we set δ = ε mini σmin(Ai)2, then
their online algorithms return a (1 ± ε)-spectral approximation
whose sizes are O

(
dε−2 log d log µ(A)

)
and O

(
dε−2 log µ(A)

)
, re-

spectively. Therefore, Theorem 1.1 and Theorem 1.2 give better
upper bounds on the approximation size as r � d. Note that the
approximation size of [14] always depends on d due to the reg-
ularizing factor δ. Note also that the running time and the space
complexity are the same.

The framework of our first algorithm is similar to Cohen et
al. [14]: Each time we receive a row, we compute a score of
the arriving row with a matrix we have at the moment, that
measures the importance of the arriving row. Then we decide
whether to sample the row or not based on the score. Cohen et
al. [14] used the online ridge leverage score, assuming that the
current matrix (together with δI) is nonsingular. On the other
hand, we introduce a new score called a relative leverage score,
that handles a singular current matrix directly. To analyze rela-
tive leverage scores for singular matrices, we exploit the pseudo-
determinant [18], [23], which is of independent interest.

Cohen et al. [14] improved the approximation size by an
O

(
log d

)
factor, based on a technique to obtain linear-sized ap-

proximation introduced in [29]. The linear-sized approximation
technique was originally developed in [4], and later made ran-
domized to obtain a faster algorithm [30]. We combine the anal-
ysis in Theorem 1.1 with the randomized one to obtain Theo-
rem 1.2.
1.1.2 Online random order setting.

The approximation sizes in Theorem 1.1 and Theorem 1.2 de-
pend on µ (A). Thus when µ (A) exceeds poly (n), the approxima-
tion size can be ω

(
r poly(log n, ε)

)
. In fact, there exists a matrix

A such that we have to sample all the rows in A to construct a
(1± ε)-spectral approximation in the online setting. Moreover, in
our algorithms as well as algorithms in [14], we need to compute
a Moore-Penrose pseudo-inverse to evaluate the score in each it-

eration, and thus the running time is not efficient. In fact, even if
we exploit the Sharman-Morrison formula for the Moore-Penrose
pseudo-inverses, it takes O(nd2) time in total. Our second and
third contributions are to study the online random order setting to
break these difficulties.

In the online random order setting, each row in an input matrix
A comes in exactly once according to a certain random permuta-
tion in addition to the online setting. More formally, we are given
a family of row vectors X. LetA(X) be a discrete uniform distri-
bution whose element is a matrix obtained by permuting vectors
in X. We note that A(X) has n! elements. Then the online ran-
dom order setting means that an input matrix is a random variable
A ∼ A(X), and is given as a stream of rows in the online set-
ting. Algorithms in the random order setting have been analyzed
for several problems such as frequency moment estimation [6],
computation of the median [8], and app roximation of maximum
matching in a graph [16], and it is often shown that randomness
breaks the worst-case complexity of the online setting.

In the online random order setting, we propose a fast and
memory-efficient algorithm that returns a (1±ε)-spectral approxi-
mation. The approximation size is O

(
dε−2 log n log d

)
for almost

all rows’ permutations, which is independent of µ(A). We here
denote the number of nonzero entries of a matrix A by nnz(A).
Theorem 1.3. Let ε ∈ (0, 1/2] be an error parameter, and
X be a family of n row vectors in Rd. Then there ex-
ists an algorithm in the online random order setting such
that A ∼ A(X) satisfies the following with high proba-
bility: The algorithm returns a (1 ± ε)-spectral approxima-
tion for A with O

(
dε−2 log n log d

)
rows with high probability.

It consumes O
(
nnz(A) log n +

(
dω + d2 log n

)
log2 n log d

)
time

and stores O
(
d log n log d

)
rows as the working memory and

O
(
dε−2 log n log d

)
rows as the output memory.

We note that there are two kinds of randomness: random per-
mutation in an input and random sampling in algorithms.

For the proof of Theorem 1.3, we first present a simpler al-
gorithm with less efficient time and space complexity. The idea
of our algorithm is simple. Recall that our algorithm in Theo-
rem 1.1 computes the relative leverage score with a current ma-
trix, and samples an arriving row based on that score. The time-
consuming part is to compute a pseudo-inverse to obtain the rel-
ative leverage score each time a current matrix is updated. In
the proposed algorithm, we keep using the same matrix to com-
pute the relative leverage scores for consecutive rows in a batch,
which reduces the number of computing a pseudo-inverse. The
correctness of the algorithm consists of three parts: (i) the output
is a (1 ± ε)-spectral approximation, (ii) the approximation size is
bounded, and (iii) the algorithm runs in desired time and space.
The first part (i) can be shown with a matrix martingale. The
proof is similar to Cohen et al. [14], but we need careful analysis
due to the fact that we use the relative leverage score with a ma-
trix (which depends on results of previous samples). Note that (i)
holds independently of row permutations, that is, (i) holds for any
A ∼ A(X). The randomness of row permutations is exploited to
prove (ii) and (iii). We make use of the result in [13] that a matrix
obtained by sampling rows uniformly at random from an input

2ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-AL-176 No.2
2020/1/29

matrix gives a good approximation of leverage scores. Owing
to this fact, we prove that the number of computing the Moore-
Penrose pseudo-inverses used for the relative leverage scores is
reduced to O(log n), keeping the approximation size small. This
simple algorithm, with further observations to reduce time com-
plexity, yields Theorem 1.3. Moreover, we also prove that the
simple algorithm, together with a semi-streaming algorithm [25],
can reduce the working memory space to O

(
d log d

)
rows, which

does not depend on ε and n.
We remark that the approximation size can be improved to

O
(
dε−2 log n

)
using the algorithm in Theorem 1.2, although the

running time and the space complexity are much less efficient.
1.1.3 Lower bound in the online random order setting.

On the other hand, we obtain a lower bound for the online ran-
dom order setting. We prove that any algorithm that selects rows
in the online random order setting and returns a (1 ± ε)-spectral
approximation must sample Ω

(
dε−2 log n

)
rows with high prob-

ability.Since the lower bound on the approximation size in the
offline setting is Ω(dε−2), the online random order setting suffers
an additional log n factor.
Theorem 1.4. Let ε ∈ (0, 1) be an error parameter. Let R be an
algorithm that samples rows in the online random order setting
and returns a (1 ± ε)-spectral approximation. Then there exists a
family of row vectors X in Rd such that R with an input A ∼ A(X)
returns Ω

(
dε−2 log n

)
rows with high probability.

We define the worst instance to be the incidence matrix of a
graph on d vertices such that every pair of vertices has n/

(
d
2

)
par-

allel edges. Then the key ingredient is that there exists an inte-
ger D such that, if we sample D rows uniformly at random from
the instance, then the corresponding matrix is a (1 ± ε)-spectral
approximation for a weighted complete graph with high proba-
bility. Since a weighted complete graph on d vertices requires
Ω(dε−2) rows for a (1 ± ε)-spectral approximation, this implies
that we need to sample Ω(dε−2) rows while D rows arrive. By
dividing the rows of A into O(log n) parts with a geometric series
D, 2D, 4D, . . . , this yields Theorem 1.4.

1.2 Related work.
The difficulty of spectral approximation in restrictive settings

such as the semi-streaming setting and the online setting lies in
that the probability of sampling a row becomes dependent on
which rows are sampled so far. In the standard spectral approx-
imation (without any restriction), we are given all the rows of a
matrix A in advance. Then we can sample each row by setting
a sampling probability with A. The matrix Chernoff bound pro-
vides an exponential tail bound, which ensures that the output Ã is
a (1± ε)-spectral approximation. However, in the semi-streaming
or the online setting, the probability that an algorithm returns a
spectral approximation is no longer bounded by the matrix Cher-
noff bound due to the dependencies of the sampled rows. We
need to analyze carefully how the output Ã is constructed in the
process. Cohen et al. [14] and Kyng et al. [25] made use of a
matrix martingale and its exponential tail bound, in which we are
allowed to have mutually dependent random variables. The anal-
ysis with a matrix martingale is also used in other papers such as
[10], [26], [27]. We also employ it in our settings.

In the dynamic setting, we aim to maintain a spectral ap-
proximation under row insertions and deletions. For a spe-
cial case where A is the Laplacian matrix, Abraham et al. [1]
showed that we can construct a (1 ± ε)-spectral approximation
such that the amortized update time per insertion or deletion is
O

(
poly

(
log d, ε

))
, which was later de-amortized by [5]. Their

algorithms maintain spanners in a graph, which is a different ap-
proach from our algorithms based on sampling rows in the on-
line setting. When A is the Laplacian matrix, we can also ob-
tain a spectral approximation in the dynamic semi-streaming set-
ting [20], [21].

There exist other research directions such as a spectral
sketch [2], [19] and spectral sparsification for a generalization of
undirected graphs [3], [10], [11], [36]. For a matrix A ∈ Rd×d, a
spectral sketch is a function f such that (1 − ε)x>Ax � f (x) �
(1 + ε)x>Ax for every vector x. If A is the Laplacian matrix, it is
known that there is a nearly-linear time algorithm which returns
a spectral sketch with O (d/ε) bits, which is better than Ω

(
d/ε2

)
bits of a (1±ε)-spectral sparsifier [19]. Recently, spectral sparsifi-
cation has been extended to directed graphs [10], [11] and hyper-
graphs [3], [36]. As a practical application, a graph-based learn-
ing such as laplacian smoothing and spectral clustering can be
made faster by replacing the laplacian matrix with its spectral
sparsifier [7].

2. Preliminaries
2.1 Spectral Approximation

We define the (1 ± ε)-spectral approximation. Recall that, for
two symmetric matrices A, B, we denote A � B if B − A is a
positive semidefinite (PSD) matrix.
Definition 2.1 (Spectral Approximation). Let A ∈ Rn×d be a ma-
trix and ε ∈ (0, 1) be an error parameter. We say that Ã ∈ Rm×d

is a (1 ± ε)-spectral approximation for A if

(1 − ε)A>A � Ã>Ã � (1 + ε)A>A.

Notice that, by the Courant-Fischer theorem, each eigenvalue
of Ã>Ã approximates the corresponding one of A>A within a
factor of 1 ± ε.

For an edge-weighted graph G with d vertices and n edges, we
denote the incidence matrix for G by BG ∈ R

n×d, and the Lapla-
cian matrix of G by LG ∈ R

d×d. Thus LG = B>GBG holds. A
(1 ± ε)-spectral approximation for BG is called a (1 ± ε)-spectral
sparsifier of G .

In spectral approximation algorithms, the leverage score plays
a major role, which is defined as below. For a matrix A, the i-th
row is denoted by a>i , and the Moore-Penrose pseudo-inverse of
A is denoted by A+.
Definition 2.2 (Leverage Score). Let A ∈ Rn×d be a matrix. For
i ∈ {1, 2, . . . , n}, the leverage score τi(A) is defined to be

τi(A) def
= a>i

(
A>A

)+
ai.

When an input matrix is the Laplacian matrix of a graph, the
leverage score with respect to an edge e = (a, b) is equivalent to
the effective resistance between a and b in the graph (see e.g.,
[37]). We show properties of the leverage score.

3ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-AL-176 No.2
2020/1/29

Lemma 2.3. For a matrix A ∈ Rn×d, we have the following prop-
erties:
(i) 0 ≤ τi (A) ≤ 1 for any i ∈ {1, 2, . . . , n}.
(ii)

∑n
i=1 τi (A) = rank (A).

Proof. (i) Since x>
(
A>A

)+ x ≤ x>
(
aia>i

)+
x holds for all x ∈

Im
(
aia>i

)
, we have

τi (A) ≤ a>i
(
aia>i

)+
ai = tr

(
a>i

(
aia>i

)+
ai

)
= tr

((
aia>i

)+
aia>i

)
= 1.

Also τi (A) ≥ 0 as
(
A>A

)+
� O. Hence (i) holds.

(ii) It follows that
n∑

i=1

τi (A) = tr
(
A

(
A>A

)+
A>

)
= tr

((
A>A

)+
A>A

)
= rank (A) .

�

The leverage score indicates how important the corresponding
row is. In fact, the following theorem asserts that we can con-
struct a spectral approximation with small approximation size via
simple random sampling based on the leverage score. More pre-
cisely, if we are given a leverage score overestimate, that is, a
vector u ∈ Rn such that, for all i, τi(A) ≤ ui, then the num-
ber of rows in

(
1 ± 1/

√
θ
)
-spectral approximation is bounded by

O
(
θ‖u‖1 log d

)
.

Theorem 2.4 (Spectral Approximation via Row Sampling [13]).
Let θ be an error parameter, and c be a fixed positive con-
stant. Let A ∈ Rn×d be a matrix, and u ∈ Rn be a
leverage score overestimate. We define a sampling probabil-
ity pi = min

(
θ · uic log d, 1

)
(i = 1, . . . , n), and construct

a random diagonal matrix S whose i-th diagonal element is
1/
√

pi with probability pi and 0 otherwise. Then, with probabil-
ity at least 1 − d−c/3, SA is a

(
1 ± 1/

√
θ
)
-spectral approximation

for A such that SA contains at most
∑

i pi ≤ θ‖u‖1c log d non-zero
rows.

For example, suppose that we are given a constant leverage
score overestimate, that is, a vector u ∈ Rn such that, for all
i, τi(A) ≤ ui ≤ βτi(A) for some constant β. Then the above
theorem implies that, by setting θ = ε−2, we can obtain a (1 ± ε)-
spectral approximation such that it has O

(
rε−2 log d

)
rows, where

r = rank(A), as
∑

i ui ≤ β
∑

i τi(A) ≤ βr by Lemma 2.3.

2.2 Spectral Approximation in the Online Setting
In the online setting, a matrix A is given as a stream of rows,

and we receive a row sequentially. Each time the i-th row ai ar-
rives, we irrevocably decide whether ai is sampled or not. We
cannot access the whole matrix A in each decision, and thus we
cannot compute a standard leverage score. We introduce a variant
of the leverage score, called the relative leverage score, that can
be computed with the matrix we have at the moment (correspond-
ing to a matrix B in the definition below). This gives a leverage
score overestimate.
Definition 2.5 (Relative Leverage Score). Let A,B ∈ Rn×d be
matrices. For i ∈ {1, 2, . . . , n}, the relative leverage score τB

i (A) is
defined as follows:

τB
i (A) def

= a>i

 B
a>i

> B
a>i

+

ai.

We note that, if B is a submatrix consisting of rows of A, then
τB

i (A) ≥ τi(A) holds.
The relative leverage score can be rewritten as follows. For

vectors x and y, we denote x ⊥ y if x>y = 0. For a vector x and a
linear subspace W, x ⊥ W means that x ⊥ y for all y ∈ W.
Lemma 2.6. For i ∈ {1, 2, . . . , n}, it holds that

τB
i (A) =

a>i (B>B)+ai

a>i (B>B)+ai+1 if ai ⊥ Ker(B),

1 otherwise.

To prove Lemma 2.6, we consider the perturbation of Moore-
Penrose pseudo-inverses under the rank-1 update operation given
in [33].
Proposition 2.7 (Sherman-Morrison Formula for Moore-Penrose
pseudo-inverse [33]). Let A ∈ Rn×n be a PSD matrix, u ∈ Rn be
a vector, and k be a real-valued multiplier. If u ⊥ Ker(A), then
we have (

A + kuu>
)+

= A+ −
kA+uu>A+

1 + ku>A+u
.

Proof of Lemma 2.6. If ai ⊥ Ker(B), by Proposition 2.7, we ob-
tain

τB
i (A) = a>i

 B
a>i

> B
a>i

+

ai

= a>i

(B>B
)+
−

(
B>B

)+ aia>i
(
B>B

)+

1 + a>i (B>B)+ ai

 ai

=
a>i

(
B>B

)+ ai

a>i (B>B)+ ai + 1
. (2)

Next suppose that ai 6⊥ Ker(B). Then dim
(
Im

(
B>B + aia>i

))
is exactly one larger than dim

(
Im

(
B>B

))
. Hence there exists a

nonzero vector u ∈ Im
(
B>B + aia>i

)
such that u belongs to the

orthogonal complement of Im
(
B>B

)
. By the definition of the

pseudo-inverse, we have

u =

 B
a>i

> B
a>i

+ B
a>i

> B
a>i

 u =

 B
a>i

> B
a>i

+

aia>i u.

Multiplying a>i from the left side, we have

a>i u = a>i

 B
a>i

> B
a>i

+

aia>i u = τB
i (A)a>i u.

As a>i u , 0, we obtain τB
i (A) = 1. �

From Lemma 2.6, τB
i (A) can be computed with matrix

(
B>B

)+

and ai. Furthermore, we have 0 ≤ τB
i (A) ≤ 1, and τB

i (A) is equal
to 1 if and only if ai 6⊥ Ker(B).

3. (1 ± ε)-spectral approximation algorithm in
the online setting

Cohen et al. [14] presented an algorithm for an (ε, δ)-spectral
approximation based on sampling with online ridge leverage
scores. In this section, we describe an algorithm that returns a
(1± ε)-spectral approximation for a given PSD matrix A as Algo-
rithm 1. Our algorithm gives a better upper bound on the approx-
imation size.

In Algorithm 1, Ãi is a matrix we have sampled until the end

4ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-AL-176 No.2
2020/1/29

of the i-th iteration. In the i-th iteration, we determine a sampling
probability pi with the relative leverage score τÃi−1

i (A), and ap-
pend the arriving row ai to Ãi−1 with probability pi to obtain Ãi.
This step can be computed with only Ãi−1 and ai. In the end, the
algorithm returns Ãn.

Algorithm 1 OnlineRowSampling (A, ε)
Input: a matrix A ∈ Rn×d , an error parameter ε ∈ (0, 1/2].
Output: a (1 ± ε)-spectral approximation for A.
Define c = 3ε−2 log d.
Ã0 ← O.
for i = 1, . . . , n do

l̃i ← min
(
(1 + ε)τÃi−1

i (A) , 1
)
.

pi ← min
(
cl̃i, 1

)
.

Ãi ←

(

Ãi−1
a>i /
√

pi

)
with probability pi,

Ãi−1 otherwise.
end for
return Ãn.

It holds that Algorithm 1 satisfies the conditions of Theo-
rem 1.1: Algorithm 1 returns a (1±ε)-spectral approximation, and
its approximation size is O

((
r log µ(A) + r + log d

)
ε−2 log d

)
.

For the case when an input matrix is the incidence matrix of
a graph, the upper bound in Theorem 1.1 can be simplified as
follows.
Corollary 3.1. Let G be a simple, edge-weighted graph whose
largest and smallest weights are wmax and wmin, respectively. Let
A be its incidence matrix of rank r. Then Algorithm 1 returns,
with high probability, a (1± ε)-spectral approximation for A with
O

((
r log (wmax/wmin) + r + log d

)
ε−2 log d

)
edges.

Regarding a lower bound on the approximation size in the on-
line setting, we show that in order to construct a (1 ± ε)-spectral
approximation Ω

(
rε−2 log µ(A) + rε−2

)
rows have to be sampled

in the worst case. This can be shown in the same way as Theorem
5.1 in [14].
Theorem 3.2. Let ε ∈ (0, 1) be an error parameter. Let R be an
algorithm that samples rows in the online setting and returns a
(1± ε)-spectral approximation with probability at least 1/2. Then
there exists a matrix A of rank r in Rn×d such that R samples
Ω

(
rε−2 log µ(A) + rε−2

)
rows in expectation.

4. Fast (1±ε)-approximation in the online ran-
dom order setting

In Sections 4 and 5, we focus on the online random order set-
ting. Recall that, in the online random order setting, we are given
a family of row vectors X = {x>1 , x

>
2 , . . . , x

>
n } in Rd. An input ma-

trix A is chosen from a discrete uniform distributionA(X) whose
element is a matrix obtained by permuting row vectors of X, and
is given as a stream of rows in the online setting.

In Section 4.1, we present a simpler algorithm (Algorithm 2)
such that it returns a (1 ± ε)-spectral approximation with approx-
imation size O(dε−2 log n log d), but it runs in less efficient time
and space complexity. In Section 4.2, with further observations,
we develop Algorithm 2 into a less running time and space algo-
rithm, which gives Theorem 1.3. Moreover, in Section 4.3, we
reduce the space complexity with a semi-streaming algorithm.

4.1 Simple Scaled Sampling Algorithm
We define some notations used in Algorithm 2. Define K def

=

d log d. For convenience, we may assume that there exists α ∈ N
such that n = (2α+1 − 1)K. Thus α = log2(n/K + 1) − 1. We also
assume that c1 exp (d) > n for some fixed positive constant c1.

In Algorithm 2, we divide A into blocks. For i ∈ {0, 1, . . . , α},
the i-th block is a matrix composed of 2iK consecutive rows from
a(2i−1)K+1 to a(2i+1−1)K . Moreover, we denote the matrix consisting
of the 0, . . . , i-th blocks by Mi. Similarly to Algorithm 1, we de-
note by Ã j a matrix we have sampled until the j-th row arrives,
and the output is Ãn. Additionally, in the i-th block, we keep a
(1 ± ε)-spectral approximation for Mi−1, denoted by M̃i−1. In the
i-th block, we compute τM̃i−1

j (A) for a row j, and sample the j-th
row based on it. Thus we do not need to compute the Moore-
Penrose pseudo-inverse each time, but need the Moore-Penrose
pseudo-inverse of only one matrix M̃>

i−1M̃i−1 for the i-th block.

Algorithm 2 ScaledSampling (A, ε)
1: Input: a matrix A ∈ Rn×d , an error parameter ε ∈ (0, 1/2].
2: Output: a (1 ± ε)-spectral approximation for A.
3: Define K = d log d, c = 6ε−2 log d and α = log2(n/K + 1) − 1.
4: Ã0 ← O.
5: for j = 1, . . . ,K do

6: Ã j ←

(
Ã j−1
a>j

)
.

7: end for
8: for i = 1, . . . , α do
9: M̃i−1 ← Ã(2i−1)K .

10: for j =
(
2i − 1

)
K + 1, . . . ,

(
2i+1 − 1

)
K do

11: l̃ j ← min
(
(1 + ε)τM̃i−1

j (A) , 1
)
.

12: p j ← min
(
cl̃ j, 1

)
.

13: Ã j ←

(

Ã j−1
a>j /
√p j

)
with probability p j,

Ã j−1 otherwise.
14: end for
15: end for
16: return Ãn.

Algorithm 2 satisfies the following.
Theorem 4.1. Let ε ∈ (0, 1/2] be an error parameter,
and X be a family of n row vectors in Rd. Then A ∼

A(X) satisfies the following with high probability: Algo-
rithm 2 returns a (1 ± ε)-spectral approximation for A with
O

(
dε−2 log n log d

)
rows with high probability. It consumes

O
(
nnz(A) log n +

(
dω + d2 log n

)
ε−2 log2 n log d

)
time and stores

O
(
dε−2 log n log d

)
rows.

4.2 Fast (1 ± ε)-spectral approximation
In Section 4.2 and Section 4.3, we improve Algorithm 2 to

obtain a time and space efficient algorithm. In Algorithm 2, a
(1± ε)-spectral approximation M̃i−1 for Mi−1 is used for comput-
ing a leverage score overestimate for the i-th block. However, in
the proof of Theorem 4.1, in order to construct a (1 ± ε)-spectral
approximation, a constant spectral approximation for Mi−1 suf-
fices. Therefore, by computing leverage score overestimates with
a constant spectral approximation instead of a (1± ε)-spectral ap-
proximation, we can reduce its running time and working mem-
ory. Let ConstApprox denote a stream that runs a procedure to

5ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-AL-176 No.2
2020/1/29

maintain a constant approximation. Then the algorithm is de-
scribed as Algorithm 3.

Algorithm 3 ImprovedScaledSampling (A, ε)
Input: a matrix A ∈ Rn×d , an error parameter ε ∈ (0, 1/2].
Output: a (1 ± ε)-spectral approximation for A.
Define K = d log d, c = 6ε−2 log d, α = log2(n/K + 1) − 1.
Ã0 ← O.
for j = 1, . . . ,K do

Ã j ←

(
Ã j−1
a>j

)
.

ConstApprox.add(a>j).
end for
for i = 1, . . . , α do

M̃c
i−1 ← ConstApprox.query().

l̃ j ← min
(
2τM̃c

i−1
j (A) , 1

)
.

p j ← min
(
cl̃ j, 1

)
.

Ã j ←

(

Ã j−1
a>j /
√p j

)
with probability p j,

Ã j−1 otherwise.
ConstApprox.add(a>j).

end for
return Ãn.

In Algorithm 3, ConstApprox.add(a>j) means that we add a>j
to the stream ConstApprox. Moreover, ConstApprox.query()
returns the current spectral approximation obtained by
ConstApprox. In the algorithm, we store Ã j in the output
memory, as Ã j stores a family of output rows and is never
referred. In contrast, M̃c

i−1 obtained by ConstApprox is stored in
the working memory. As a result, Algorithm 3 satisfies Theo-
rem 1.3 when ConstApprox is set to ScaledSampling (A, 1/2).

4.3 Memory-efficient (1 ± ε)-spectral approximation
In this section, we achieve a further improvement in the

working memory. The required working space is O
(
d log d

)
rows, which does not depend on ε and n. In the Algo-
rithm 3, instead of keeping a constant spectral approximation
with ScaledSampling (A, 1/2), we run a spectral approximation
algorithm in the semi-streaming setting in parallel to obtain a
(1 ± 1/3)-spectral approximation for Mi−1. This is then used to
compute a leverage score overestimate, which reduces the work-
ing memory space.

It is known as below that there exists an efficient semi-
streaming algorithm for spectral approximation [25].
Theorem 4.2 (Sparsification in the Semi-Streaming Setting [25]).
Let A ∈ Rn×d be a matrix, and ε ∈ (0, 1/2) be an error parameter.
In the semi-streaming setting, we can construct, with high prob-
ability, a (1 ± ε)-spectral approximation for A with O(dε−2 log d)
rows by storing O(dε−2 log d) rows in O

(
ndω−1 + nd log

(
dε−1

))
time.

Note that the above algorithm maintains a (1 ± ε)-spectral ap-
proximation at all times and runs in O

(
n log2 d

)
time if A is the

incidence matrix of a graph.
Let StreamSparsify (A, ε) denote an algorithm which sat-

isfies the above theorem. We prove that Algorithm 3 sat-
isfies the following theorem when ConstApprox is set to
StreamSparsify (A, 1/3).

Theorem 4.3. Let ε ∈ (0, 1/2] be an error parameter, and X
be a family of n row vectors in Rd. Then A ∼ A(X) satisfies
the following with high probability: If we set ConstApprox to
StreamSparsify (A, 1/3), Algorithm 3 returns a (1 ± ε)-spectral
approximation for A with O

(
dε−2 log n log d

)
rows with high

probability. It consumes O
(
ndω−1 + nd log d + nnz(A) log n

)
time, where nnz(A) is the number of non-zero entries in
A, and stores O

(
d log d

)
rows as the working memory and

O
(
dε−2 log n log d

)
rows as the output memory.

Finally, for the case when an input matrix is the incidence ma-
trix of a graph, the running time can be rewritten as follows.
Corollary 4.4. Let ε ∈ (0, 1/2] be an error parameter, and X be a
family of n row vectors in Rd corresponding to the incidence ma-
trix of an undirected graph. If we set ConstApprox in Algorithm 3
to StreamSparsify (A, 1/3), Algorithm 3 runs in O

(
n log n

)
time.

5. Lower bound in the online random order
setting

In this section, we prove Theorem 1.4, that is, in order to main-
tain a (1 ± ε)-spectral approximation in the online random order
setting, any randomized algorithm requires to keep Ω

(
dε−2 log n

)
rows in the worst case. Recall that the lower bound on the approx-
imation size without any restriction is Ω(dε−2) [4], and thus the
online random order setting suffers an additional log n factor. We
assume the adversary who knows only how an algorithm works
and does not know any result after we run the algorithm. In other
words, the worst input stream is determined in advance.

We define an input family of vectors X∗ as follows. Let Kd be
a complete graph on d vertices. Then X∗ is defined to be the inci-
dence matrix of n/

(
d
2

)
Kd, where, for a graph G and a non-negative

number α, αG is a graph obtained from G by making α−1 copies
of each edge. That is, X∗ has n/

(
d
2

)
copies of each row in the inci-

dence matrix BKd . We will prove that the family X∗ gives a lower
bound in Theorem 1.4.

We first show in Lemma 5.2 below that there exists a constant
D such that A ∼ A(X∗) satisfies with high probability that the
submatrix AD , which is the matrix composed of the first D rows
in A, is a (1± ε)-spectral approximation for BD/(d

2)Kd
. This can be

done by regarding sampling in the online random order setting as
sampling without replacement from a finite population.
Lemma 5.1 (Tail Bound for the Hypergeometric Distribution
[35]). Let C be a set of M elements that contains K 1’s and M−K
0’s. Let X1, . . . , Xm denote the values drawn from C without re-
placement. Define S i

def
=

∑i
j=1 X j and µ

def
= K/M. Then for all

t > 0, we have

P (|S m − mµ| ≥ mt) ≤ 2 exp
(
−

2mt2

1 − f ∗m

)
,

where f ∗m = (m − 1)/M.
Lemma 5.2. Let A ∈ Rn×d be a matrix chosen from the uniform
distribution A(X∗), and ε ∈ (0, 1) be an error parameter. Set
D = d4ε−2 log d and α = D/

(
d
2

)
. Then, with high probability, AD

is a (1 ± ε)-spectral approximation for BαKd .

Proof. Let S D(e) be the number of an edge e of Kd in AD. We
show (1−ε)α ≤ S D(e) ≤ (1+ε)α with high probability, where we

6ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-AL-176 No.2
2020/1/29

note that α is the expected value of S D(e). We apply Lemma 5.1,
where M = n, m = D, µ = 1/

(
d
2

)
, and S m = S D(e). Setting

t = ε/
(

d
2

)
= εα/D, we have

P (|S D(e) − α| ≥ εα) ≤ 2 exp

− N
N − D + 1

·
2d4 log d

ε2

 ε(d
2

) 2
≤ 2 exp(−8 log d)

=
2
d8 .

Thus (1−ε)α ≤ S D(e) ≤ (1+ε)αwith probability at least 1−2/d8.
Since Kd has O(d2) edges, the above inequality holds for all edges
in Kd with high probability, by taking a union bound.

Therefore, the graph corresponding to AD satisfies that the
weight of every edge is between (1 − ε)α and (1 + ε)α with high
probability, which means that AD is a (1± ε)-spectral approxima-
tion for BαKd . �

Let R be an algorithm that returns a (1 ± ε)-spectral approxi-
mation. Define si = 2iD for i = 0, 1, . . . ,

⌊
log2(n/D)

⌋
. Since R

returns a (1± ε)-spectral approximation for any instance, R has to
keep a (1 ± ε)-spectral approximation for A j for all j = 1, . . . , n.
Hence, for all i = 0, . . . ,

⌊
log2(n/D)

⌋
, our matrix Ãsi is a (1 ± ε)-

spectral approximation for Asi . On the other hand, it follows from
Lemma 5.2 that Asi must be a (1 ± ε)-spectral approximation for
BαiKd for some αi. They imply that we have to sample Ω(dε−2)
rows between si-th and si+1-th rows.

Proof of Theorem 1.4. Set X to the family X∗ defined above,
and A ∼ A(X). We assume that ε2n > d4 log d and ε2d > c1

and exp (dc2) > n for fixed positive constants c1 and c2. De-
fine si = 2iD, αi = si/

(
d
2

)
for i = 0, 1, . . . ,

⌊
log2(n/D)

⌋
, where

D = d4ε−2 log d. We remark that since ε2n > d4 log d, it holds
that

⌊
log2(n/D)

⌋
≥ 0.

Let Ã j be a matrix that an algorithm R maintains after the j-th
row arrived. Since R returns a (1 ± ε)-spectral approximation for
any matrix, Ãsi is a (1 ± ε)-spectral approximation for Asi for all
i = 0, 1, . . . ,

⌊
log2(n/D)

⌋
:

(1 − ε)A>si
Asi �Ã>si

Ãsi � (1 + ε)A>si
Asi . (3)

We first suppose that for all i = 0, 1, . . . ,
⌊
log2(n/D)

⌋
, Asi is a

(1 ± ε)-spectral approximation for BαiKd simultaneously:

(1 − ε)LαiKd � A>si
Asi � (1 + ε)LαiKd . (4)

(We evaluate the probability that it holds in the end of the proof.)
From Eq. (3) and Eq. (4), we obtain

(1 − 3ε)LαiKd �Ã>si
Ãsi � (1 + 3ε)LαiKd . (5)

Similarly, we obtain

(1 − 3ε)Lαi+1Kd �Ã>si+1
Ãsi+1 � (1 + 3ε)Lαi+1Kd . (6)

Subtracting Eq. (5) from Eq. (6) in both sides, we obtain

(1 − 9ε)LαiKd � Ã>si+1
Ãsi+1 − Ã>si

Ãsi � (1 + 9ε)LαiKd .

Hence the rows sampled between si-th and si+1-th rows in algo-
rithm R form a (1±9ε)-spectral approximation for BαiKd . Since it

requires Ω
(
dε−2

)
rows to construct a (1 ± O(ε))-spectral approx-

imation for BKd when ε2d > c1 [4], the number of rows sampled
between si-th and si+1-th rows is Ω

(
dε−2

)
. Aggregating it for all

i = 0, 1, . . . ,
⌊
log2(n/D)

⌋
− 1, we see that the approximation size

is Ω
(
dε−2 log n

)
.

Finally, we evaluate the probability that for all i =

0, 1, . . . ,
⌊
log2(n/D)

⌋
, Asi is a (1 ± ε)-spectral approximation

for BαiKd . By Lemma 5.2, Asi is with high probability a
(1 ± ε)-spectral approximation for BαiKd . Since we assume that
exp (dc2) > n, it holds that log2 (n/D) = O(d). Taking a union
bound, Asi is with high probability a (1 ± ε)-spectral approxima-
tion for BαiKd for all i = 0, 1, . . . ,

⌊
log2 (n/D)

⌋
. In summary, R

must sample Ω
(
dε−2 log n

)
rows with high probability. �

References
[1] Abraham, I., Durfee, D., Koutis, I., Krinninger, S.

and Peng, R.: On Fully Dynamic Graph Sparsi-
fiers, Dinur [15], pp. 335–344 (online), available from
〈https://ieeexplore.ieee.org/xpl/conhome/7781469/proceeding〉.

[2] Andoni, A., Chen, J., Krauthgamer, R., Qin, B., Woodruff,
D. P. and Zhang, Q.: On Sketching Quadratic Forms, Proceed-
ings of the 2016 ACM Conference on Innovations in Theoretical
Computer Science, Cambridge, MA, USA, January 14-16, 2016
(Sudan, M., ed.), ACM, pp. 311–319 (online), available from
〈http://dl.acm.org/citation.cfm?id=2840728〉 (2016).

[3] Bansal, N., Svensson, O. and Trevisan, L.: New Notions
and Constructions of Sparsification for Graphs and Hyper-
graphs, CoRR, Vol. abs/1905.01495 (online), available from
〈http://arxiv.org/abs/1905.01495〉 (2019).

[4] Batson, J. D., Spielman, D. A. and Srivastava, N.: Twice-ramanujan
sparsifiers, STOC, ACM, pp. 255–262 (2009).

[5] Bernstein, A., Forster, S. and Henzinger, M.: A Deamortization Ap-
proach for Dynamic Spanner and Dynamic Maximal Matching, Chan
[9], pp. 1899–1918 (online), DOI: 10.1137/1.9781611975482.

[6] Braverman, V., Viola, E., Woodruff, D. P. and Yang, L. F.: Re-
visiting Frequency Moment Estimation in Random Order Streams,
45th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2018, July 9-13, 2018, Prague, Czech Re-
public (Chatzigiannakis, I., Kaklamanis, C., Marx, D. and San-
nella, D., eds.), LIPIcs, Vol. 107, Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, pp. 25:1–25:14 (online), available from
〈http://www.dagstuhl.de/dagpub/978-3-95977-076-7〉 (2018).

[7] Carlson, C., Kolla, A., Srivastava, N. and Trevisan, L.: Optimal Lower
Bounds for Sketching Graph Cuts, Chan [9], pp. 2565–2569 (online),
DOI: 10.1137/1.9781611975482.

[8] Chakrabarti, A., Jayram, T. S. and Patrascu, M.: Tight lower
bounds for selection in randomly ordered streams, Proceedings of
the Nineteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2008, San Francisco, California, USA, January 20-
22, 2008 (Teng, S., ed.), SIAM, pp. 720–729 (online), available from
〈http://dl.acm.org/citation.cfm?id=1347082〉 (2008).

[9] Chan, T. M.(ed.): Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, Califor-
nia, USA, January 6-9, 2019, SIAM (2019).

[10] Cohen, M. B., Kelner, J. A., Kyng, R., Peebles, J., Peng,
R., Rao, A. B. and Sidford, A.: Solving Directed Lapla-
cian Systems in Nearly-Linear Time through Sparse LU Fac-
torizations, Thorup [40], pp. 898–909 (online), available from
〈https://ieeexplore.ieee.org/xpl/conhome/8554191/proceeding〉.

[11] Cohen, M. B., Kelner, J. A., Peebles, J., Peng, R., Rao, A. B., Sid-
ford, A. and Vladu, A.: Almost-linear-time algorithms for Markov
chains and new spectral primitives for directed graphs, STOC, ACM,
pp. 410–419 (2017).

[12] Cohen, M. B., Kyng, R., Miller, G. L., Pachocki, J. W., Peng, R., Rao,
A. B. and Xu, S. C.: Solving SDD linear systems in nearly mlog1/2n
time, Symposium on Theory of Computing, STOC 2014, New York, NY,
USA, May 31 - June 03, 2014 (Shmoys, D. B., ed.), ACM, pp. 343–352
(online), available from 〈http://dl.acm.org/citation.cfm?id=2591796〉
(2014).

[13] Cohen, M. B., Lee, Y. T., Musco, C., Musco, C., Peng, R. and Sid-
ford, A.: Uniform Sampling for Matrix Approximation, Proceed-
ings of the 2015 Conference on Innovations in Theoretical Com-
puter Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015
(Roughgarden, T., ed.), ACM, pp. 181–190 (online), available from

7ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-AL-176 No.2
2020/1/29

〈http://dl.acm.org/citation.cfm?id=2688073〉 (2015).
[14] Cohen, M. B., Musco, C. and Pachocki, J. W.: Online Row Sam-

pling, Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM 2016, Septem-
ber 7-9, 2016, Paris, France (Jansen, K., Mathieu, C., Rolim, J.
D. P. and Umans, C., eds.), LIPIcs, Vol. 60, Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, pp. 7:1–7:18 (online), available
from 〈http://www.dagstuhl.de/dagpub/978-3-95977-018-7〉 (2016).

[15] Dinur, I.(ed.): IEEE 57th Annual Symposium on Foundations of Com-
puter Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, IEEE Computer Society (2016).

[16] Farhadi, A., Hajiaghayi, M., Mai, T., Rao, A. and Rossi,
R. A.: Approximate Maximum Matching in Random Streams,
http://ryanrossi.com/pubs/soda20.pdf (2019).

[17] Gohda, M. and Kakimura, N.: Online Spectral Approximation in Ran-
dom Order Streams, arXiv preprint arXiv:1911.08800 (2019).

[18] Holbrook, A.: Differentiating the pseudo determinant, Linear Algebra
and its Applications, Vol. 548, pp. 293–304 (2018).

[19] Jambulapati, A. and Sidford, A.: Efficient Õ(n/ε) Spectral Sketches
for the Laplacian and its Pseudoinverse, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018 (Czumaj, A.,
ed.), SIAM, pp. 2487–2503 (online), DOI: 10.1137/1.9781611975031
(2018).

[20] Kapralov, M., Lee, Y. T., Musco, C., Musco, C. and Sidford, A.: Sin-
gle Pass Spectral Sparsification in Dynamic Streams, FOCS, IEEE
Computer Society, pp. 561–570 (2014).

[21] Kapralov, M., Nouri, N., Sidford, A. and Tardos, J.: Dynamic Stream-
ing Spectral Sparsification in Nearly Linear Time and Space, CoRR,
Vol. abs/1903.12150 (2019).

[22] Kelner, J. A., Lee, Y. T., Orecchia, L. and Sidford, A.: An Almost-
Linear-Time Algorithm for Approximate Max Flow in Undirected
Graphs, and its Multicommodity Generalizations, Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pp. 217–226
(2014).

[23] Knill, O.: Cauchy–Binet for pseudo-determinants, Linear Algebra and
Its Applications, Vol. 459, pp. 522–547 (2014).

[24] Koutis, I., Miller, G. L. and Peng, R.: A Nearly-m log
n Time Solver for SDD Linear Systems, IEEE 52nd Annual
Symposium on Foundations of Computer Science, FOCS 2011,
Palm Springs, CA, USA, October 22-25, 2011 (Ostrovsky, R.,
ed.), IEEE Computer Society, pp. 590–598 (online), available
from 〈https://ieeexplore.ieee.org/xpl/conhome/6108120/proceeding〉
(2011).

[25] Kyng, R., Pachocki, J., Peng, R. and Sachdeva, S.: A Framework for
Analyzing Resparsification Algorithms, Proceedings of the Twenty-
Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2017, Barcelona, Spain, Hotel Porta Fira, January 16-19 (Klein, P. N.,
ed.), SIAM, pp. 2032–2043 (online), DOI: 10.1137/1.9781611974782
(2017).

[26] Kyng, R. and Sachdeva, S.: Approximate Gaussian
Elimination for Laplacians - Fast, Sparse, and Sim-
ple, Dinur [15], pp. 573–582 (online), available from
〈https://ieeexplore.ieee.org/xpl/conhome/7781469/proceeding〉.

[27] Kyng, R. and Song, Z.: A Matrix Chernoff Bound for Strongly
Rayleigh Distributions and Spectral Sparsifiers from a few Random
Spanning Trees, Thorup [40], pp. 373–384 (online), available from
〈https://ieeexplore.ieee.org/xpl/conhome/8554191/proceeding〉.

[28] Lee, Y. T. and Sidford, A.: Path Finding Methods for Linear Pro-
gramming: Solving Linear Programs in Õ(vrank) Iterations and Faster
Algorithms for Maximum Flow, FOCS, IEEE Computer Society, pp.
424–433 (2014).

[29] Lee, Y. T. and Sun, H.: Constructing Linear-Sized Spec-
tral Sparsification in Almost-Linear Time, IEEE 56th Annual
Symposium on Foundations of Computer Science, FOCS 2015,
Berkeley, CA, USA, 17-20 October, 2015 (Guruswami, V.,
ed.), IEEE Computer Society, pp. 250–269 (online), available
from 〈https://ieeexplore.ieee.org/xpl/conhome/7352273/proceeding〉
(2015).

[30] Lee, Y. T. and Sun, H.: An SDP-based algorithm for linear-sized spec-
tral sparsification, Proceedings of the 49th Annual ACM SIGACT Sym-
posium on Theory of Computing, STOC 2017, Montreal, QC, Canada,
June 19-23, 2017 (Hatami, H., McKenzie, P. and King, V., eds.),
ACM, pp. 678–687 (online), DOI: 10.1145/3055399 (2017).

[31] Li, M., Miller, G. L. and Peng, R.: Iterative Row Sam-
pling, 54th Annual IEEE Symposium on Foundations of Com-
puter Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA,
USA, IEEE Computer Society, pp. 127–136 (online), available
from 〈https://ieeexplore.ieee.org/xpl/conhome/6685222/proceeding〉
(2013).

[32] Magdon-Ismail, M.: Row Sampling for Matrix Algorithms via a Non-
Commutative Bernstein Bound, CoRR, Vol. abs/1008.0587 (2010).

[33] Meyer, Jr, C. D.: Generalized inversion of modified matrices, SIAM
Journal on Applied Mathematics, Vol. 24, No. 3, pp. 315–323 (1973).

[34] Peng, R.: Approximate Undirected Maximum Flows in
O(mpolylog(n)) Time, Proceedings of the Twenty-Seventh An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016,
Arlington, VA, USA, January 10-12, 2016 (Krauthgamer, R., ed.),
SIAM, pp. 1862–1867 (online), DOI: 10.1137/1.9781611974331
(2016).

[35] Serfling, R. J.: Probability inequalities for the sum in sampling with-
out replacement, The Annals of Statistics, pp. 39–48 (1974).

[36] Soma, T. and Yoshida, Y.: Spectral Sparsification of Hypergraphs,
SODA, SIAM, pp. 2570–2581 (2019).

[37] Spielman, D. A. and Srivastava, N.: Graph Sparsification by Effective
Resistances, SIAM J. Comput., Vol. 40, No. 6, pp. 1913–1926 (2011).

[38] Spielman, D. A. and Teng, S.: Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems, Proceed-
ings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004 (Babai, L., ed.), ACM, pp. 81–90
(2004).

[39] Spielman, D. A. and Teng, S.: Spectral Sparsification of Graphs, SIAM
J. Comput., Vol. 40, No. 4, pp. 981–1025 (2011).

[40] Thorup, M.(ed.): 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018,
IEEE Computer Society (2018).

8ⓒ 2020 Information Processing Society of Japan

IPSJ SIG Technical Report Vol.2020-AL-176 No.2
2020/1/29

